organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-{(Z)-1-[3-(4-Bromo­phen­­oxy)prop­­oxy]-1-(2,4-di­fluoro­phen­yl)prop-1-en-2-yl}-1H-1,2,4-triazol-4-ium nitrate

aJiangsu Engineering Technology Research Center of Polypeptide Pharmaceutical, College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bCollege of Pharmaceutical Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: yonghonghu09@gmail.com

(Received 22 March 2012; accepted 27 May 2012; online 13 June 2012)

In the title mol­ecular salt, C20H19BrF2N3O2+·NO3, the N atom at position 4 of the heterocyclic ring is protonated. The triazole ring makes dihedral angles of 96.6 (4) and 54.4 (3)° with the 4-bromo­phenyl and 2,4-difluoro­phenyl rings, respectively, and the mol­ecule adopts a Z conformation about the C=C double bond. In the crystal, cations and anions are linked by N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For background to the uses of triazole derivatives, see: Jeu et al. (2003[Jeu, L., Piacenti, F. J., Lyakhovetskiy, A. G. & Fung, H. B. (2003). Clin. Ther. 25, 1321-1381.]); Fromtling & Castaner (1996[Fromtling, R. & Castaner, J. (1996). Drugs Fut. 21, 160-166.]). For further synthetic details, see: Ludwig & Kurt (1985[Ludwig, Z. & Kurt, T. (1985). US Patent Appl. US4554356.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19BrF2N3O2+·NO3

  • Mr = 513.30

  • Triclinic, [P \overline 1]

  • a = 8.3030 (17) Å

  • b = 8.4260 (17) Å

  • c = 16.170 (3) Å

  • α = 91.10 (3)°

  • β = 95.80 (3)°

  • γ = 102.30 (3)°

  • V = 1098.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.93 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.699, Tmax = 0.831

  • 4329 measured reflections

  • 4029 independent reflections

  • 2250 reflections with I > 2σ(I)

  • Rint = 0.032

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.152

  • S = 1.01

  • 4029 reflections

  • 289 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O4 0.86 1.95 2.790 (6) 167
C9—H9A⋯O3i 0.93 2.55 3.271 (7) 135
C10—H10A⋯O3ii 0.93 2.49 3.263 (7) 140
C10—H10A⋯O5ii 0.93 2.42 3.340 (7) 168
C19—H19A⋯O3 0.93 2.54 3.276 (7) 137
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Triazole derivatives such as Voriconazole ((2R,3S)-2-(2,4-difluorophenyl) -3-(5-fluoropyrimidin-4-yl)-1-(1H-1,2,4-triazol-1-yl) butan-2-ol) and Posaconazole (4-(4-(4-(4-(((3R,5R)-5-(2,4-difluorophenyl)-5-(1,2,4- triazol-1-ylmethyl)oxolan-3-yl)methoxy)phenyl)piperazin-1-yl)phenyl)- 2-((2S,3S)-2-hydroxypentan-3-yl)-1,2,4-triazol-3-one) are safe and effective antifungal agents. (Jeu et al., 2003; Fromtling & Castaner, 1996) As part of our studies on the synthesis of new triazole derivatives, the crystal structure of the title compound was determined.

In the molecular structure of the title compound the double bond has a Z conformation. In the crystal structure the anions and cations are connected via N—H···O and C—H···O hydrogen bonding (Table 1 and Fig. 2).

Related literature top

For background to the uses of triazole derivatives, see: Jeu et al. (2003); Fromtling & Castaner (1996). For further synthetic details, see: Ludwig & Kurt (1985).

Experimental top

3 g (0.01 mol) 1-(2,4-difluorophenyl)-2-(1,2,4-triazol)-1-y1)propan-1-one, 10 g of a 50% aqueous sodium hydroxide, 15 ml toluene and 1.5 ml of a 40% aqueous solution of tetrabutyl ammonium hydroxide are mixed and heated to 323.15 K under vigorous stirring. 2.93 g (0.01 mol) 1-bromo-3-(4-bromophenoxy)-propane, dissolved in 10 ml toluene, is instilled into the stirred and warmed solution in the course of 10 h. The mixture is subsequently stirred for another 20 h at 323.15 K. The reaction mixture is mixed with as much water and chloroform so that the aqueous phase becomes lighter than the organic phase. Thereafter, the organic and aqueous phases are separated. The organic phase is dried with sodium sulfate. The solvents are distilled under reduced pressure. The remaining residue is a dark oil that is diluted with 10 ml 2-propanol and then adjusted to a PH-value of 2 by means of 30% aqueous nitric acid. The thus derived nitric acid solution is then cooled in the refrigerator. The impure precipitated product herein is subsequently crystallized from a 1:1 mixture of ethyl acetate and ethanol. The purified product may be analytically identified as an approximately pure Z-isomer of propylene nitrate. Colourless plates of the title compound were obtained by slow evaporation of an ethanol solution. Details on the synthesis can be found in the literature reported by Ludwig & Kurt (1985).

Refinement top

H atoms were positioned geometrically with C—H = 0.93 and 0.97 Å for aromatic and methylene H atoms, respectively, and with N—H = 0.86 Å for triazole H atom, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 (or 1.5 for methyl groups) times Ueq(C).

Structure description top

Triazole derivatives such as Voriconazole ((2R,3S)-2-(2,4-difluorophenyl) -3-(5-fluoropyrimidin-4-yl)-1-(1H-1,2,4-triazol-1-yl) butan-2-ol) and Posaconazole (4-(4-(4-(4-(((3R,5R)-5-(2,4-difluorophenyl)-5-(1,2,4- triazol-1-ylmethyl)oxolan-3-yl)methoxy)phenyl)piperazin-1-yl)phenyl)- 2-((2S,3S)-2-hydroxypentan-3-yl)-1,2,4-triazol-3-one) are safe and effective antifungal agents. (Jeu et al., 2003; Fromtling & Castaner, 1996) As part of our studies on the synthesis of new triazole derivatives, the crystal structure of the title compound was determined.

In the molecular structure of the title compound the double bond has a Z conformation. In the crystal structure the anions and cations are connected via N—H···O and C—H···O hydrogen bonding (Table 1 and Fig. 2).

For background to the uses of triazole derivatives, see: Jeu et al. (2003); Fromtling & Castaner (1996). For further synthetic details, see: Ludwig & Kurt (1985).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with displacement ellipsoids drawn at 30% probability levels.
[Figure 2] Fig. 2. The packing diagram of the title compound. Hydron bonds are shown as dashed lines.
1-{(Z)-1-[3-(4-Bromophenoxy)propoxy]-1-(2,4-difluorophenyl)prop-1-en- 2-yl}-1H-1,2,4-triazol-4-ium nitrate top
Crystal data top
C20H19BrF2N3O2+·NO3Z = 2
Mr = 513.30F(000) = 520
Triclinic, P1Dx = 1.552 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3030 (17) ÅCell parameters from 25 reflections
b = 8.4260 (17) Åθ = 9–13°
c = 16.170 (3) ŵ = 1.93 mm1
α = 91.10 (3)°T = 293 K
β = 95.80 (3)°Plate, colorless
γ = 102.30 (3)°0.20 × 0.10 × 0.10 mm
V = 1098.7 (4) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2250 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 25.4°, θmin = 1.3°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 109
Tmin = 0.699, Tmax = 0.831l = 1919
4329 measured reflections3 standard reflections every 200 reflections
4029 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.075P)2]
where P = (Fo2 + 2Fc2)/3
4029 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.49 e Å3
1 restraintΔρmin = 0.47 e Å3
Crystal data top
C20H19BrF2N3O2+·NO3γ = 102.30 (3)°
Mr = 513.30V = 1098.7 (4) Å3
Triclinic, P1Z = 2
a = 8.3030 (17) ÅMo Kα radiation
b = 8.4260 (17) ŵ = 1.93 mm1
c = 16.170 (3) ÅT = 293 K
α = 91.10 (3)°0.20 × 0.10 × 0.10 mm
β = 95.80 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2250 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.032
Tmin = 0.699, Tmax = 0.8313 standard reflections every 200 reflections
4329 measured reflections intensity decay: 1%
4029 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0631 restraint
wR(F2) = 0.152H-atom parameters constrained
S = 1.01Δρmax = 0.49 e Å3
4029 reflectionsΔρmin = 0.47 e Å3
289 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.98343 (10)0.93868 (9)0.81164 (4)0.0842 (3)
O10.5622 (4)0.7633 (4)0.2460 (2)0.0504 (9)
N10.6426 (5)0.4746 (5)0.2587 (2)0.0415 (10)
F10.0592 (5)0.7759 (6)0.0124 (3)0.1075 (14)
C10.1701 (7)0.5970 (7)0.1459 (3)0.0567 (15)
H1A0.14950.52190.18710.068*
O20.7624 (4)1.0648 (4)0.4584 (2)0.0546 (10)
F20.5119 (5)0.8501 (5)0.0607 (2)0.0953 (13)
N20.7812 (5)0.4226 (5)0.2392 (3)0.0516 (11)
C20.0372 (7)0.6312 (8)0.0959 (4)0.0686 (17)
H2B0.07140.58050.10270.082*
N30.7821 (5)0.4579 (5)0.3707 (3)0.0445 (10)
H3A0.81520.46140.42300.053*
C30.0711 (8)0.7408 (8)0.0371 (4)0.0676 (17)
C40.2289 (8)0.8143 (8)0.0214 (4)0.0734 (18)
H4A0.24810.88530.02160.088*
C50.3555 (7)0.7772 (7)0.0724 (3)0.0605 (15)
C60.3333 (6)0.6713 (6)0.1366 (3)0.0456 (12)
C70.4737 (6)0.6405 (6)0.1930 (3)0.0425 (12)
C80.5168 (6)0.4976 (6)0.1943 (3)0.0449 (12)
C90.8628 (7)0.4159 (6)0.3118 (4)0.0504 (14)
H9A0.96420.38540.32040.060*
C100.6445 (6)0.4938 (6)0.3394 (3)0.0402 (12)
H10A0.56450.52610.36810.048*
C110.4530 (8)0.3536 (7)0.1346 (4)0.0704 (18)
H11A0.37120.37840.09350.106*
H11B0.40400.26150.16450.106*
H11C0.54320.32890.10770.106*
C120.4855 (7)0.8956 (6)0.2671 (3)0.0530 (14)
H12A0.38660.85470.29410.064*
H12B0.45420.94900.21720.064*
C130.6100 (7)1.0130 (6)0.3248 (3)0.0530 (14)
H13A0.56961.11170.33210.064*
H13B0.71311.04150.29970.064*
C140.6429 (7)0.9442 (6)0.4086 (3)0.0528 (14)
H14A0.54110.91680.43480.063*
H14B0.68510.84630.40230.063*
C150.8075 (6)1.0270 (6)0.5371 (3)0.0446 (12)
C160.9266 (7)1.1447 (6)0.5838 (4)0.0536 (14)
H16A0.97121.24140.55980.064*
C170.9793 (7)1.1207 (7)0.6646 (4)0.0565 (15)
H17A1.05921.20020.69520.068*
C180.9121 (7)0.9758 (7)0.7007 (3)0.0545 (14)
C190.7945 (7)0.8595 (7)0.6547 (4)0.0562 (15)
H19A0.74940.76280.67860.067*
C200.7436 (7)0.8845 (6)0.5745 (4)0.0568 (15)
H20A0.66430.80410.54410.068*
O40.8591 (4)0.5077 (4)0.5425 (2)0.0537 (9)
N40.7288 (6)0.4501 (5)0.5751 (3)0.0502 (11)
O30.7345 (5)0.4623 (5)0.6516 (3)0.0658 (11)
O50.6014 (5)0.3882 (5)0.5316 (3)0.0775 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0977 (6)0.0922 (6)0.0618 (4)0.0230 (4)0.0016 (4)0.0056 (4)
O10.048 (2)0.042 (2)0.061 (2)0.0136 (17)0.0076 (18)0.0066 (17)
N10.039 (2)0.039 (2)0.048 (3)0.0110 (19)0.005 (2)0.0007 (19)
F10.083 (3)0.147 (4)0.093 (3)0.038 (3)0.022 (2)0.035 (3)
C10.055 (4)0.059 (4)0.051 (3)0.004 (3)0.001 (3)0.010 (3)
O20.057 (2)0.034 (2)0.065 (2)0.0005 (17)0.0107 (19)0.0009 (18)
F20.066 (2)0.120 (3)0.091 (3)0.004 (2)0.007 (2)0.046 (2)
N20.045 (3)0.059 (3)0.054 (3)0.017 (2)0.010 (2)0.003 (2)
C20.046 (4)0.089 (5)0.065 (4)0.012 (3)0.013 (3)0.003 (4)
N30.036 (2)0.041 (2)0.054 (3)0.006 (2)0.003 (2)0.004 (2)
C30.065 (4)0.091 (5)0.049 (3)0.032 (4)0.016 (3)0.010 (3)
C40.077 (5)0.080 (5)0.061 (4)0.014 (4)0.004 (4)0.024 (3)
C50.055 (4)0.070 (4)0.050 (3)0.002 (3)0.002 (3)0.014 (3)
C60.046 (3)0.048 (3)0.040 (3)0.008 (3)0.003 (2)0.003 (2)
C70.041 (3)0.046 (3)0.038 (3)0.007 (3)0.002 (2)0.002 (2)
C80.042 (3)0.045 (3)0.045 (3)0.008 (2)0.003 (2)0.003 (2)
C90.038 (3)0.052 (3)0.066 (4)0.018 (3)0.013 (3)0.003 (3)
C100.031 (3)0.040 (3)0.051 (3)0.010 (2)0.009 (2)0.003 (2)
C110.070 (4)0.062 (4)0.075 (4)0.016 (3)0.009 (3)0.020 (3)
C120.051 (3)0.044 (3)0.063 (3)0.015 (3)0.009 (3)0.002 (3)
C130.058 (4)0.032 (3)0.065 (4)0.006 (3)0.005 (3)0.004 (3)
C140.047 (3)0.036 (3)0.070 (4)0.001 (3)0.002 (3)0.005 (3)
C150.043 (3)0.029 (3)0.062 (3)0.010 (2)0.004 (3)0.005 (2)
C160.050 (3)0.033 (3)0.074 (4)0.006 (3)0.000 (3)0.002 (3)
C170.051 (3)0.050 (4)0.067 (4)0.014 (3)0.006 (3)0.004 (3)
C180.051 (3)0.057 (4)0.058 (3)0.019 (3)0.006 (3)0.005 (3)
C190.063 (4)0.044 (3)0.061 (4)0.009 (3)0.011 (3)0.003 (3)
C200.054 (4)0.034 (3)0.077 (4)0.000 (3)0.002 (3)0.007 (3)
O40.035 (2)0.057 (2)0.067 (2)0.0034 (17)0.0080 (18)0.0052 (19)
N40.042 (3)0.038 (3)0.074 (3)0.012 (2)0.012 (3)0.007 (2)
O30.074 (3)0.071 (3)0.056 (3)0.016 (2)0.020 (2)0.011 (2)
O50.038 (2)0.091 (3)0.091 (3)0.010 (2)0.003 (2)0.000 (3)
Geometric parameters (Å, º) top
Br—C181.884 (6)C9—H9A0.9300
O1—C71.364 (6)C10—H10A0.9300
O1—C121.448 (6)C11—H11A0.9600
N1—C101.309 (6)C11—H11B0.9600
N1—N21.379 (5)C11—H11C0.9600
N1—C81.445 (6)C12—C131.500 (7)
F1—C31.368 (6)C12—H12A0.9700
C1—C21.386 (7)C12—H12B0.9700
C1—C61.392 (7)C13—C141.507 (7)
C1—H1A0.9300C13—H13A0.9700
O2—C151.352 (6)C13—H13B0.9700
O2—C141.430 (6)C14—H14A0.9700
F2—C51.347 (6)C14—H14B0.9700
N2—C91.304 (6)C15—C201.383 (7)
C2—C31.346 (8)C15—C161.391 (7)
C2—H2B0.9300C16—C171.368 (7)
N3—C101.300 (6)C16—H16A0.9300
N3—C91.303 (6)C17—C181.395 (8)
N3—H3A0.8600C17—H17A0.9300
C3—C41.375 (8)C18—C191.374 (7)
C4—C51.363 (8)C19—C201.356 (7)
C4—H4A0.9300C19—H19A0.9300
C5—C61.382 (7)C20—H20A0.9300
C6—C71.476 (7)O4—N41.259 (5)
C7—C81.327 (7)N4—O51.219 (5)
C8—C111.504 (7)N4—O31.235 (5)
C7—O1—C12118.7 (4)C8—C11—H11C109.5
C10—N1—N2110.9 (4)H11A—C11—H11C109.5
C10—N1—C8128.3 (4)H11B—C11—H11C109.5
N2—N1—C8120.8 (4)O1—C12—C13107.4 (4)
C2—C1—C6122.1 (5)O1—C12—H12A110.2
C2—C1—H1A119.0C13—C12—H12A110.2
C6—C1—H1A119.0O1—C12—H12B110.2
C15—O2—C14117.2 (4)C13—C12—H12B110.2
C9—N2—N1103.0 (4)H12A—C12—H12B108.5
C3—C2—C1117.5 (6)C12—C13—C14112.4 (4)
C3—C2—H2B121.3C12—C13—H13A109.1
C1—C2—H2B121.3C14—C13—H13A109.1
C10—N3—C9110.5 (4)C12—C13—H13B109.1
C10—N3—H3A124.8C14—C13—H13B109.1
C9—N3—H3A124.8H13A—C13—H13B107.9
C2—C3—F1118.0 (6)O2—C14—C13107.9 (4)
C2—C3—C4124.0 (6)O2—C14—H14A110.1
F1—C3—C4118.0 (6)C13—C14—H14A110.1
C5—C4—C3116.3 (6)O2—C14—H14B110.1
C5—C4—H4A121.9C13—C14—H14B110.1
C3—C4—H4A121.9H14A—C14—H14B108.4
F2—C5—C4118.2 (5)O2—C15—C20125.7 (5)
F2—C5—C6117.8 (5)O2—C15—C16116.1 (5)
C4—C5—C6124.0 (6)C20—C15—C16118.1 (5)
C5—C6—C1116.0 (5)C17—C16—C15121.1 (5)
C5—C6—C7122.3 (5)C17—C16—H16A119.4
C1—C6—C7121.7 (5)C15—C16—H16A119.4
C8—C7—O1118.6 (4)C16—C17—C18119.4 (5)
C8—C7—C6122.5 (5)C16—C17—H17A120.3
O1—C7—C6118.8 (4)C18—C17—H17A120.3
C7—C8—N1117.9 (4)C19—C18—C17119.6 (5)
C7—C8—C11127.8 (5)C19—C18—Br120.1 (4)
N1—C8—C11114.4 (4)C17—C18—Br120.3 (4)
N3—C9—N2110.4 (5)C20—C19—C18120.5 (5)
N3—C9—H9A124.8C20—C19—H19A119.7
N2—C9—H9A124.8C18—C19—H19A119.7
N3—C10—N1105.2 (4)C19—C20—C15121.3 (5)
N3—C10—H10A127.4C19—C20—H20A119.4
N1—C10—H10A127.4C15—C20—H20A119.4
C8—C11—H11A109.5O5—N4—O3121.9 (5)
C8—C11—H11B109.5O5—N4—O4120.4 (5)
H11A—C11—H11B109.5O3—N4—O4117.7 (5)
C10—N1—N2—C91.1 (5)C10—N1—C8—C755.1 (7)
C8—N1—N2—C9179.7 (4)N2—N1—C8—C7126.5 (5)
C6—C1—C2—C30.2 (9)C10—N1—C8—C11126.2 (5)
C1—C2—C3—F1179.8 (5)N2—N1—C8—C1152.2 (6)
C1—C2—C3—C43.1 (10)C10—N3—C9—N20.0 (6)
C2—C3—C4—C53.4 (10)N1—N2—C9—N30.6 (6)
F1—C3—C4—C5179.6 (6)C9—N3—C10—N10.7 (5)
C3—C4—C5—F2178.2 (6)N2—N1—C10—N31.1 (5)
C3—C4—C5—C60.6 (10)C8—N1—C10—N3179.6 (4)
F2—C5—C6—C1179.2 (5)C7—O1—C12—C13179.3 (4)
C4—C5—C6—C12.0 (9)O1—C12—C13—C1468.8 (6)
F2—C5—C6—C71.8 (8)C15—O2—C14—C13179.2 (4)
C4—C5—C6—C7177.0 (6)C12—C13—C14—O2180.0 (4)
C2—C1—C6—C52.2 (8)C14—O2—C15—C202.6 (7)
C2—C1—C6—C7176.7 (5)C14—O2—C15—C16178.6 (4)
C12—O1—C7—C8158.1 (5)O2—C15—C16—C17178.8 (5)
C12—O1—C7—C621.7 (6)C20—C15—C16—C170.1 (8)
C5—C6—C7—C8113.0 (6)C15—C16—C17—C180.2 (8)
C1—C6—C7—C868.1 (7)C16—C17—C18—C190.2 (8)
C5—C6—C7—O167.2 (7)C16—C17—C18—Br179.5 (4)
C1—C6—C7—O1111.7 (6)C17—C18—C19—C200.1 (8)
O1—C7—C8—N17.3 (7)Br—C18—C19—C20179.3 (4)
C6—C7—C8—N1172.5 (4)C18—C19—C20—C150.3 (9)
O1—C7—C8—C11171.2 (5)O2—C15—C20—C19178.5 (5)
C6—C7—C8—C119.0 (9)C16—C15—C20—C190.3 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O40.861.952.790 (6)167
C9—H9A···O3i0.932.553.271 (7)135
C10—H10A···O3ii0.932.493.263 (7)140
C10—H10A···O5ii0.932.423.340 (7)168
C19—H19A···O30.932.543.276 (7)137
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC20H19BrF2N3O2+·NO3
Mr513.30
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.3030 (17), 8.4260 (17), 16.170 (3)
α, β, γ (°)91.10 (3), 95.80 (3), 102.30 (3)
V3)1098.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.93
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.699, 0.831
No. of measured, independent and
observed [I > 2σ(I)] reflections
4329, 4029, 2250
Rint0.032
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.152, 1.01
No. of reflections4029
No. of parameters289
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.47

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O40.861.952.790 (6)167
C9—H9A···O3i0.932.553.271 (7)135
C10—H10A···O3ii0.932.493.263 (7)140
C10—H10A···O5ii0.932.423.340 (7)168
C19—H19A···O30.932.543.276 (7)137
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

This research work was supported by the Specialized Research Fund for the Doctoral Program of Higher Education (grant No. 20113221110005).

References

First citationEnraf–Nonius (1994). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFromtling, R. & Castaner, J. (1996). Drugs Fut. 21, 160–166.  CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJeu, L., Piacenti, F. J., Lyakhovetskiy, A. G. & Fung, H. B. (2003). Clin. Ther. 25, 1321–1381.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLudwig, Z. & Kurt, T. (1985). US Patent Appl. US4554356.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds