supplementary materials


gk2497 scheme

Acta Cryst. (2012). E68, m890    [ doi:10.1107/S160053681202510X ]

Tetraaquabis[5-(pyridin-3-yl)tetrazolido-[kappa]N5]manganese(II) tetrahydrate

C. Qi, X. He, M. Shao and M.-X. Li

Abstract top

The title compound, [Mn(C6H4N5)2(H2O)4]·4H2O, was obtained by the solution reaction of MnCl2 and 3-(2H-tetrazol-5-yl)pyridine. The MnII atom, located on an inversion center, shows a slightly distorted octahedral geometry and is coordinated by two pyridine N atoms from two 5-(pyridin-3-yl)tetrazolide ligands occupying trans positions and four water molecules. In the crystal, the mononuclear complex molecules and solvent water molecules are connected into a three-dimensional framework by O-H...N and O-H...O hydrogen bonds.

Comment top

3-(2H-Tetrazol-5-yl)pyridine (3-Ptz) is a multifunctional ligand which possesses five potential coordinate nitrogen atoms. Recently Mu et al. (2010) reported that hydrothermal reaction of Zn(OAc)2 with 3-Ptz results in a mononuclear zinc complex [Zn(C6H4N5)2(H2O)4].4H2O. We were able to prepare an analogues manganese(II) compound, [Mn(C6H4N5)2(H2O)4].4H2O, by the solution reaction of MnCl2 with 3-Ptz in a basic H2O/ethanol solution. This compound is closely isostructural with the Zn complex reported by Mu et al. (2010)

Related literature top

For the synthesis and crystal structure of the isotypic zinc(II) complex [Zn(C6H4N5)2(H2O)4].4H2O, see: Mu et al. (2010).

Experimental top

A mixture of MnCl2 (0.1 mmol), 3-Ptz (0.1 mmol), 1 ml NaOH solution (0.1 mol L-1) was added into 10 ml H2O/ethanol mixed solvent (1:1). After being stirred for twenty minutes, the mixture was filtered. The filtrate was left undisturbed for two days to give yellow block crystals with 35% yield based on 3-Ptz. Anal. calcd for C12H24MnN10O8 (%): C, 29.33; H, 4.92; N, 28.51. Found: C, 29.24; H, 4.83; N, 28.66. IR (KBr pellet, cm-1): 3400m, 1613m, 1588m, 1464m, 1426s, 1372m, 1153s, 1019m, 787s, 750s, 696s, 642m, 463m.

Refinement top

All the H atoms were positioned geometrically (C—H = 0.93 Å, O—H = 0.85 Å), and allowed to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C) or 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title complex. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (A) -x, -y, -z].
[Figure 2] Fig. 2. A crystal packing diagram of the title compound with hydrogen bonds shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
Tetraaquabis[5-(pyridin-3-yl)tetrazolido-κN5]manganese(II) tetrahydrate top
Crystal data top
[Mn(C6H4N5)2(H2O)4]·4H2OZ = 1
Mr = 491.35F(000) = 255
Triclinic, P1Dx = 1.531 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.137 (8) ÅCell parameters from 1565 reflections
b = 8.629 (8) Åθ = 2.5–27.3°
c = 8.761 (8) ŵ = 0.68 mm1
α = 84.878 (10)°T = 293 K
β = 65.347 (8)°Block, yellow
γ = 72.571 (10)°0.15 × 0.10 × 0.10 mm
V = 533.0 (9) Å3
Data collection top
Bruker APEXII CCD
diffractometer
1850 independent reflections
Radiation source: fine-focus sealed tube1712 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
phi and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 79
Tmin = 0.922, Tmax = 0.934k = 610
2785 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0343P)2 + 0.2064P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1850 reflectionsΔρmax = 0.23 e Å3
143 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.063 (6)
Crystal data top
[Mn(C6H4N5)2(H2O)4]·4H2Oγ = 72.571 (10)°
Mr = 491.35V = 533.0 (9) Å3
Triclinic, P1Z = 1
a = 8.137 (8) ÅMo Kα radiation
b = 8.629 (8) ŵ = 0.68 mm1
c = 8.761 (8) ÅT = 293 K
α = 84.878 (10)°0.15 × 0.10 × 0.10 mm
β = 65.347 (8)°
Data collection top
Bruker APEXII CCD
diffractometer
1850 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1712 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.934Rint = 0.026
2785 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.080Δρmax = 0.23 e Å3
S = 1.05Δρmin = 0.32 e Å3
1850 reflectionsAbsolute structure: ?
143 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4972 (3)0.8406 (3)0.1955 (2)0.0309 (5)
H10.38630.83300.28440.037*
C20.5378 (3)0.7784 (2)0.0396 (2)0.0250 (4)
C30.7038 (3)0.7881 (3)0.0919 (2)0.0312 (4)
H30.73690.74850.19930.037*
C40.8196 (3)0.8579 (3)0.0606 (3)0.0367 (5)
H40.93260.86470.14680.044*
C50.7665 (3)0.9175 (2)0.0990 (3)0.0313 (4)
H50.84570.96430.11800.038*
C60.4027 (3)0.7086 (2)0.0214 (2)0.0253 (4)
Mn10.50001.00000.50000.02565 (17)
N10.6059 (2)0.9108 (2)0.22757 (19)0.0291 (4)
N20.2536 (2)0.6822 (2)0.1516 (2)0.0316 (4)
N30.1654 (2)0.6214 (2)0.0825 (2)0.0345 (4)
N40.2572 (2)0.6120 (2)0.0813 (2)0.0335 (4)
N50.4088 (2)0.6669 (2)0.12397 (19)0.0293 (4)
O10.4248 (2)1.25174 (18)0.44974 (18)0.0465 (4)
H1B0.34861.32880.52130.056*
H1A0.45871.29500.35480.056*
O20.79389 (19)0.99831 (18)0.44105 (18)0.0364 (4)
H2A0.87300.91730.45890.044*
H2B0.82291.08200.45260.044*
O30.0823 (2)0.75323 (18)0.49811 (18)0.0372 (4)
H3B0.09420.66960.55620.045*
H3A0.13460.71960.39580.045*
O40.1519 (2)0.48719 (18)0.69383 (17)0.0359 (4)
H4B0.06080.45190.75980.043*
H4A0.18550.52710.75750.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0302 (10)0.0403 (11)0.0217 (10)0.0155 (9)0.0058 (8)0.0023 (8)
C20.0279 (10)0.0230 (9)0.0239 (10)0.0064 (8)0.0108 (8)0.0002 (7)
C30.0317 (10)0.0378 (11)0.0216 (10)0.0100 (9)0.0071 (8)0.0061 (8)
C40.0286 (10)0.0506 (13)0.0277 (11)0.0162 (10)0.0043 (8)0.0034 (9)
C50.0277 (10)0.0374 (11)0.0320 (11)0.0116 (8)0.0134 (8)0.0010 (9)
C60.0292 (10)0.0226 (9)0.0234 (10)0.0065 (8)0.0104 (8)0.0011 (7)
Mn10.0264 (2)0.0299 (3)0.0210 (2)0.00911 (17)0.00862 (17)0.00332 (16)
N10.0311 (9)0.0351 (9)0.0230 (8)0.0125 (7)0.0105 (7)0.0017 (7)
N20.0307 (9)0.0386 (10)0.0264 (9)0.0142 (7)0.0091 (7)0.0018 (7)
N30.0341 (9)0.0405 (10)0.0320 (9)0.0165 (8)0.0122 (7)0.0018 (8)
N40.0370 (9)0.0370 (10)0.0314 (9)0.0153 (8)0.0152 (8)0.0008 (7)
N50.0348 (9)0.0320 (9)0.0237 (9)0.0141 (7)0.0109 (7)0.0014 (7)
O10.0623 (10)0.0321 (8)0.0252 (8)0.0059 (7)0.0044 (7)0.0003 (6)
O20.0302 (7)0.0385 (8)0.0429 (9)0.0084 (6)0.0166 (6)0.0071 (6)
O30.0407 (8)0.0377 (8)0.0292 (8)0.0113 (7)0.0100 (6)0.0011 (6)
O40.0401 (8)0.0413 (8)0.0273 (8)0.0177 (7)0.0094 (6)0.0044 (6)
Geometric parameters (Å, º) top
C1—N11.337 (3)Mn1—O2i2.222 (3)
C1—C21.382 (3)Mn1—O22.222 (3)
C1—H10.9300Mn1—N12.290 (3)
C2—C31.383 (3)Mn1—N1i2.290 (3)
C2—C61.468 (3)N2—N31.342 (2)
C3—C41.382 (3)N3—N41.309 (3)
C3—H30.9300N4—N51.349 (3)
C4—C51.377 (3)O1—H1B0.8500
C4—H40.9300O1—H1A0.8500
C5—N11.336 (3)O2—H2A0.8500
C5—H50.9300O2—H2B0.8501
C6—N51.331 (3)O3—H3B0.8500
C6—N21.338 (3)O3—H3A0.8501
Mn1—O12.132 (2)O4—H4B0.8500
Mn1—O1i2.132 (2)O4—H4A0.8501
N1—C1—C2124.70 (17)O1—Mn1—N195.02 (7)
N1—C1—H1117.6O1i—Mn1—N184.98 (7)
C2—C1—H1117.6O2i—Mn1—N192.50 (6)
C1—C2—C3117.48 (18)O2—Mn1—N187.50 (6)
C1—C2—C6118.90 (17)O1—Mn1—N1i84.98 (7)
C3—C2—C6123.61 (18)O1i—Mn1—N1i95.02 (7)
C4—C3—C2118.66 (19)O2i—Mn1—N1i87.50 (5)
C4—C3—H3120.7O2—Mn1—N1i92.50 (6)
C2—C3—H3120.7N1—Mn1—N1i179.999 (1)
C5—C4—C3119.62 (19)C5—N1—C1116.74 (18)
C5—C4—H4120.2C5—N1—Mn1127.06 (13)
C3—C4—H4120.2C1—N1—Mn1116.17 (13)
N1—C5—C4122.78 (19)C6—N2—N3104.94 (17)
N1—C5—H5118.6N4—N3—N2109.54 (17)
C4—C5—H5118.6N3—N4—N5109.28 (15)
N5—C6—N2111.27 (17)C6—N5—N4104.97 (15)
N5—C6—C2125.30 (17)Mn1—O1—H1B126.3
N2—C6—C2123.42 (17)Mn1—O1—H1A127.6
O1—Mn1—O1i180.0H1B—O1—H1A106.1
O1—Mn1—O2i88.59 (7)Mn1—O2—H2A122.5
O1i—Mn1—O2i91.41 (7)Mn1—O2—H2B123.2
O1—Mn1—O291.41 (7)H2A—O2—H2B106.1
O1i—Mn1—O288.59 (7)H3B—O3—H3A106.7
O2i—Mn1—O2180.000 (1)H4B—O4—H4A105.2
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O4ii0.851.942.783 (3)172
O1—H1A···N5iii0.851.912.731 (3)163
O2—H2A···O3iv0.851.992.836 (3)171
O2—H2B···O3i0.851.962.800 (3)169
O3—H3B···O40.851.962.803 (3)171
O3—H3A···N20.851.962.797 (3)170
O4—H4B···N3v0.852.032.878 (3)177
O4—H4A···N4vi0.852.002.849 (3)176
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z; (iii) x+1, y+2, z; (iv) x+1, y, z; (v) x, y+1, z+1; (vi) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O4i0.851.942.783 (3)172
O1—H1A···N5ii0.851.912.731 (3)163
O2—H2A···O3iii0.851.992.836 (3)171
O2—H2B···O3iv0.851.962.800 (3)169
O3—H3B···O40.851.962.803 (3)171
O3—H3A···N20.851.962.797 (3)170
O4—H4B···N3v0.852.032.878 (3)177
O4—H4A···N4vi0.852.002.849 (3)176
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z; (iii) x+1, y, z; (iv) x+1, y+2, z+1; (v) x, y+1, z+1; (vi) x, y, z+1.
Acknowledgements top

The project was supported by the National Natural Science Foundation of China (21171115), the Leading Academic Discipline Project (J50102) and the Innovation Program (12ZZ089) of Shanghai Municipal Education Commission, China.

references
References top

Bruker (2000). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Mu, Y.-Q., Zhao, J. & Li, C. (2010). Acta Cryst. E66, m1667.

Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.