metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A second monoclinic polymorph of di-μ-chlorido-bis­­(chlorido{2-[(4-ethyl­phen­yl)imino­meth­yl]pyridine-κ2N,N′}copper(II))

aDepartment of Chemistry, Islamic Azad University, Buinzahra Branch, Qazvin, Iran, bDepartment of Chemistry, Alzahra University, Tehran, Iran, cDepartment of Chemistry, Islamic Azad University, Karaj Branch, Karaj, Iran, and dDepartment of Chemistry, University of Toronto, 80 St. George St., Toronto, Ontario, Canada M5S 3H6
*Correspondence e-mail: khalaj_mehdi@yahoo.com

(Received 8 May 2012; accepted 11 June 2012; online 16 June 2012)

The title compound, [Cu2Cl4(C14H14N2)2], is a new polymorph of a previously reported compound [Dehghanpour et al. (2011[Dehghanpour, S., Mahmoudi, A., Khalaj, M., Abbasi, S. & Mojahed, F. (2011). Acta Cryst. E67, m1296.]). Acta Cryst. E67, m1296]. The current polymorph was obtained from an acetonitrile solution of the title compound. Like the first polymorph, it is monoclinic (space group P21/c). The unique CuII ion in the title centrosymmetric dinuclear complex is in a distorted trigonal–bipyramidal coordination environment formed by the bis-­chelating N-heterocyclic ligand, two bridging Cl ligands and one terminal Cl ligand. In the crystal, weak C—H⋯Cl hydrogen bonds are observed in addition to ππ stacking inter­actions, with a centroid–centroid distance of 3.6597 (18) Å.

Related literature

For the synthesis of the ligand, see: Dehghanpour et al. (2009[Dehghanpour, S., Khalaj, M. & Mahmoudi, A. (2009). Polyhedron, 28, 1205-1210.]). For background to diimine complexes and related structures, see: Dehghanpour et al. (2011[Dehghanpour, S., Mahmoudi, A., Khalaj, M., Abbasi, S. & Mojahed, F. (2011). Acta Cryst. E67, m1296.]); Salehzadeh et al. (2011[Salehzadeh, S., Dehghanpour, S., Khalaj, M. & Rahimishakiba, M. (2011). Acta Cryst. E67, m327.]). For an index of trigonality as a general descriptor of five-coord­inate complexes, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Cl4(C14H14N2)2]

  • Mr = 689.42

  • Monoclinic, P 21 /c

  • a = 7.8480 (4) Å

  • b = 13.7160 (6) Å

  • c = 14.4601 (7) Å

  • β = 113.924 (3)°

  • V = 1422.80 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.90 mm−1

  • T = 150 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.581, Tmax = 0.689

  • 7862 measured reflections

  • 3249 independent reflections

  • 2399 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.102

  • S = 1.05

  • 3249 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯Cl1 0.95 2.80 3.364 (3) 119
C2—H2A⋯Cl2i 0.95 2.76 3.445 (3) 130
C6—H6A⋯Cl2ii 0.95 2.62 3.506 (3) 155
C12—H12A⋯Cl2 0.95 2.80 3.450 (3) 126
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006)[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The crystal structure of a polymorph of the title compound has previously been reported (Dehghanpour et al., 2011). In the course of our studies on the synthesis, structural and spectroscopic characterization of transition metal complexes with diimine ligands (Dehghanpour et al., 2009; Salehzadeh et al., 2011) a new polymorph of the title compound was obtained.

The title complex is shown in Fig. 1. The most significant structural difference between this structure and the polymorph (Dehghanpour et al., 2011) is the coordination environment of the CuII ion. The structural index τ, (Addison et al., 1984) which is a measure of trigonal distortion, is 0.75 for the title structure indicating a distorted trigonal-bipyramidal environment of Cu(II) for the title compound. The value of τ is 0.21 for the other polymorph with a distorted square-planar coordination enviroment. These differences are shown in Fig. 2.

The interplanar angles between the benzene and pyridine rings in the title structure is 12.40 (15)° whereas this angle is 43.02 (13)° in the polymorph determined by Dehghanpour et al. (2011).

In the crystal, weak C—H···Cl hydrogen bonds are observed in addition to ππ stacking interactions with a centroid to centroid distance of 3.6597 (18)Å for Cg1···Cg2i (where Cg1 and Cg2 are centroids of the N1-C1-C5 and C7-C12 rings; symmetry code: 1+x, y, z).

