organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-[2,5-Bis(hex­yl­oxy)-1,4-phenyl­ene]di­thio­phene

aSchool of Chemical Sciences & Food Technology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia, bInstitut of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, UKM 43600 Bangi, Selangor, Malaysia, and cDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
*Correspondence e-mail: mbkassim@ukm.my

(Received 25 May 2012; accepted 26 May 2012; online 2 June 2012)

The asymmetric unit of the title compound, C26H34O2S2, comprises one half-mol­ecule located on an inversion centre. The thio­phene groups are twisted relative to the benzene ring, making a dihedral angle of 5.30 (7)°, and the n-hexyl groups are in a fully extended conformation. In the crystal, there are short C—H⋯π contacts involving the thio­phene groups.

Related literature

For the synthesis and general background references, see: Carle et al. (2010[Carle, J. E., Andreasen, J. W., Jorgensen, M. & Krebs, F. C. (2010). Sol. Energy Mater. Sol. Cells, 94, 774-780.]); Promarak & Ruchirawat (2007[Promarak, V. & Ruchirawat, S. (2007). Tetrahedron, 63, 1602-1609.]); Bouachrine et al. (2002[Bouachrine, M., Lere-Porte, J.-P., Moreau, J. J. E., Spirau, F. S., da Silva, R. A., Lmimouni, K., Ouchani, L. & Dufour, C. (2002). Synth. Met. 126, 241-244.]).

[Scheme 1]

Experimental

Crystal data
  • C26H34O2S2

  • Mr = 442.65

  • Monoclinic, P 21 /c

  • a = 12.2996 (3) Å

  • b = 5.4298 (1) Å

  • c = 17.6872 (4) Å

  • β = 103.982 (2)°

  • V = 1146.23 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.25 mm−1

  • T = 150 K

  • 0.26 × 0.11 × 0.03 mm

Data collection
  • Oxford Diffraction Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.]) Tmin = 0.592, Tmax = 0.935

  • 8010 measured reflections

  • 2216 independent reflections

  • 2018 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.113

  • S = 1.04

  • 2216 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the S1, C4–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cg1i 0.93 2.85 3.5809 (16) 137
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thiophene-phenylene-thiophene unit, as in the title compound, is an interesting material to produce soluble electroluminescent materials for LED applications (Bouachrine et al., 2002) and making photovoltaic devices (Carle et al., 2010). The solubility characteristic for the title compound in organic solvents was enhanced by the presence of dialkyloxy groups on the phenylene fragment.

The molecule of the title compound is shown in Fig. 1 and crystal packing projection along the b axis is shown in Fig. 2.

Related literature top

For the synthesis and general background references, see: Carle et al. (2010); Promarak & Ruchirawat (2007); Bouachrine et al. (2002).

Experimental top

The preparation of title compound was adapted from previously published procedure with a slight modification (Promarak & Ruchirawat, 2007). Aqueous sodium carbonate solution (2M, 10.5 ml) was added into a solution of 2,5-dibromo-1,4-bis(hexyloxy)benzene (1.50 g, 3.44 mmol) in dry THF prior to addition of Pd(PPh3)4 (0.21 g) catalyst. This was followed by the addition of 2-thiophene boronic acid (1.32 g, 10.32 mmol) and the mixture was heated under reflux overnight in dry N2 atmosphere and allowed to cool to ambient temperature prior to addition of water. The product was extracted into CH2Cl2 and the organic phase was combined, washed with water and brine solution, followed by drying over anhydrous MgSO4. The solvent was evaporated using rotary evaporator and the product was further recrystallized from ethanol/ethyl acetate to afford crystals suitable for single-crystal X-ray diffraction (yield: 80%).

Refinement top

The H atom positions were calculated geometrically and refined in a riding model approximation with C–H bond lengths in the range 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) except methyl group where Uiso(H) = 1.5Ueq(C).

Structure description top

Thiophene-phenylene-thiophene unit, as in the title compound, is an interesting material to produce soluble electroluminescent materials for LED applications (Bouachrine et al., 2002) and making photovoltaic devices (Carle et al., 2010). The solubility characteristic for the title compound in organic solvents was enhanced by the presence of dialkyloxy groups on the phenylene fragment.

The molecule of the title compound is shown in Fig. 1 and crystal packing projection along the b axis is shown in Fig. 2.

For the synthesis and general background references, see: Carle et al. (2010); Promarak & Ruchirawat (2007); Bouachrine et al. (2002).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. Symmetry code for atoms with the A label: -x, 1 - y, 1 - z.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed down the b-axis.
2,2'-[2,5-Bis(hexyloxy)-1,4-phenylene]dithiophene top
Crystal data top
C26H34O2S2F(000) = 476
Mr = 442.65Dx = 1.283 Mg m3
Monoclinic, P21/cMelting point = 369–367 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54178 Å
a = 12.2996 (3) ÅCell parameters from 3985 reflections
b = 5.4298 (1) Åθ = 4–71°
c = 17.6872 (4) ŵ = 2.25 mm1
β = 103.982 (2)°T = 150 K
V = 1146.23 (4) Å3Thin plate, colourless
Z = 20.26 × 0.11 × 0.03 mm
Data collection top
Oxford Diffraction Gemini
diffractometer
2216 independent reflections
Radiation source: fine-focus sealed tube2018 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 71.3°, θmin = 3.7°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
h = 1514
Tmin = 0.592, Tmax = 0.935k = 66
8010 measured reflectionsl = 2115
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0739P)2 + 0.5049P]
where P = (Fo2 + 2Fc2)/3
2216 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C26H34O2S2V = 1146.23 (4) Å3
Mr = 442.65Z = 2
Monoclinic, P21/cCu Kα radiation
a = 12.2996 (3) ŵ = 2.25 mm1
b = 5.4298 (1) ÅT = 150 K
c = 17.6872 (4) Å0.26 × 0.11 × 0.03 mm
β = 103.982 (2)°
Data collection top
Oxford Diffraction Gemini
diffractometer
2216 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
2018 reflections with I > 2σ(I)
Tmin = 0.592, Tmax = 0.935Rint = 0.028
8010 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.04Δρmax = 0.40 e Å3
2216 reflectionsΔρmin = 0.22 e Å3
137 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer 1986) with a nominal stability of 0.1 K.

Cosier, J. & Glazer, A.M., (1986)., J. Appl. Cryst. 105 107.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.29977 (3)0.23308 (7)0.14406 (2)0.02015 (17)
O10.33781 (9)0.3460 (2)0.00566 (6)0.0185 (3)
C10.41842 (12)0.1767 (3)0.00089 (8)0.0151 (3)
C20.44944 (12)0.0140 (3)0.06456 (8)0.0146 (3)
C30.46770 (12)0.1612 (3)0.06175 (8)0.0153 (3)
H30.44510.27030.10310.018*
C40.39762 (12)0.0159 (3)0.13132 (8)0.0144 (3)
C50.41723 (12)0.1539 (3)0.19221 (8)0.0163 (3)
H50.46670.28560.19620.020*
C60.35315 (13)0.1034 (3)0.24751 (9)0.0190 (3)
H60.35600.19900.29160.023*
C70.28728 (13)0.0999 (3)0.22898 (9)0.0205 (3)
H70.24080.15950.25920.025*
C80.30066 (12)0.5135 (3)0.05794 (8)0.0161 (3)
H8A0.27220.42290.10590.019*
H8B0.36240.61600.06430.019*
C90.20894 (12)0.6715 (3)0.03966 (8)0.0162 (3)
H9A0.23940.76740.00690.019*
H9B0.15040.56630.02940.019*
C100.15873 (13)0.8453 (3)0.10717 (9)0.0173 (3)
H10A0.21810.94600.11840.021*
H10B0.12690.74820.15320.021*
C110.06820 (13)1.0129 (3)0.09008 (9)0.0180 (3)
H11A0.10071.11410.04510.022*
H11B0.01020.91220.07700.022*
C120.01499 (13)1.1804 (3)0.15839 (9)0.0206 (3)
H12A0.07321.27960.17180.025*
H12B0.01821.07910.20320.025*
C130.07480 (13)1.3507 (3)0.14123 (10)0.0237 (4)
H13A0.13371.25380.12910.036*
H13B0.10501.45110.18610.036*
H13C0.04221.45440.09770.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0231 (3)0.0238 (3)0.0156 (2)0.00695 (14)0.00873 (17)0.00228 (13)
O10.0210 (6)0.0222 (6)0.0139 (5)0.0084 (4)0.0074 (4)0.0046 (4)
C10.0131 (7)0.0172 (7)0.0143 (7)0.0013 (6)0.0021 (5)0.0007 (6)
C20.0135 (7)0.0185 (7)0.0117 (7)0.0007 (6)0.0028 (5)0.0012 (5)
C30.0166 (7)0.0174 (7)0.0115 (7)0.0015 (6)0.0022 (5)0.0024 (5)
C40.0126 (7)0.0175 (7)0.0124 (7)0.0002 (5)0.0016 (5)0.0023 (5)
C50.0158 (7)0.0220 (8)0.0119 (7)0.0011 (6)0.0049 (6)0.0027 (6)
C60.0197 (7)0.0247 (8)0.0128 (7)0.0018 (6)0.0042 (6)0.0007 (6)
C70.0211 (8)0.0286 (8)0.0138 (7)0.0016 (6)0.0079 (6)0.0008 (6)
C80.0175 (7)0.0189 (7)0.0116 (7)0.0033 (6)0.0030 (5)0.0018 (5)
C90.0165 (7)0.0184 (7)0.0139 (7)0.0018 (6)0.0040 (6)0.0001 (6)
C100.0184 (7)0.0188 (7)0.0146 (7)0.0028 (6)0.0039 (6)0.0008 (6)
C110.0188 (7)0.0181 (7)0.0170 (7)0.0019 (6)0.0041 (6)0.0003 (6)
C120.0193 (8)0.0235 (8)0.0193 (8)0.0048 (6)0.0054 (6)0.0026 (6)
C130.0207 (8)0.0236 (8)0.0257 (8)0.0060 (6)0.0037 (6)0.0011 (7)
Geometric parameters (Å, º) top
S1—C71.7071 (15)C8—H8A0.9700
S1—C41.7380 (15)C8—H8B0.9700
O1—C11.3697 (18)C9—C101.530 (2)
O1—C81.4326 (17)C9—H9A0.9700
C1—C31.388 (2)C9—H9B0.9700
C1—C21.409 (2)C10—C111.524 (2)
C2—C3i1.404 (2)C10—H10A0.9700
C2—C41.471 (2)C10—H10B0.9700
C3—C2i1.404 (2)C11—C121.527 (2)
C3—H30.9300C11—H11A0.9700
C4—C51.394 (2)C11—H11B0.9700
C5—C61.423 (2)C12—C131.526 (2)
C5—H50.9300C12—H12A0.9700
C6—C71.362 (2)C12—H12B0.9700
C6—H60.9300C13—H13A0.9600
C7—H70.9300C13—H13B0.9600
C8—C91.513 (2)C13—H13C0.9600
C7—S1—C492.24 (7)C8—C9—H9A109.4
C1—O1—C8118.42 (11)C10—C9—H9A109.4
O1—C1—C3123.50 (14)C8—C9—H9B109.4
O1—C1—C2115.58 (13)C10—C9—H9B109.4
C3—C1—C2120.92 (14)H9A—C9—H9B108.0
C3i—C2—C1117.07 (13)C11—C10—C9112.96 (12)
C3i—C2—C4119.49 (13)C11—C10—H10A109.0
C1—C2—C4123.42 (13)C9—C10—H10A109.0
C1—C3—C2i122.00 (14)C11—C10—H10B109.0
C1—C3—H3119.0C9—C10—H10B109.0
C2i—C3—H3119.0H10A—C10—H10B107.8
C5—C4—C2126.00 (13)C10—C11—C12113.12 (13)
C5—C4—S1110.17 (11)C10—C11—H11A109.0
C2—C4—S1123.82 (11)C12—C11—H11A109.0
C4—C5—C6112.47 (14)C10—C11—H11B109.0
C4—C5—H5123.8C12—C11—H11B109.0
C6—C5—H5123.8H11A—C11—H11B107.8
C7—C6—C5112.76 (14)C13—C12—C11113.32 (13)
C7—C6—H6123.6C13—C12—H12A108.9
C5—C6—H6123.6C11—C12—H12A108.9
C6—C7—S1112.35 (12)C13—C12—H12B108.9
C6—C7—H7123.8C11—C12—H12B108.9
S1—C7—H7123.8H12A—C12—H12B107.7
O1—C8—C9107.75 (11)C12—C13—H13A109.5
O1—C8—H8A110.2C12—C13—H13B109.5
C9—C8—H8A110.2H13A—C13—H13B109.5
O1—C8—H8B110.2C12—C13—H13C109.5
C9—C8—H8B110.2H13A—C13—H13C109.5
H8A—C8—H8B108.5H13B—C13—H13C109.5
C8—C9—C10111.36 (12)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1, C4–C7 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg1ii0.932.853.5809 (16)137
Symmetry code: (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H34O2S2
Mr442.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)12.2996 (3), 5.4298 (1), 17.6872 (4)
β (°) 103.982 (2)
V3)1146.23 (4)
Z2
Radiation typeCu Kα
µ (mm1)2.25
Crystal size (mm)0.26 × 0.11 × 0.03
Data collection
DiffractometerOxford Diffraction Gemini
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
Tmin, Tmax0.592, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
8010, 2216, 2018
Rint0.028
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.113, 1.04
No. of reflections2216
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.22

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the S1, C4–C7 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg1i0.932.853.5809 (16)137
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia and the Ministry of Higher Education, Malaysia for research grants UKM-GUP-BTT-07–26–178 and UKM-FST-06-FRGS0095–2010. This work was also supported by a National Science Fellowship (NSF) to TCH.

References

First citationBouachrine, M., Lere-Porte, J.-P., Moreau, J. J. E., Spirau, F. S., da Silva, R. A., Lmimouni, K., Ouchani, L. & Dufour, C. (2002). Synth. Met. 126, 241–244.  Web of Science CrossRef CAS Google Scholar
First citationCarle, J. E., Andreasen, J. W., Jorgensen, M. & Krebs, F. C. (2010). Sol. Energy Mater. Sol. Cells, 94, 774–780.  Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Abingdon, England.  Google Scholar
First citationPromarak, V. & Ruchirawat, S. (2007). Tetrahedron, 63, 1602–1609.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds