metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dicarbonyl(η^5 -cyclopentadienyl)(2,3-dibromopropanamine- κN)iron(II) tetrafluoridoborate

Cyprian M. M'thiruaine,^a* Holger B. Friedrich,^a Evans O. Changamu^b and Manuel A. Fernandes^c

^aSchool of Chemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa, ^bChemistry Department, Kenyatta University, PO Box 43844, Nairobi, Kenya, and ^cSchool of Chemistry, University of the Witwatersrand, PO Wits, 2050 Johannesburg, South Africa Correspondence e-mail: friedric@ukzn.ac.za

conespondence e mail: mediceouternaeiza

Received 5 June 2012; accepted 7 June 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.008 Å; R factor = 0.027; wR factor = 0.076; data-to-parameter ratio = 15.5.

The title compound, $[Fe(\eta^5-C_5H_5)(NH_2CH_2CHBrCH_2Br)-(CO)_2](BF_4)$ contains an Fe^{II} cation with a three-legged piano-stool coordination. The NH₂CH₂CHBrCH₂Br ligand contains a chiral carbon atom. The Fe–N bond length is 2.011 (3) Å and the Fe–Cp centroid distance is 1.7189 (5) Å. In the crystal, the ions are linked *via* two N–H···F interactions and a weak N–H···Br interaction.

Related literature

For the synthesis of the title compound and our previous work in this area, see: M'thiruaine *et al.* (2012*b*). For related amino complexes, see: M'thiruaine *et al.* (2011*a,b*, 2012*a,b*). For piano-stool bromoalkyl complex structures, see: Friedrich *et al.* (2001, 2004). For some applications of halogenated compounds, see: Gerebtzoff *et al.* (2004); Butler & Sandy (2009).

Experimental

 Crystal data

 $[Fe(C_3H_5)(C_3H_7Br_2N)(CO)_2] \cdot (BF_4)$ c = 13.2959 (4) Å

 $M_r = 480.69$ $\beta = 138.664 (2)^{\circ}$

 Monoclinic, Pc $V = 762.65 (4) \text{ Å}^3$

 a = 12.9385 (4) Å Z = 2

 b = 6.7123 (2) Å Mo K α radiation

 $0.54 \times 0.48 \times 0.29 \text{ mm}$

8733 measured reflections

 $R_{\rm int} = 0.036$

2944 independent reflections

2751 reflections with $I > 2\sigma(I)$

 $\mu = 6.27 \text{ mm}^{-1}$ T = 173 K

Data collection

Bruker APEXII CCD diffractometer Absorption correction: integration (SADABS; Bruker, 2005) $T_{min} = 0.133, T_{max} = 0.264$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.027$ H-atom parameters constrained $wR(F^2) = 0.076$ $\Delta \rho_{max} = 0.76 \text{ e Å}^{-3}$ S = 1.10 $\Delta \rho_{min} = -0.64 \text{ e Å}^{-3}$ 2944 reflectionsAbsolute structure: (Flack, 1983)190 parametersFlack parameter: -0.003 (9)2 restraints2

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{l} \mathrm{N1-H1}A\cdots\mathrm{F4}\\ \mathrm{N1-H1}A\cdots\mathrm{Br1}\\ \mathrm{N1-H1}B\cdots\mathrm{F1}^{\mathrm{i}} \end{array}$	0.92	2.15	2.951 (4)	145
	0.92	2.79	3.238 (3)	111
	0.92	2.06	2.935 (4)	158

Symmetry code: (i) $x, -y + 1, z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT-Plus* (Bruker, 2005); data reduction: *SAINT-Plus* and *XPREP* (Bruker, 2005); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* Farrugia (1997); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

We thank the University of KwaZulu-Natal for facilities and financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2567).

References

- Bruker (2005). *APEX2*, *SAINT-Plus*, *XPREP* and *SADABS*. Bruker AXS Inc., Madison, Wisconsin, USA.
- Butler, A. & Sandy, M. (2009). Nature (London), 460, 848-854.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Friedrich, H. B., Onani, M. O. & Munro, O. Q. (2001). J. Organomet. Chem. 633, 39–50.
- Friedrich, H. B., Onani, M. O. & Rademeyer, M. (2004). Acta Cryst. E60, m551-m553.
- Gerebtzoff, G., Li-Blatter, X., Fischer, H., Frentzel, A. & Seeling, A. (2004). *ChemBioChem*, 5, 676–684.
- M'thiruaine, C. M., Friedrich, H. B., Changamu, E. O. & Bala, M. D. (2011*a*). *Inorg. Chim. Acta*, **366**, 105–115.
- M'thiruaine, C. M., Friedrich, H. B., Changamu, E. O. & Bala, M. D. (2012a). Inorg. Chim. Acta, **382**, 27–34.
- M'thiruaine, C. M., Friedrich, H. B., Changamu, E. O. & Omondi, B. (2011b). Acta Cryst. E67, m485.
- M'thiruaine, C. M., Friedrich, H. B., Changamu, E. O. & Omondi, B. (2012b). Polyhedron, 40, 81–92.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2012). E68, m932 [https://doi.org/10.1107/S1600536812025925] Dicarbonyl(η^5 -cyclopentadienyl)(2,3-dibromopropanamine- κ N)iron(II) tetrafluoridoborate

Cyprian M. M'thiruaine, Holger B. Friedrich, Evans O. Changamu and Manuel A. Fernandes

S1. Comment

Halogenated compounds are of particular importance in pharmaceuticals and agrochemicals (Butler and Sandy 2009). A significant number of drugs and drug candidates in clinical development have halogenated structures because halogenation enhances membrane binding and permeation of drugs to the target sites (Gerebtzoff *et al.*, 2004). Thus, structural determination of halogenated molecules, particularly the chiral compounds, is warranted.

The title compound (I) has been previously reported by us as the product of the bromination of the allylamino compound $[Cp(CO)_2Fe{NH_2CH_2CH=CH_2}]BF_4$ (M'thiruaine *et al.*, 2012*b*). However, its molecular structure has not been previously reported. The compound is an enantiomerically pure chiral compound that crystallizes as the (*S*) enantiomer only. The unit cell of the title compound consisted of two molecular cations and two counteranions. The molecular cation displays a piano-stool geometry around the Fe^{II} ion with cyclopentadienyl coordinated to the metal centre in a pentahapto fashion, thus occupying the apical position, while two carbonyl ligands and the 2,3-dibromopropyl-1-amino ligand occupy the basal positions (Fig.1). The 2,3-dibromopropyl-1-amino ligand is coordinated to iron *via* the amino group, with an Fe—N bond length of 2.011 Å. This is within the reported Fe—N bond length range (M'thiruaine *et al.*, 2011*a,b*; M'thiruaine *et al.*, 2012*a*). The two Br atoms on the dibromopropylamino chain are in anti stereochemistry with a torsion angle Br1—C9—C10—Br2 =173.08 (19)°. The C—Br bond lengths are 1.942 (5) and 1.978 (4) Å, which are close to the 1.946 (17) and 1.971 (3) Å reported for [Cp(CO)₃W{(CH₂)₃Br}] (Friedrich *et al.*, 2001) and Cp*(CO)₂Fe{(CH₂)₃Br}] (Friedrich *et al.*, 2004), respectively. The molecules are linked by three hydrogen bonds namely N1—H1A—F4, N1— H1A—Br1 and N1—H1B—F1 (Table 1).

S2. Experimental

The title compound was prepared according to a reported procedure (M'thiruaine *et al.*, 2012*b*) and crystals were grown by layering a concentrated solution of the compound in CH_2Cl_2 with Et_2O and the mixture was kept undisturbed in the dark for four days.

S3. Refinement

Non-hydrogen atoms were first refined isotropically followed by anisotropic refinement by full matrix least-square calculations on F^2 using *SHEXTL*. Hydrogen atoms were first located in the difference map then positioned geometrically and allowed to ride on their respective parent atoms.

Figure 1

Molecular structure of the title complex with the atom labeling scheme. Ellipsoids are drawn at 50% probability level.

Dicarbonyl(η^5 -cyclopentadienyl)(2,3-dibromopropanamine- κN)iron(II) tetrafluoridoborate

Crystal data

$[Fe(C_5H_5)(C_3H_7Br_2N)(CO)_2] \cdot (BF_4)$ $F(000) = 464$ $M_r = 480.69$ $D_x = 2.093 \text{ Mg m}^{-3}$ Monoclinic, Pc Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Hall symbol: P -2ycCell parameters from 5868 reflec $a = 12.9385 (4) \text{ Å}$ $\theta = 2.3-28.3^{\circ}$ $b = 6.7123 (2) \text{ Å}$ $\mu = 6.27 \text{ mm}^{-1}$ $c = 13.2959 (4) \text{ Å}$ $T = 173 \text{ K}$ $\beta = 138.664 (2)^{\circ}$ Prismic, brown $V = 762.65 (4) \text{ Å}^3$ $0.54 \times 0.48 \times 0.29 \text{ mm}$ $Z = 2$ Data collectionBruker APEXII CCD diffractometerAbsorption correction: integration $(SADABS; Bruker, 2005)$ Radiation source: fine-focus sealed tube $T_{min} = 0.133, T_{max} = 0.264$ Graphite monochromator2944 independent reflections 2751 reflections with $I > 2\sigma(I)$	2	
$Z = 2$ Data collectionBruker APEXII CCD diffractometerAbsorption correction: integration (SADABS; Bruker, 2005)Radiation source: fine-focus sealed tube $T_{min} = 0.133, T_{max} = 0.264$ Graphite monochromator φ and ω scans8733 measured reflections 2944 independent reflections 2751 reflections with $I > 2\sigma(I)$	$[Fe(C_{5}H_{5})(C_{3}H_{7}Br_{2}N)(CO)_{2}] \cdot (BF_{4})$ $M_{r} = 480.69$ Monoclinic, Pc Hall symbol: P -2yc a = 12.9385 (4) Å b = 6.7123 (2) Å c = 13.2959 (4) Å $\beta = 138.664$ (2)° V = 762.65 (4) Å ³	F(000) = 464 $D_x = 2.093 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5868 reflections $\theta = 2.3-28.3^{\circ}$ $\mu = 6.27 \text{ mm}^{-1}$ T = 173 K Prismic, brown $0.54 \times 0.48 \times 0.29 \text{ mm}$
Bruker APEXII CCD diffractometerAbsorption correction: integration (SADABS; Bruker, 2005)Radiation source: fine-focus sealed tube $T_{min} = 0.133, T_{max} = 0.264$ Graphite monochromator8733 measured reflections φ and ω scans2944 independent reflections 2751 reflections with $I > 2\sigma(I)$	Z = 2 Data collection	
	Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans	Absorption correction: integration (<i>SADABS</i> ; Bruker, 2005) $T_{min} = 0.133$, $T_{max} = 0.264$ 8733 measured reflections 2944 independent reflections 2751 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.036$
$\theta_{\rm max} = 28.0^{\circ}, \ \theta_{\rm min} = 2.4^{\circ}$
$h = -17 \rightarrow 16$

Refinement

Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.027$	Hydrogen site location: inferred from
$wR(F^2) = 0.076$	neighbouring sites
S = 1.10	H-atom parameters constrained
2944 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0492P)^2 + 0.1443P]$
190 parameters	where $P = (F_0^2 + 2F_c^2)/3$
2 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.76 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.64 \text{ e } \text{\AA}^{-3}$
	Absolute structure: (Flack, 1983)

Special details

Experimental. Face indexed absorption corrections carried out with XPREP

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Absolute structure parameter: -0.003 (9)

 $k = -8 \longrightarrow 8$ $l = -13 \longrightarrow 17$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.2328 (5)	0.2525 (6)	0.2879 (5)	0.0312 (9)
H1	0.3279	0.2486	0.3203	0.037*
C2	0.1334 (5)	0.4194 (7)	0.2262 (4)	0.0341 (9)
H2	0.1504	0.5480	0.2107	0.041*
C3	0.0032 (5)	0.3607 (7)	0.1912 (4)	0.0344 (9)
Н3	-0.0821	0.4430	0.1482	0.041*
C4	0.0241 (5)	0.1576 (7)	0.2321 (5)	0.0315 (8)
H4	-0.0454	0.0791	0.2206	0.038*
C5	0.1659 (4)	0.0924 (6)	0.2929 (4)	0.0275 (7)
Н5	0.2092	-0.0374	0.3309	0.033*
C6	0.2019 (4)	0.5752 (6)	0.4680 (5)	0.0273 (8)
C7	0.1693 (4)	0.2165 (6)	0.5155 (4)	0.0234 (7)
C8	0.5160 (4)	0.1184 (5)	0.6589 (4)	0.0242 (7)
H8A	0.4996	0.0650	0.5784	0.029*
H8B	0.4636	0.0271	0.6685	0.029*
С9	0.6893 (4)	0.1202 (7)	0.8079 (4)	0.0278 (8)
Н9	0.7069	0.1777	0.8892	0.033*
C10	0.7653 (5)	-0.0805 (7)	0.8575 (5)	0.0372 (10)
H10A	0.8802	-0.0656	0.9474	0.045*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H10B	0.7421	-0.1421	0.7746	0.045*
N1	0.4412 (3)	0.3170 (5)	0.6112 (3)	0.0193 (6)
H1A	0.4852	0.3976	0.5951	0.023*
H1B	0.4658	0.3708	0.6908	0.023*
O1	0.1941 (5)	0.7331 (5)	0.4917 (5)	0.0451 (9)
O2	0.1334 (3)	0.1479 (5)	0.5640 (3)	0.0363 (7)
Fe1	0.20737 (5)	0.32704 (7)	0.42396 (5)	0.01774 (11)
Br1	0.79524 (5)	0.28916 (9)	0.78419 (5)	0.04641 (14)
Br2	0.68883 (6)	-0.25147 (7)	0.90878 (6)	0.04643 (14)
B1	0.5163 (5)	0.7167 (7)	0.4432 (5)	0.0256 (8)
F1	0.4496 (4)	0.5759 (4)	0.3313 (3)	0.0449 (6)
F2	0.4611 (3)	0.9035 (4)	0.3751 (3)	0.0465 (7)
F3	0.6762 (3)	0.7131 (5)	0.5531 (4)	0.0514 (7)
F4	0.4694 (3)	0.6791 (4)	0.5072 (3)	0.0390 (6)

Atomic displacement parameters (\mathring{A}^2)

	1/11	L ²²	L / ³³	<i>U</i> ¹²	<i>U</i> ¹³	L /23
<u></u>	0.0288 (10)	0.051 (3)	0.0181 (17)	_0.0010 (17)	0.0188 (16)	_0.0024 (16)
	0.0288(19)	0.031(3)	0.0181(17)	-0.0010(17)	0.0100(10)	-0.0024(10)
C2	0.036 (2)	0.042 (2)	0.0227 (19)	0.0036 (17)	0.0213 (18)	0.0101 (16)
C3	0.0237 (18)	0.047 (3)	0.0176 (17)	0.0083 (18)	0.0110 (15)	0.0071 (18)
C4	0.0272 (18)	0.036 (2)	0.0233 (18)	-0.0081 (16)	0.0166 (16)	-0.0079 (16)
C5	0.0300 (17)	0.0252 (18)	0.0212 (17)	-0.0020 (15)	0.0174 (15)	-0.0047 (14)
C6	0.0273 (17)	0.0250 (19)	0.0333 (19)	0.0037 (15)	0.0239 (16)	0.0025 (16)
C7	0.0203 (16)	0.0263 (17)	0.0195 (17)	-0.0052 (14)	0.0138 (16)	-0.0037 (14)
C8	0.0209 (16)	0.0234 (18)	0.0207 (16)	0.0011 (14)	0.0134 (15)	0.0019 (15)
C9	0.0226 (17)	0.039 (2)	0.0222 (17)	0.0034 (16)	0.0171 (16)	-0.0009 (17)
C10	0.0245 (18)	0.057 (3)	0.0250 (19)	0.0150 (19)	0.0170 (17)	0.009 (2)
N1	0.0135 (12)	0.0198 (14)	0.0190 (14)	-0.0032 (10)	0.0106 (12)	-0.0026 (11)
01	0.054 (2)	0.0288 (17)	0.062 (2)	0.0017 (14)	0.046 (2)	-0.0012 (15)
O2	0.0341 (15)	0.0485 (18)	0.0330 (15)	-0.0088 (13)	0.0272 (14)	0.0020 (13)
Fe1	0.0162 (2)	0.0201 (2)	0.0159 (2)	0.00138 (18)	0.01175 (18)	0.00273 (19)
Br1	0.0292 (2)	0.0668 (3)	0.0469 (3)	-0.0055 (2)	0.0296 (2)	0.0008 (3)
Br2	0.0550 (3)	0.0445 (3)	0.0469 (3)	0.0230 (2)	0.0404 (3)	0.0209 (2)
B1	0.0239 (19)	0.032 (2)	0.0242 (19)	0.0033 (16)	0.0190 (18)	0.0062 (17)
F1	0.0642 (17)	0.0442 (15)	0.0465 (15)	-0.0069 (14)	0.0474 (15)	-0.0093 (13)
F2	0.0506 (16)	0.0380 (15)	0.0519 (17)	0.0035 (13)	0.0387 (15)	0.0123 (13)
F3	0.0291 (13)	0.071 (2)	0.0494 (17)	0.0058 (13)	0.0282 (13)	0.0121 (15)
F4	0.0508 (16)	0.0424 (14)	0.0471 (15)	-0.0083 (12)	0.0436 (15)	-0.0048 (12)

Geometric parameters (Å, °)

C1—C5	1.413 (6)	C7—Fe1	1.781 (4)	
C1—C2	1.414 (6)	C8—N1	1.481 (5)	
C1—Fe1	2.128 (4)	C8—C9	1.511 (5)	
C1—H1	0.9500	C8—H8A	0.9900	
С2—С3	1.426 (6)	C8—H8B	0.9900	
C2—Fe1	2.107 (4)	C9—C10	1.497 (6)	

С2—Н2	0.9500	C9—Br1	1.978 (4)
C3—C4	1.417 (7)	С9—Н9	1.0000
C3—Fe1	2.081 (4)	C10—Br2	1.942 (5)
С3—Н3	0.9500	C10—H10A	0.9900
C4—C5	1.408 (6)	C10—H10B	0.9900
C4—Fe1	2.083 (4)	N1—Fe1	2.011 (3)
C4—H4	0.9500	N1—H1A	0.9200
C5—Fel	2.098(4)	N1—H1B	0.9200
C5H5	0.9500	B1_F3	1.370(5)
C6_01	1.122(5)	D1 = 15 D1 = E1	1.370(5)
	1.132(3)	B1 - F1	1.387(3)
Co-Fel	1.784 (4)	B1 - F2	1.389 (5)
C/02	1.138 (5)	BI—F4	1.391 (5)
C5—C1—C2	107.9 (4)	C9—C10—H10A	109.6
C5—C1—Fe1	69.3 (2)	Br2—C10—H10A	109.6
C^2 — C^1 —Fel	69.7 (2)	C9-C10-H10B	109.6
C_{2} C_{1} H_{1}	126.0	$Br^2 C10 H10B$	109.6
$C_2 = C_1 = H_1$	126.0		109.0
	120.0	HI0A - CI0 - HI0B	108.1
Fel—Cl—Hl	120.5	C8—NI—Fel	116.9 (2)
C1 = C2 = C3	107.9 (4)	C8—NI—HIA	108.1
Cl—C2—Fel	71.3 (2)	Fel—NI—HIA	108.1
C3—C2—Fe1	69.1 (2)	C8—N1—H1B	108.1
C1—C2—H2	126.1	Fe1—N1—H1B	108.1
С3—С2—Н2	126.1	H1A—N1—H1B	107.3
Fe1—C2—H2	125.1	C7—Fe1—C6	93.75 (18)
C4—C3—C2	107.6 (4)	C7—Fe1—N1	94.06 (15)
C4—C3—Fe1	70.2 (2)	C6—Fe1—N1	91.07 (15)
C2—C3—Fe1	71.1 (2)	C7—Fe1—C3	111.59 (17)
С4—С3—Н3	126.2	C6—Fe1—C3	93.88 (19)
C2—C3—H3	126.2	N1—Fe1—C3	153 45 (15)
Fe1 - C3 - H3	124.2	C7—Fe1—C4	87.97 (17)
$C_5 C_4 C_3$	121.2 1081(4)	C6 Fe1 $C4$	128.48(17)
$C_5 = C_4 = C_5$	70.0(2)	$C_0 - C_1 - C_4$	120.48(17) 140.23(15)
$C_3 = C_4 = FeI$	70.9 (2)	N1 - Fe1 - C4	140.23(13)
C3-C4-Fei	/0.0 (2)	C3—FeI—C4	39.79 (19)
C5—C4—H4	126.0	C/—Fel—CS	103.00 (16)
C3—C4—H4	126.0	C6—Fel—C5	157.66 (17)
Fe1—C4—H4	124.7	N1—Fe1—C5	102.23 (14)
C4—C5—C1	108.5 (4)	C3—Fe1—C5	66.36 (17)
C4—C5—Fe1	69.8 (2)	C4—Fe1—C5	39.37 (16)
C1—C5—Fe1	71.6 (2)	C7—Fe1—C2	151.17 (16)
С4—С5—Н5	125.8	C6—Fe1—C2	92.41 (19)
C1—C5—H5	125.8	N1—Fe1—C2	113.97 (14)
Fe1—C5—H5	124.5	C3—Fe1—C2	39.82 (16)
O1—C6—Fe1	178.0 (4)	C4—Fe1—C2	66.40 (17)
O2—C7—Fe1	174.9 (3)	C5—Fe1—C2	65.86 (17)
N1—C8—C9	113.8 (3)	C7—Fe1—C1	141.39 (18)
N1—C8—H8A	108.8	C6-Fe1-C1	124 63 (17)
C9_C8_H8A	108.8	N1—Fe1—C1	89 72 (14)
C/ CO 110/1	100.0		

N1 C9 UPD	100.0	C_{2}^{2} E-1 C1	((12)(17))
	108.8		66.12(17)
	108.8	C4—FeI—CI	05.80 (10)
H8A—C8—H8B	107.7	C5—Fel—Cl	39.06 (16)
C10—C9—C8	114.1 (3)	C2—Fe1—C1	39.00 (17)
C10—C9—Br1	106.4 (5)	F3—B1—F1	110.9 (4)
C8—C9—Br1	108.7 (3)	F3—B1—F2	109.7 (4)
С10—С9—Н9	109.2	F1—B1—F2	108.4 (3)
С8—С9—Н9	109.2	F3—B1—F4	110.3 (4)
Br1—C9—H9	109.2	F1—B1—F4	109.1 (3)
C9—C10—Br2	110.3 (3)	F2—B1—F4	108.4 (3)
C5—C1—C2—C3	-0.7 (4)	C3—C4—Fe1—N1	-137.9 (3)
Fe1—C1—C2—C3	-59.7 (3)	C5—C4—Fe1—C3	118.4 (3)
C5-C1-C2-Fe1	59.0 (3)	C3—C4—Fe1—C5	-118.4(3)
C1—C2—C3—C4	0.1 (5)	C5—C4—Fe1—C2	80.1 (3)
Fe1—C2—C3—C4	-61.0(3)	C3—C4—Fe1—C2	-38.3(2)
C1-C2-C3-Fe1	61 1 (3)	C5-C4-Fe1-C1	373(2)
$C_2 - C_3 - C_4 - C_5$	0.6(5)	$C_3 - C_4 - F_{e1} - C_1$	-811(3)
$C_2 = C_3 = C_4 = C_5$	-610(3)	C_{4} C_{5} E_{e1} C_{7}	70.2(3)
$C_2 = C_3 = C_4 = C_3$	61.6(3)	$C_1 = C_2 = C_1 = C_7$	-1712(3)
$C_2 = C_3 = C_4 = \Gamma C_1$	-10(5)	$C_1 = C_2 = C_1 = C_1$	-674(5)
$C_3 = C_4 = C_5 = C_1$	1.0(3)	C_{1} C_{5} E_{c1} C_{6}	51.2(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-01.3(3)	CI = CJ = FeI = CO	31.2(3)
C3-C4-C5-Fel	60.4 (3)	C4—C5—FeI—NI	167.4 (2)
C2-C1-C5-C4	1.1 (4)	Cl—C5—Fel—Nl	-/4.0 (2)
Fe1—C1—C5—C4	60.3 (3)	C4—C5—Fe1—C3	-37.9 (3)
C2-C1-C5-Fe1	-59.2 (3)	C1—C5—Fe1—C3	80.7 (3)
N1—C8—C9—C10	179.4 (3)	C1—C5—Fe1—C4	118.6 (3)
N1—C8—C9—Br1	-62.1 (3)	C4—C5—Fe1—C2	-81.6 (3)
C8—C9—C10—Br2	-67.2 (4)	C1—C5—Fe1—C2	37.0 (2)
Br1-C9-C10-Br2	173.08 (19)	C4—C5—Fe1—C1	-118.6 (3)
C9—C8—N1—Fe1	-174.8 (2)	C1—C2—Fe1—C7	-109.4 (4)
C8—N1—Fe1—C7	72.1 (3)	C3—C2—Fe1—C7	9.1 (5)
C8—N1—Fe1—C6	166.0 (3)	C1—C2—Fe1—C6	148.4 (3)
C8—N1—Fe1—C3	-93.2 (4)	C3—C2—Fe1—C6	-93.2(3)
C8—N1—Fe1—C4	-19.6 (4)	C1—C2—Fe1—N1	56.1 (3)
C8—N1—Fe1—C5	-32.1(3)	C3-C2-Fe1-N1	174.6(2)
C8-N1-Fe1-C2	-100.9(3)	C1-C2-Fe1-C3	-1185(4)
C8—N1—Fe1—C1	-694(3)	C1 - C2 - Fe1 - C4	-80.2(3)
CA = C3 Fe1 = C7	-57.7(3)	$C_1 = C_2 = C_1 = C_4$	38.2(3)
C_{1}^{2} C_{2}^{3} C_{3}^{2} C_{1}^{2} C_{7}^{2}	-175.3(3)	$C_1 = C_2 = C_1 = C_2$	-37.0(2)
$C_2 = C_3 = FeI = C_1$	-1/3.3(3)	$C_1 = C_2 = Fe_1 = C_3$	-37.0(2)
C4 - C3 - FeI - C0	-135.5(5)	$C_2 = C_2 = F_2 = C_3$	81.3(3)
$C_2 = C_3 = F_1 = C_0$	89.1 (5)	$C_3 = C_2 = Fe_1 = C_1$	118.5 (4)
C4 - C3 - FeI - NI	106.5 (4)	C5—CI—FeI—C7	13.8 (4)
C2—C3—Fel—NI	-11.1 (5)	C2-C1-Fel-C/	133.2 (3)
C2—C3—Fel—C4	-117.6 (4)	C5—C1—Fel—C6	-158.9 (2)
C4—C3—Fe1—C5	37.5 (2)	C2-C1-Fe1-C6	-39.5 (3)
C2—C3—Fe1—C5	-80.1 (3)	C5—C1—Fe1—N1	110.0 (2)
C4—C3—Fe1—C2	117.6 (4)	C2-C1-Fe1-N1	-130.6 (3)

C4—C3—Fe1—C1	80.4 (3)	C5—C1—Fe1—C3	-81.4 (3)
C2—C3—Fe1—C1	-37.2 (3)	C2-C1-Fe1-C3	38.0 (3)
C5—C4—Fe1—C7	-113.5 (3)	C5-C1-Fe1-C4	-37.6 (2)
C3—C4—Fe1—C7	128.2 (3)	C2-C1-Fe1-C4	81.7 (3)
C5—C4—Fe1—C6	153.4 (2)	C2-C1-Fe1-C5	119.4 (4)
C3—C4—Fe1—C6	35.0 (3)	C5—C1—Fe1—C2	-119.4 (4)
C5—C4—Fe1—N1	-19.5 (4)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	D—H···A	
N1—H1A…F4	0.92	2.15	2.951 (4)	145	
N1—H1A····Br1	0.92	2.79	3.238 (3)	111	
N1— $H1B$ ····F1 ⁱ	0.92	2.06	2.935 (4)	158	

Symmetry code: (i) x, -y+1, z+1/2.