Related literature top

For the synthesis of the ligand, see: Dehghanpour et al. (2009). For background to diimine complexes and related structures, see: Dehghanpour et al. (2011); Salehzadeh et al. (2011). For an index of trigonality as a general descriptor of five-coordinate complexes, see: Addison et al. (1984).

Experimental top

The title complex was prepared by the reaction of CuCl2 (13.4 mg, 0.1 mmol) and (4-methylphenyl)pyridin-2-ylmethyleneamine (21.0 mg, 0.1) in 15 ml of acetonitrile at room temperature. The solution was allowed to stand at room temperature and orange block-shaped crystal of the title compound suitable for X-ray analysis precipitated within few days.

Refinement top

All the H atoms were located in the difference electron density map. Nevertheless, the H atoms were constrained and refined in the riding motion approximation: Caryl—H = 0.95, Cmethylene—H = 0.99, Cmethyl—H = 0.98 Å. Uiso(Haryl/methylene) = 1.2 × Ueq(Ccarrier) and Uiso(Hmethyl) = 1.5 × Ueq(Ccarrier).

Structure description top

The crystal structure of a polymorph of the title compound has previously been reported (Dehghanpour et al., 2011). In the course of our studies on the synthesis, structural and spectroscopic characterization of transition metal complexes with diimine ligands (Dehghanpour et al., 2009; Salehzadeh et al., 2011) a new polymorph of the title compound was obtained.

The title complex is shown in Fig. 1. The most significant structural difference between this structure and the polymorph (Dehghanpour et al., 2011) is the coordination environment of the CuII ion. The structural index τ, (Addison et al., 1984) which is a measure of trigonal distortion, is 0.75 for the title structure indicating a distorted trigonal-bipyramidal environment of Cu(II) for the title compound. The value of τ is 0.21 for the other polymorph with a distorted square-planar coordination enviroment. These differences are shown in Fig. 2.

The interplanar angles between the benzene and pyridine rings in the title structure is 12.40 (15)° whereas this angle is 43.02 (13)° in the polymorph determined by Dehghanpour et al. (2011).

In the crystal, weak C—H···Cl hydrogen bonds are observed in addition to ππ stacking interactions with a centroid to centroid distance of 3.6597 (18)Å for Cg1···Cg2i (where Cg1 and Cg2 are centroids of the N1-C1-C5 and C7-C12 rings; symmetry code: 1+x, y, z).

For the synthesis of the ligand, see: Dehghanpour et al. (2009). For background to diimine complexes and related structures, see: Dehghanpour et al. (2011); Salehzadeh et al. (2011). For an index of trigonality as a general descriptor of five-coordinate complexes, see: Addison et al. (1984).

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of the title complex, with displacement ellipsoids drawn at the 50% probability level [H atoms are represented as spheres of arbitrary radius]. Unlabelled atoms are related by the symmetry operator (-x+1, -y+1, -z+1).
[Figure 2] Fig. 2. A comparison of both polymorphs. The title molecule is shown in red while that determined by Dehghanpour et al. (2011) in green (Mercury; Macrae et al., 2006).
di-µ-chlorido-bis(chlorido{2-[(4-ethylphenyl)iminomethyl]pyridine- κ2N,N'}copper(II)) top
Crystal data top
[Cu2Cl4(C14H14N2)2]F(000) = 700
Mr = 689.42Dx = 1.609 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4440 reflections
a = 7.8480 (4) Åθ = 2.6–27.5°
b = 13.7160 (6) ŵ = 1.90 mm1
c = 14.4601 (7) ÅT = 150 K
β = 113.924 (3)°Block, orange
V = 1422.80 (12) Å30.30 × 0.25 × 0.20 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
3249 independent reflections
Radiation source: fine-focus sealed tube2399 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.8°
φ scans and ω scans with κ offsetsh = 1010
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1715
Tmin = 0.581, Tmax = 0.689l = 1218
7862 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.102H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.8729P]
where P = (Fo2 + 2Fc2)/3
3249 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.70 e Å3
55 constraints
Crystal data top
[Cu2Cl4(C14H14N2)2]V = 1422.80 (12) Å3
Mr = 689.42Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.8480 (4) ŵ = 1.90 mm1
b = 13.7160 (6) ÅT = 150 K
c = 14.4601 (7) Å0.30 × 0.25 × 0.20 mm
β = 113.924 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3249 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2399 reflections with I > 2σ(I)
Tmin = 0.581, Tmax = 0.689Rint = 0.045
7862 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.05Δρmax = 0.76 e Å3
3249 reflectionsΔρmin = 0.70 e Å3
173 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50129 (5)0.45502 (2)0.61249 (3)0.02458 (13)
Cl10.60970 (11)0.59376 (5)0.56397 (5)0.0301 (2)
Cl20.33826 (11)0.53968 (5)0.68632 (6)0.03089 (19)
N10.7670 (3)0.40393 (17)0.70183 (18)0.0239 (5)
N20.4320 (3)0.32164 (16)0.64881 (17)0.0227 (5)
C10.9333 (4)0.4446 (2)0.7264 (2)0.0290 (7)
H1A0.94030.50660.69870.035*
C21.0974 (4)0.4000 (2)0.7912 (2)0.0329 (7)
H2A1.21390.43150.80770.040*
C31.0897 (4)0.3100 (2)0.8311 (2)0.0337 (7)
H3A1.20030.27840.87570.040*
C40.9176 (4)0.2662 (2)0.8049 (2)0.0342 (7)
H4A0.90790.20340.83010.041*
C50.7598 (4)0.3157 (2)0.7415 (2)0.0265 (6)
C60.5738 (4)0.2752 (2)0.7108 (2)0.0287 (7)
H6A0.55730.21400.73680.034*
C70.2496 (4)0.2788 (2)0.6146 (2)0.0262 (6)
C80.2256 (5)0.1806 (2)0.6308 (3)0.0442 (9)
H8A0.33100.13980.66340.053*
C90.0487 (5)0.1429 (3)0.5996 (3)0.0530 (11)
H9A0.03400.07580.61110.064*
C100.1092 (4)0.1998 (2)0.5515 (3)0.0368 (8)
C110.0829 (4)0.2962 (2)0.5328 (2)0.0302 (7)
H11A0.18830.33640.49830.036*
C120.0946 (4)0.3355 (2)0.5634 (2)0.0279 (7)
H12A0.10940.40180.54910.033*
C130.3033 (5)0.1564 (3)0.5204 (3)0.0522 (10)
H13A0.32050.13710.58210.063*
H13B0.39710.20720.48540.063*
C140.3384 (6)0.0684 (3)0.4514 (3)0.0581 (11)
H14A0.46750.04650.43070.087*
H14B0.25320.01560.48760.087*
H14C0.31700.08620.39130.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0276 (2)0.01543 (19)0.0310 (2)0.00135 (14)0.01221 (17)0.00164 (14)
Cl10.0399 (4)0.0189 (4)0.0290 (4)0.0081 (3)0.0116 (3)0.0005 (3)
Cl20.0375 (4)0.0188 (4)0.0416 (4)0.0010 (3)0.0214 (4)0.0044 (3)
N10.0276 (13)0.0190 (12)0.0258 (13)0.0006 (11)0.0116 (11)0.0015 (10)
N20.0259 (13)0.0171 (12)0.0258 (13)0.0004 (10)0.0113 (10)0.0018 (10)
C10.0290 (16)0.0277 (16)0.0307 (17)0.0014 (13)0.0127 (14)0.0044 (13)
C20.0263 (16)0.0390 (18)0.0329 (18)0.0026 (15)0.0114 (14)0.0017 (14)
C30.0287 (17)0.0326 (17)0.0346 (18)0.0042 (14)0.0074 (14)0.0065 (14)
C40.0360 (18)0.0232 (15)0.0378 (18)0.0020 (15)0.0094 (15)0.0050 (14)
C50.0298 (16)0.0205 (14)0.0299 (16)0.0022 (13)0.0127 (13)0.0014 (12)
C60.0322 (17)0.0186 (14)0.0345 (17)0.0005 (13)0.0127 (14)0.0043 (13)
C70.0268 (15)0.0233 (15)0.0298 (16)0.0013 (13)0.0126 (13)0.0006 (12)
C80.0275 (18)0.0250 (17)0.069 (3)0.0008 (15)0.0081 (17)0.0166 (17)
C90.0330 (19)0.0299 (19)0.082 (3)0.0036 (16)0.009 (2)0.0176 (19)
C100.0278 (17)0.0346 (19)0.047 (2)0.0026 (15)0.0136 (15)0.0002 (15)
C110.0265 (16)0.0283 (16)0.0328 (17)0.0048 (13)0.0090 (14)0.0013 (13)
C120.0300 (16)0.0193 (14)0.0317 (17)0.0016 (13)0.0097 (13)0.0000 (12)
C130.033 (2)0.042 (2)0.076 (3)0.0026 (17)0.0158 (19)0.004 (2)
C140.048 (2)0.072 (3)0.048 (2)0.023 (2)0.0130 (19)0.003 (2)
Geometric parameters (Å, º) top
Cu1—N22.037 (2)C6—H6A0.9500
Cu1—N12.079 (2)C7—C121.379 (4)
Cu1—Cl22.2876 (8)C7—C81.393 (4)
Cu1—Cl12.3067 (8)C8—C91.375 (5)
Cu1—Cl1i2.4321 (8)C8—H8A0.9500
Cl1—Cu1i2.4321 (8)C9—C101.389 (5)
N1—C11.328 (4)C9—H9A0.9500
N1—C51.350 (4)C10—C111.382 (4)
N2—C61.280 (4)C10—C131.523 (5)
N2—C71.437 (4)C11—C121.388 (4)
C1—C21.390 (4)C11—H11A0.9500
C1—H1A0.9500C12—H12A0.9500
C2—C31.374 (4)C13—C141.520 (6)
C2—H2A0.9500C13—H13A0.9900
C3—C41.384 (4)C13—H13B0.9900
C3—H3A0.9500C14—H14A0.9800
C4—C51.383 (4)C14—H14B0.9800
C4—H4A0.9500C14—H14C0.9800
C5—C61.453 (4)
N2—Cu1—N180.94 (9)N2—C6—H6A119.9
N2—Cu1—Cl294.43 (7)C5—C6—H6A119.9
N1—Cu1—Cl2119.40 (7)C12—C7—C8119.1 (3)
N2—Cu1—Cl1171.55 (7)C12—C7—N2119.5 (3)
N1—Cu1—Cl193.80 (7)C8—C7—N2121.4 (3)
Cl2—Cu1—Cl193.91 (3)C9—C8—C7119.7 (3)
N2—Cu1—Cl1i90.23 (7)C9—C8—H8A120.1
N1—Cu1—Cl1i113.66 (7)C7—C8—H8A120.1
Cl2—Cu1—Cl1i126.81 (3)C8—C9—C10122.0 (3)
Cl1—Cu1—Cl1i85.82 (3)C8—C9—H9A119.0
Cu1—Cl1—Cu1i94.18 (3)C10—C9—H9A119.0
C1—N1—C5118.0 (3)C11—C10—C9117.5 (3)
C1—N1—Cu1130.8 (2)C11—C10—C13121.8 (3)
C5—N1—Cu1111.22 (19)C9—C10—C13120.7 (3)
C6—N2—C7119.9 (2)C10—C11—C12121.3 (3)
C6—N2—Cu1112.36 (19)C10—C11—H11A119.3
C7—N2—Cu1127.69 (18)C12—C11—H11A119.3
N1—C1—C2122.4 (3)C7—C12—C11120.3 (3)
N1—C1—H1A118.8C7—C12—H12A119.9
C2—C1—H1A118.8C11—C12—H12A119.9
C3—C2—C1119.5 (3)C14—C13—C10113.4 (3)
C3—C2—H2A120.3C14—C13—H13A108.9
C1—C2—H2A120.3C10—C13—H13A108.9
C2—C3—C4118.6 (3)C14—C13—H13B108.9
C2—C3—H3A120.7C10—C13—H13B108.9
C4—C3—H3A120.7H13A—C13—H13B107.7
C5—C4—C3118.7 (3)C13—C14—H14A109.5
C5—C4—H4A120.7C13—C14—H14B109.5
C3—C4—H4A120.7H14A—C14—H14B109.5
N1—C5—C4122.8 (3)C13—C14—H14C109.5
N1—C5—C6115.0 (3)H14A—C14—H14C109.5
C4—C5—C6122.2 (3)H14B—C14—H14C109.5
N2—C6—C5120.3 (3)
N2—Cu1—Cl1—Cu1i62.3 (5)Cu1—N1—C5—C4179.1 (2)
N1—Cu1—Cl1—Cu1i113.48 (7)C1—N1—C5—C6179.5 (3)
Cl2—Cu1—Cl1—Cu1i126.67 (3)Cu1—N1—C5—C62.2 (3)
Cl1i—Cu1—Cl1—Cu1i0.0C3—C4—C5—N11.7 (5)
N2—Cu1—N1—C1178.7 (3)C3—C4—C5—C6179.7 (3)
Cl2—Cu1—N1—C191.4 (3)C7—N2—C6—C5176.6 (3)
Cl1—Cu1—N1—C15.3 (3)Cu1—N2—C6—C54.4 (4)
Cl1i—Cu1—N1—C192.4 (3)N1—C5—C6—N21.5 (4)
N2—Cu1—N1—C53.39 (19)C4—C5—C6—N2177.3 (3)
Cl2—Cu1—N1—C586.6 (2)C6—N2—C7—C12168.0 (3)
Cl1—Cu1—N1—C5176.73 (19)Cu1—N2—C7—C1210.8 (4)
Cl1i—Cu1—N1—C589.63 (19)C6—N2—C7—C812.8 (4)
N1—Cu1—N2—C64.2 (2)Cu1—N2—C7—C8168.4 (3)
Cl2—Cu1—N2—C6114.9 (2)C12—C7—C8—C92.7 (5)
Cl1—Cu1—N2—C656.1 (6)N2—C7—C8—C9178.1 (3)
Cl1i—Cu1—N2—C6118.1 (2)C7—C8—C9—C100.1 (6)
N1—Cu1—N2—C7176.9 (2)C8—C9—C10—C112.1 (6)
Cl2—Cu1—N2—C764.0 (2)C8—C9—C10—C13178.3 (4)
Cl1—Cu1—N2—C7125.0 (4)C9—C10—C11—C121.8 (5)
Cl1i—Cu1—N2—C763.0 (2)C13—C10—C11—C12178.6 (3)
C5—N1—C1—C20.4 (4)C8—C7—C12—C112.9 (5)
Cu1—N1—C1—C2177.5 (2)N2—C7—C12—C11177.8 (3)
N1—C1—C2—C30.6 (5)C10—C11—C12—C70.7 (5)
C1—C2—C3—C40.3 (5)C11—C10—C13—C14123.0 (4)
C2—C3—C4—C51.4 (5)C9—C10—C13—C1456.6 (5)
C1—N1—C5—C40.8 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cl10.952.803.364 (3)119
C2—H2A···Cl2ii0.952.763.445 (3)130
C6—H6A···Cl2iii0.952.623.506 (3)155
C12—H12A···Cl20.952.803.450 (3)126
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Cu2Cl4(C14H14N2)2]
Mr689.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)7.8480 (4), 13.7160 (6), 14.4601 (7)
β (°) 113.924 (3)
V3)1422.80 (12)
Z2
Radiation typeMo Kα
µ (mm1)1.90
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.581, 0.689
No. of measured, independent and
observed [I > 2σ(I)] reflections
7862, 3249, 2399
Rint0.045
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 1.05
No. of reflections3249
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.70

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cl10.952.803.364 (3)119
C2—H2A···Cl2i0.952.763.445 (3)130
C6—H6A···Cl2ii0.952.623.506 (3)155
C12—H12A···Cl20.952.803.450 (3)126.
Symmetry codes: (i) x+1, y, z; (ii) x+1, y1/2, z+3/2.
 

Acknowledgements

The authors would like to acknowledge the Islamic Azad and Alzahra University Research Councils for partial support of this work.

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDehghanpour, S., Khalaj, M. & Mahmoudi, A. (2009). Polyhedron, 28, 1205–1210.  Web of Science CSD CrossRef CAS Google Scholar
First citationDehghanpour, S., Mahmoudi, A., Khalaj, M., Abbasi, S. & Mojahed, F. (2011). Acta Cryst. E67, m1296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSalehzadeh, S., Dehghanpour, S., Khalaj, M. & Rahimishakiba, M. (2011). Acta Cryst. E67, m327.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds