organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(Z)-4-Chloro-N-(1-{2-[3-(4-chlorobenzoyl)ureido]ethyl}imidazolidin-2-ylidene)benzamide

Dalina Adan,^a Suhaila Sapari,^a Siti Nadiah Halim^b and Bohari M. Yamin^a*

^aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43500 Bangi Selangor, Malaysia, and ^bDepartment of Chemistry, Universiti Malaya, Kuala Lumpur, 50603 Malaysia. Correspondence e-mail: bohari@ukm.my

Received 18 June 2012; accepted 21 June 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.040; wR factor = 0.090; data-to-parameter ratio = 14.7.

The title compound, $C_{20}H_{19}Cl_2N_5O_2S$, was obtained from the reaction of 4-chlorobenzoyl isothiocyanate with diethylenetriamine. The imidazolidine ring is slightly twisted with an N-C-C-N torsion angle of 15.4 (4)°, while the thiourea moiety maintains its *trans-cis* geometry. The molecule is stabilized by intramolecular N-H···O hydrogen bonds. The crystal structure features N-H···O, N-H···S and C-H···O hydrogen bonds and π - π interactions between benzene rings with a centroid-centroid distance of 3.607 (3) Å.

Related literature

For the structures of bis(*N*-benzoylthioureas) derived from aliphatic diamines, see: Ding *et al.* (2008). For those derived from cyclohexane diamine, see: Jumal *et al.* (2011). For those derived from aromatic diamines, see: Osman & Yamin (2011); Dong *et al.* (2008).

Experimental

Crystal data C₂₀H₁₉Cl₂N₅O₂S

 $M_r = 464.36$

Monoclinic, Cc
a = 24.488 (7) Å
b = 6.645 (2) Å
c = 13.108 (4) Å
$\beta = 97.16 \ (2)^{\circ}$
V = 2116.2(11) Å ³

Data collection

Bruker SMART APEX CCD	8499 measured reflections
area-detector diffractometer	4165 independent reflections
Absorption correction: multi-scan	2855 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2000)	$R_{\rm int} = 0.055$
$T_{\min} = 0.911, \ T_{\max} = 0.970$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	H atoms treated by a mixture of
$vR(F^2) = 0.090$	independent and constrained
S = 0.93	refinement
165 reflections	$\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$
83 parameters	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$
restraints	Absolute structure: Flack (1983)
	1987 Friedel pairs
	Flack parameter: 0.06 (6)

Z = 4

Mo $K\alpha$ radiation

 $0.22 \times 0.08 \times 0.07 \; \text{mm}$

 $\mu = 0.43 \text{ mm}^{-1}$

T = 296 K

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2A\cdots O1$	0.87(1)	2.00 (4)	2.637 (4)	130 (4)
$N2-H2A\cdots S1^{i}$	0.87(1)	2.85 (4)	3.438 (3)	127 (4)
$N4-H4A\cdots O2$	0.86(1)	1.87 (2)	2.614 (3)	143 (3)
$N5-H5A\cdotsO1^{ii}$	0.86 (1)	2.09 (2)	2.898 (4)	157 (5)
$C17 - H17A \cdot \cdot \cdot O2^{iii}$	0.93	2.46	3.118 (4)	128

Symmetry codes: (i) $x, -y, z - \frac{1}{2}$; (ii) $x, -y, z + \frac{1}{2}$; (iii) x, y - 1, z.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2009).

The authors thank Universiti Kebangsaan Malaysia and the Ministry of Higher Education, Malaysia, for research grant No. UKM-GUP-NBT-08-27-110.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GO2061).

References

Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Ding, Y.-J., Chang, X.-B., Yang, X.-Q. & Dong, W.-K. (2008). Acta Cryst. E64, 0658.
- Dong, W.-K., Yan, H.-B., Chai, L.-Q., Lv, Z.-W. & Zhao, C.-Y. (2008). Acta Cryst. E64, o1097.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Jumal, J., Ibrahim, A. R. & Yamin, B. M. (2011). Acta Cryst. E67, o1256.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Osman, U. M. & Yamin, B. M. (2011). Acta Cryst. E67, 02583. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.

supporting information

Acta Cryst. (2012). E68, o2226 [https://doi.org/10.1107/S1600536812028218]

(*Z*)-4-Chloro-*N*-(1-{2-[3-(4-chlorobenzoyl)ureido]ethyl}imidazolidin-2-yl-idene)benzamide

Dalina Adan, Suhaila Sapari, Siti Nadiah Halim and Bohari M. Yamin

S1. Comment

Some bis(thiourea) compounds with several bridges such as 3,3'-dibenzoyl-1,1'-(butane-1,4-diyl)-dithiourea (Ding et al., 2008) 1,2-bis(N'-benzoylthioureido)cyclohexane (Jumal et al., 2011) and 1-(4-methylbenzoyl)-3-{2-[3-(4-methylbenzoyl)thioureido]phenyl}thiourea (Osman & Yamin, 2011) have been synthesized by the established reaction between carbonoyl isothiocyanate with the diamines. However, the reaction of 4-chlorobenzoyl isothiocyanate with diethylenetriamine(DIEN) did not give the expected bis or tris(thiourea) but instead, the title compound was obtained indicating a cyclization by the middle nitrogen atom of DIEN to the thiono carbon forming the azomethine functional group (Fig.1). The molecule consists of the substituted 4-chlorobenzoylimidazolidin-2-ylidene and 4-chlorobenzoylthioureido moiety connected by the ethylene bridge. The N2-C8 and C8-N1 bond lengths of 1.321 (6) and 1.344 (6) Å respectively which are slightly shorter than C8—N3 bond length (1.364 (6) Å) indicates some degree of delocalization along the bonds. The five membered ring N2/N3/C8/C9/C10 is slightly twisted about the C9-C10 bond with these atoms having deviations of of 0.095 (5)Å and -0.091Å from the mean plane of the 5 atoms. The thiourea moiety S1/N4/N5/C13 is planar (maximum deviation 0.003 (3) Å) for atom C13 from the mean plane. The cis-trans geometry of the thiourea moeity is maintained. The benzene rings of the two hanging arms are nearly co-planar with dihedral angle of $4.88 (19)^{\circ}$ between them so forming an intramolecular $\pi - \pi$ interaction with a centroid to centroid distance of 3.607 (3)°. There are four intramolecular short contacts, N2-H2A...O1, N4-H4A...O2, in the molecule. In the crystal sructure, the molecules are linked by N5—H5A···O1(x,-y,1/2+z), N2···H2A···S1(x,-y,-1/2+z) to form a one dimensional zig-zag chain which runs parallel to the c axis, Figure 2. These chains are linked and C17—H17A···O2(x,-1+y,z) hydrogen bond forming a twodimensional sheet which runs parallel to the bc plane.

S2. Experimental

A solution of 4-chlorobenzoylisothiocyanate (1.9162 g, 0.015 mol) in 30 ml acetone was added into a flask containing 20 ml acetone solution of diethylenetriamine (0.543 g, 0.005 mol). The solution mixture was stirred in ice bath for 1 h. The resulting solution was poured onto an ice cubes to yield a yellow precipitate. The precipitated was filtered off, washed with distilled water and left to dried in atmosphere. Good quality crystal were obtained by recrystallization from ethanol.

S3. Refinement

All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C—H= 0.93 Å(aromatic) or 0.97 Å(methylene)and N—H= 0.86 Å with $U_{iso}(H)=1.2U_{eq}(C \text{ or N})$. There were 2174 Friedel Pairs.

Figure 1

The molecular structure of (I), with displacement ellipsods are drawn at the 50% probability level.

Figure 2

Molecular packing of (I) viewed down b axis. The dashed lines indicate intermolecular hydrogen bonds. Black crosshatched atoms are S, blue atoms are N and green atoms are Cl.

(Z)-4-Chloro-N-(1-{2-[3-(4- chlorobenzoyl)ureido]ethyl}imidazolidin-2-ylidene)benzamide

Crystal data
$C_{20}H_{19}Cl_2N_5O_2S$
$M_r = 464.36$
Monoclinic, Cc
Hall symbol: C -2yc
<i>a</i> = 24.488 (7) Å
b = 6.645 (2) Å
c = 13.108 (4) Å
$\beta = 97.16 \ (2)^{\circ}$
$V = 2116.2 (11) \text{ Å}^3$
Z = 4

F(000) = 960 $D_x = 1.457 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073$ Å Cell parameters from 2230 reflections $\theta = 3.1 - 26.4^{\circ}$ $\mu = 0.43 \text{ mm}^{-1}$ T = 296 KSlab, colourless $0.22\times0.08\times0.07~mm$

Data collection

Bruker SMART APEX CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 83.66 pixels mm ⁻¹ ω scan Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2000) $T_{\min} = 0.911, T_{\max} = 0.970$	8499 measured reflections 4165 independent reflections 2855 reflections with $I > 2\sigma(I)$ $R_{int} = 0.055$ $\theta_{max} = 26.4^{\circ}, \theta_{min} = 3.1^{\circ}$ $h = -30 \rightarrow 30$ $k = -8 \rightarrow 8$ $l = -16 \rightarrow 16$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.090$ S = 0.93 4165 reflections 283 parameters 5 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0374P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.18 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.28 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack (1983) ???? Friedel pairs Absolute structure parameter: 0.06 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.84274 (4)	0.3989 (2)	0.19364 (9)	0.0858 (4)	
Cl2	0.83019 (4)	-0.17344 (19)	0.37999 (10)	0.0887 (4)	
S 1	0.47526 (3)	0.21472 (13)	0.36669 (7)	0.0574 (3)	
01	0.59035 (9)	0.0679 (4)	0.0292 (2)	0.0654 (7)	
02	0.63898 (9)	0.5325 (3)	0.35719 (19)	0.0536 (6)	
N1	0.56767 (10)	0.3697 (4)	0.1039 (2)	0.0456 (7)	
N2	0.48754 (11)	0.1718 (5)	0.0424 (2)	0.0564 (8)	
H2A	0.5083 (15)	0.083 (5)	0.018 (3)	0.100 (16)*	
N3	0.47666 (10)	0.4668 (4)	0.1099 (2)	0.0478 (7)	
N4	0.53148 (11)	0.5442 (4)	0.3285 (2)	0.0479 (7)	
H4A	0.5640 (7)	0.584 (5)	0.319 (3)	0.053 (10)*	
N5	0.58290 (10)	0.2711 (4)	0.3890 (2)	0.0426 (6)	
H5A	0.583 (2)	0.153 (3)	0.415 (4)	0.13 (2)*	
C1	0.70080 (13)	0.1240 (6)	0.1077 (3)	0.0509 (9)	

H1B	0.6892	-0.0066	0.0914	0.061*
C2	0.75617 (14)	0.1603 (6)	0.1344 (3)	0.0550 (9)
H2B	0.7817	0.0561	0.1368	0.066*
C3	0.77275 (14)	0.3549 (6)	0.1573 (3)	0.0566 (10)
C4	0.73592 (13)	0.5075 (5)	0.1551 (3)	0.0534 (9)
H4B	0.7481	0.6377	0.1710	0.064*
C5	0.68087 (14)	0.4709 (5)	0.1295 (2)	0.0496 (8)
H5B	0.6559	0.5764	0.1288	0.060*
C6	0.66193 (13)	0.2761 (5)	0.1045 (2)	0.0434 (8)
C7	0.60276 (13)	0.2283 (5)	0.0752 (2)	0.0444 (8)
C8	0.51449 (13)	0.3336 (5)	0.0849 (2)	0.0433 (8)
C9	0.42894 (14)	0.2020 (6)	0.0255 (3)	0.0606 (9)
H9A	0.4095	0.0871	0.0488	0.073*
H9B	0.4164	0.2259	-0.0466	0.073*
C10	0.42110 (14)	0.3873 (6)	0.0898 (3)	0.0624 (10)
H10A	0.3964	0.4832	0.0520	0.075*
H10B	0.4068	0.3519	0.1532	0.075*
C11	0.48875 (14)	0.6591 (5)	0.1608 (3)	0.0538 (9)
H11A	0.4633	0.7594	0.1294	0.065*
H11B	0.5256	0.7006	0.1504	0.065*
C12	0.48476 (14)	0.6519 (5)	0.2745 (3)	0.0516 (9)
H12A	0.4839	0.7878	0.3011	0.062*
H12B	0.4509	0.5851	0.2862	0.062*
C13	0.53131 (12)	0.3544 (5)	0.3597 (2)	0.0420 (7)
C14	0.63297 (12)	0.3540 (5)	0.3762 (2)	0.0412 (7)
C15	0.68047 (12)	0.2137 (5)	0.3839 (2)	0.0419 (7)
C16	0.67515 (12)	0.0123 (5)	0.3578 (2)	0.0443 (8)
H16A	0.6403	-0.0424	0.3402	0.053*
C17	0.72101 (13)	-0.1086 (5)	0.3576 (3)	0.0483 (8)
H17A	0.7173	-0.2439	0.3398	0.058*
C18	0.77199 (13)	-0.0256 (6)	0.3840 (3)	0.0516 (8)
C19	0.77881 (13)	0.1758 (5)	0.4111 (3)	0.0524 (8)
H19A	0.8137	0.2295	0.4294	0.063*
C20	0.73277 (12)	0.2930 (5)	0.4101 (2)	0.0473 (8)
H20A	0.7366	0.4285	0.4274	0.057*

Atomic displacement parameters $(Å^2)$

U^{23}	U^{13}	U^{12}	U^{33}	U^{22}	U^{11}	
-0.0142 (7)	0.0161 (5)	-0.0131 (6)	0.0944 (8)	0.1137 (9)	0.0511 (5)	Cl1
-0.0239 (8)	0.0045 (5)	0.0265 (6)	0.1106 (9)	0.0981 (9)	0.0558 (6)	Cl2
0.0106 (5)	0.0109 (4)	0.0017 (4)	0.0824 (7)	0.0488 (5)	0.0419 (4)	S 1
-0.0293 (14)	0.0106 (12)	-0.0025 (11)	0.0894 (19)	0.0527 (15)	0.0544 (13)	01
0.0035 (12)	0.0045 (11)	-0.0069 (10)	0.0734 (17)	0.0330 (13)	0.0536 (13)	O2
-0.0050 (13)	0.0067 (13)	0.0054 (12)	0.0538 (18)	0.0405 (16)	0.0427 (15)	N1
-0.0145 (16)	0.0082 (14)	0.0027 (14)	0.071 (2)	0.0532 (19)	0.0456 (16)	N2
-0.0024 (14)	0.0058 (13)	0.0093 (12)	0.0549 (18)	0.0394 (16)	0.0490 (15)	N3
0.0006 (13)	0.0068 (14)	0.0049 (12)	0.0626 (19)	0.0333 (15)	0.0479 (16)	N4
-	0.0106 (12) 0.0045 (11) 0.0067 (13) 0.0082 (14) 0.0058 (13) 0.0068 (14)	-0.0025 (11) -0.0069 (10) 0.0054 (12) 0.0027 (14) 0.0093 (12) 0.0049 (12)	0.0894 (19) 0.0734 (17) 0.0538 (18) 0.071 (2) 0.0549 (18) 0.0626 (19)	$\begin{array}{c} 0.0527\ (15)\\ 0.0330\ (13)\\ 0.0405\ (16)\\ 0.0532\ (19)\\ 0.0394\ (16)\\ 0.0333\ (15) \end{array}$	0.0544 (13) 0.0536 (13) 0.0427 (15) 0.0456 (16) 0.0490 (15) 0.0479 (16)	O1 O2 N1 N2 N3 N4

supporting information

N5	0.0381 (14)	0.0378 (15)	0.0518 (17)	0.0011 (12)	0.0055 (12)	0.0054 (14)
C1	0.054 (2)	0.050 (2)	0.049 (2)	0.0073 (16)	0.0064 (16)	-0.0063 (17)
C2	0.053 (2)	0.065 (2)	0.049 (2)	0.0126 (17)	0.0112 (16)	-0.0059 (19)
C3	0.050(2)	0.074 (3)	0.047 (2)	-0.0066 (19)	0.0136 (17)	-0.004 (2)
C4	0.056 (2)	0.049 (2)	0.058 (2)	-0.0078 (17)	0.0134 (17)	-0.0080 (18)
C5	0.059 (2)	0.046 (2)	0.046 (2)	0.0006 (16)	0.0140 (16)	-0.0008 (16)
C6	0.0538 (19)	0.044 (2)	0.0344 (19)	0.0026 (15)	0.0130 (15)	-0.0008 (15)
C7	0.0492 (18)	0.0414 (19)	0.043 (2)	0.0021 (14)	0.0071 (15)	-0.0056 (16)
C8	0.0509 (19)	0.0421 (19)	0.0378 (18)	0.0025 (15)	0.0090 (15)	-0.0011 (15)
C9	0.0486 (19)	0.062 (2)	0.072 (3)	-0.0022 (16)	0.0121 (18)	-0.008 (2)
C10	0.048 (2)	0.068 (3)	0.070 (3)	0.0153 (17)	0.0064 (18)	-0.003 (2)
C11	0.061 (2)	0.0326 (18)	0.068 (3)	0.0122 (15)	0.0082 (18)	0.0048 (17)
C12	0.063 (2)	0.0361 (19)	0.055 (2)	0.0175 (15)	0.0035 (17)	-0.0065 (16)
C13	0.0421 (16)	0.0401 (19)	0.044 (2)	0.0069 (13)	0.0053 (14)	-0.0033 (15)
C14	0.0422 (17)	0.0419 (19)	0.0393 (19)	-0.0029 (14)	0.0041 (13)	-0.0008 (16)
C15	0.0432 (16)	0.0407 (18)	0.0420 (19)	-0.0046 (13)	0.0060 (14)	0.0014 (15)
C16	0.0411 (16)	0.0443 (19)	0.048 (2)	-0.0046 (14)	0.0074 (14)	0.0008 (16)
C17	0.0473 (18)	0.0401 (18)	0.058 (2)	-0.0011 (15)	0.0101 (16)	-0.0010 (17)
C18	0.0441 (17)	0.060 (2)	0.051 (2)	0.0098 (16)	0.0082 (15)	-0.0001 (18)
C19	0.0387 (17)	0.059 (2)	0.058 (2)	-0.0068 (16)	0.0023 (15)	-0.0031 (19)
C20	0.0448 (18)	0.0454 (19)	0.051 (2)	-0.0051 (15)	0.0033 (15)	-0.0003 (16)

Geometric parameters (Å, °)

Cl1—C3	1.745 (4)	C4—H4B	0.9300
Cl2—C18	1.737 (3)	C5—C6	1.400 (4)
S1—C13	1.669 (3)	C5—H5B	0.9300
O1—C7	1.243 (4)	C6—C7	1.486 (4)
O2—C14	1.224 (3)	C9—C10	1.518 (5)
N1-C8	1.317 (4)	С9—Н9А	0.9700
N1C7	1.358 (4)	С9—Н9В	0.9700
N2-C8	1.346 (4)	C10—H10A	0.9700
N2-C9	1.438 (4)	C10—H10B	0.9700
N2—H2A	0.865 (10)	C11—C12	1.505 (5)
N3—C8	1.351 (4)	C11—H11A	0.9700
N3—C10	1.453 (4)	C11—H11B	0.9700
N3—C11	1.455 (4)	C12—H12A	0.9700
N4—C13	1.326 (4)	C12—H12B	0.9700
N4—C12	1.456 (4)	C14—C15	1.484 (4)
N4—H4A	0.864 (10)	C15—C16	1.384 (4)
N5-C14	1.374 (4)	C15—C20	1.388 (4)
N5-C13	1.389 (4)	C16—C17	1.381 (4)
N5—H5A	0.857 (10)	C16—H16A	0.9300
C1—C2	1.378 (5)	C17—C18	1.369 (4)
C1—C6	1.385 (4)	C17—H17A	0.9300
C1—H1B	0.9300	C18—C19	1.389 (5)
С2—С3	1.378 (5)	C19—C20	1.369 (4)
C2—H2B	0.9300	C19—H19A	0.9300

supporting information

C3—C4	1.355 (5)	C20—H20A	0.9300
C4—C5	1.370 (4)		
C8—N1—C7	117.8 (3)	N3-C10-C9	102.4 (3)
C8—N2—C9	112.4 (3)	N3—C10—H10A	111.3
C8—N2—H2A	115 (3)	C9—C10—H10A	111.3
C9—N2—H2A	131 (3)	N3—C10—H10B	111.3
C8—N3—C10	111.9 (3)	C9—C10—H10B	111.3
C8—N3—C11	125.5 (3)	H10A—C10—H10B	109.2
C10—N3—C11	122.3 (3)	N3—C11—C12	113.1 (3)
C13—N4—C12	125.8 (3)	N3—C11—H11A	109.0
C13—N4—H4A	112 (2)	C12—C11—H11A	109.0
C12—N4—H4A	118 (2)	N3—C11—H11B	109.0
C14—N5—C13	127.0 (3)	C12—C11—H11B	109.0
C14—N5—H5A	117 (3)	H11A—C11—H11B	107.8
C13—N5—H5A	116 (3)	N4—C12—C11	110.7 (3)
C2—C1—C6	122.1 (3)	N4—C12—H12A	109.5
C2—C1—H1B	119.0	C11—C12—H12A	109.5
C6—C1—H1B	119.0	N4—C12—H12B	109.5
C3—C2—C1	118.2 (3)	C11—C12—H12B	109.5
С3—С2—Н2В	120.9	H12A—C12—H12B	108.1
C1—C2—H2B	120.9	N4—C13—N5	115.3 (3)
C4—C3—C2	121.4 (3)	N4—C13—S1	125.5 (2)
C4—C3—Cl1	120.6 (3)	N5—C13—S1	119.3 (2)
C2—C3—Cl1	118.0 (3)	O2—C14—N5	123.0 (3)
C3—C4—C5	120.3 (3)	O2—C14—C15	120.6 (3)
C3—C4—H4B	119.8	N5-C14-C15	116.3 (3)
C5—C4—H4B	119.8	C16—C15—C20	118.9 (3)
C4—C5—C6	120.6 (3)	C16—C15—C14	122.8 (3)
C4—C5—H5B	119.7	C20—C15—C14	118.0 (3)
С6—С5—Н5В	119.7	C17—C16—C15	120.8 (3)
C1—C6—C5	117.4 (3)	C17—C16—H16A	119.6
C1—C6—C7	119.7 (3)	C15—C16—H16A	119.6
C5—C6—C7	122.8 (3)	C18 - C17 - C16	118.8 (3)
01—C7—N1	127.1 (3)	C18—C17—H17A	120.6
01-C7-C6	1187(3)	C16—C17—H17A	120.6
N1-C7-C6	114.2 (3)	C17 - C18 - C19	120.0 122.0(3)
N1-C8-N2	130.2(3)	C17 - C18 - C12	122.0(3) 1194(3)
N1-C8-N3	121 8 (3)	C19 - C18 - C12	119.1(3) 118.7(3)
N2-C8-N3	107.9(3)	C_{20} C_{19} C_{18}	118.7(3)
$N_{2} - C_{9} - C_{10}$	107.5(3) 102.7(3)	C_{20} C_{19} H_{19A}	120.9
N2H9A	111.2	C18 - C19 - H19A	120.9
C10_C9_H9A	111.2	C19-C20-C15	121.3 (3)
N2_C9_H9B	111.2	C19 - C20 - H204	110 3
C10 C9 H9B	111.2	C_{15} C_{20} H_{20A}	110.3
	100 1	C13C201120A	119.5
117/7-07-117D	107.1		
C6—C1—C2—C3	-0.7 (5)	C11—N3—C10—C9	173.4 (3)

C1—C2—C3—C4	0.7 (5)	N2-C9-C10-N3	15.4 (4)
C1-C2-C3-Cl1	178.7 (3)	C8—N3—C11—C12	-99.4 (4)
C2—C3—C4—C5	-0.1 (5)	C10—N3—C11—C12	73.8 (4)
Cl1—C3—C4—C5	-178.0 (3)	C13—N4—C12—C11	-100.0 (4)
C3—C4—C5—C6	-0.6 (5)	N3-C11-C12-N4	73.6 (4)
C2-C1-C6-C5	0.0 (5)	C12—N4—C13—N5	166.5 (3)
C2-C1-C6-C7	180.0 (3)	C12—N4—C13—S1	-14.0 (5)
C4—C5—C6—C1	0.6 (4)	C14—N5—C13—N4	-9.4 (5)
C4—C5—C6—C7	-179.4 (3)	C14—N5—C13—S1	171.1 (3)
C8—N1—C7—O1	2.4 (5)	C13—N5—C14—O2	16.6 (5)
C8—N1—C7—C6	-176.9 (3)	C13—N5—C14—C15	-161.9 (3)
C1-C6-C7-O1	-18.3 (4)	O2-C14-C15-C16	-149.1 (3)
C5—C6—C7—O1	161.6 (3)	N5-C14-C15-C16	29.5 (5)
C1C6C7N1	161.0 (3)	O2-C14-C15-C20	25.3 (5)
C5—C6—C7—N1	-19.0 (4)	N5-C14-C15-C20	-156.2 (3)
C7—N1—C8—N2	1.9 (5)	C20-C15-C16-C17	-0.1 (5)
C7—N1—C8—N3	-179.3 (3)	C14—C15—C16—C17	174.3 (3)
C9—N2—C8—N1	-173.8 (3)	C15—C16—C17—C18	0.1 (5)
C9—N2—C8—N3	7.3 (4)	C16—C17—C18—C19	0.2 (5)
C10—N3—C8—N1	-175.0 (3)	C16—C17—C18—Cl2	-177.9 (2)
C11—N3—C8—N1	-1.2 (5)	C17—C18—C19—C20	-0.6 (5)
C10—N3—C8—N2	4.0 (4)	Cl2—C18—C19—C20	177.5 (3)
C11—N3—C8—N2	177.8 (3)	C18—C19—C20—C15	0.7 (5)
C8—N2—C9—C10	-14.6 (4)	C16—C15—C20—C19	-0.4 (5)
C8—N3—C10—C9	-12.6 (4)	C14—C15—C20—C19	-174.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D···A	D—H···A
N2—H2A…O1	0.87(1)	2.00 (4)	2.637 (4)	130 (4)
$N2$ — $H2A$ ···· $S1^{i}$	0.87(1)	2.85 (4)	3.438 (3)	127 (4)
N4—H4 <i>A</i> ···O2	0.86 (1)	1.87 (2)	2.614 (3)	143 (3)
N5—H5A····O1 ⁱⁱ	0.86(1)	2.09 (2)	2.898 (4)	157 (5)
C17—H17A····O2 ⁱⁱⁱ	0.93	2.46	3.118 (4)	128

Symmetry codes: (i) *x*, *-y*, *z*-1/2; (ii) *x*, *-y*, *z*+1/2; (iii) *x*, *y*-1, *z*.