organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(3-azonia­pentane-1,5-diaminium) cyclo­hexa­phosphate dihydrate: a monoclinic polymorph

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bPetrochemical Research Chair, College of Science, King Saud, University, Riyadh, Saudi Arabia.
*Correspondence e-mail: khedhirilamia@yahoo.fr

(Received 19 May 2012; accepted 2 June 2012; online 13 June 2012)

In the title hydrated mol­ecular salt, 2C4H16N33+·P6O186−·2H2O, the complete cyclo­hexa­phosphate anion is generated by crystallographic inversion symmetry. The six P atoms of the P6O186− anion form a chair conformation and the organic cation has a corrugated linear geometry. In the crystal, the cations and the anions are connected by N—H⋯O hydrogen bonds into slabs propagating in the ac plane. The water mol­ecules link the slabs by accepting N—H⋯O links and forming O—H⋯O links. The triclinic polymorph was reported by Gharbi et al. [(1995). J. Solid State Chem. 114, 42–51].

Related literature

For the triclinic polymorph of the title compound, see: Gharbi et al. (1995[Gharbi, A., Jouini, A. & Durif, A. (1995). J. Solid State Chem. 114, 42-51.]). For related structures, see: Averbuch-Pouchot & Durif (1991[Averbuch-Pouchot, M. T. & Durif, A. (1991). Eur. J. Solid State Inorg. Chem. 28, 9-22.]); Bridi & Jouini (1989[Bridi, M. & Jouini, A. (1989). Eur. J. Solid State Inorg. Chem. 26, 585-590.]); Kamoun et al. (1990[Kamoun, S., Jouini, A. & Daoud, A. (1990). Acta Cryst. C46, 1481-1483.]); Khedhiri et al. (2007[Khedhiri, L., Bel Haj Salah Raoudha,, Belam, W. & Rzaigui, M. (2007). Acta Cryst. E63, o2269-o2271.]); Schülke & Kayser (1985[Schülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167-175.]); Khedhiri et al. (2003[Khedhiri, L., Ben Nasr, C., Rzaigui, M. & Lefebre, F. (2003). Helv. Chim. Acta, 86, 2662-2670.]).

[Scheme 1]

Experimental

Crystal data
  • 2C4H16N33+·P6O186−·2H2O

  • Mr = 722.25

  • Monoclinic, P 21 /c

  • a = 10.033 (4) Å

  • b = 16.597 (2) Å

  • c = 8.007 (3) Å

  • β = 105.07 (2)°

  • V = 1287.6 (7) Å3

  • Z = 2

  • Ag Kα radiation

  • λ = 0.56087 Å

  • μ = 0.27 mm−1

  • T = 293 K

  • 0.32 × 0.27 × 0.21 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 9091 measured reflections

  • 6303 independent reflections

  • 5211 reflections with I > 2σ(I)

  • Rint = 0.014

  • 2 standard reflections every 120 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.099

  • S = 1.07

  • 6303 reflections

  • 189 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.97 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O5 0.84 (1) 2.12 (1) 2.9274 (17) 163 (2)
O1W—H2W1⋯O2i 0.85 (1) 1.85 (1) 2.6938 (16) 175 (2)
N1—H1B⋯O1Wii 0.89 1.99 2.7817 (15) 147
N1—H1C⋯O1 0.89 1.96 2.8054 (14) 159
N1—H1A⋯O6iii 0.89 1.96 2.8013 (15) 156
N2—H2A⋯O8iii 0.90 2.10 2.8049 (16) 135
N2—H2A⋯O9ii 0.90 2.36 3.0891 (15) 138
N2—H2B⋯O9 0.90 2.14 2.7973 (16) 130
N2—H2B⋯O8ii 0.90 2.15 2.8706 (13) 137
N3—H3B⋯O5iv 0.89 1.99 2.8414 (17) 159
N3—H3C⋯O1v 0.89 1.93 2.7973 (16) 164
N3—H3A⋯O6vi 0.89 1.96 2.8008 (16) 157
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) x, y, z-1; (iv) x+1, y, z; (v) -x+1, -y+1, -z; (vi) -x+1, -y+1, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994)[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]; cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND, Crystal impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound (I), was prepared as part of our ongoing structural studies of inorganic-organic cyclohexaphosphates systems. Its chemical composition includes three entities, P6O18 ring, water molecules and organic cations [C4N3H16]3+ and is polymorphic with a previously described triclinic phase (Gharbi et al., 1995). The geometrical configuration of these entities is depicted in Figure 1, whereas Figure 2 shows the complete atomic arrangement.

The packing of (I) consists of hybrid layers where the organic and inorganic species are alternated. Theses layers, extended perpendicularly to the b axis, are also connected between them in the two other directions via H-bonds assuring the cohesion of the network. The P6O18 rings are located around the inversion centers (0, 0, 0) and (1/2, 1/2, 1/2) and are built up by only three independent PO4 tetrahedra. The P—P—P angles of 98.85 (1), 109.09 (1) and 138.42 (1)° show that the rings are significantly distorted from the ideal threefold symmetry. It should be noted that these large deviations are commonly observed in cyclohexaphosphates with a ring of low local symmetry (Khedhiri et al., 2003, Khedhiri et al., 2007), as in the title compound. Nevertheless, this distortion is comparatively less important than that observed in Cs6P6O18.6H2O, which shows the greatest distortion for the same angles, ranging between 93.2 and 145.5° (Averbuch-Pouchot and Durif, 1991). The great flexibility of the hexamembered P6O18 rings can probably explain the pronounced distortion observed for the big rings compared with their smaller ring analogues. Examination of the main geometrical features of the three independent PO4 tetrahedra (P—O and P–P distances as well as P–O–P or O–P–O angles) shows clearly that, in spite of the P–P–P angles deformation, they are in accordance with values generally observed in condensed phosphate anions.

In the organic entity, N–C and C–C distances and N–C–C and C–N–C angles, spreading within the respective ranges 1.477 (1) - 1.512 (2) Å and 109 (1) -111.5 (9)°, are similar to those observed in others compounds (Kamoun et al., 1990; Bridi et al., 1989). All nitrogen atoms of the used amine are protonated and so it is formulated by [C4N3H16]3+. Among the eight hydrogen atoms of this group, only one, H1B, establishes a hydrogen bond with a water molecule, the remaining ones are connected to the external oxygen atoms of three phosphoric rings to form an anionic entity of formula [C4N3H16(P6O18)3]15-. The two hydrogen atoms of the water molecule act as a link between successive anions. A three dimensional network of N–H···O and O–H···O hydrogen bonds interconnects the structural arrangement.

This study shows that (I) is a polymorph of the triclinic structure published elsewhere (Gharbi et al., 1995). Both phases have the same chemical formula and some structural analogeous but they present several differences in their crystal data, H-bonding scheme, internal symmetry of the cyclohexaphosphoric anions and particularly the aza-3 pentanediyl-1,5 diaminium which has different conformations where the torsion angles N2–C3–C4–N3, C2–N2–C3–C4, N1–C1–C2–N2 and C3–N2–C2–C1 exhibit the following values -175.34 (9)°, -178.34 (9)°, 171.15 (9)° and 177.79 (9)° in the title compound and 177.67°, 175.32°, 66.45° and -69.92° in the bibliography one.

Related literature top

For the triclinic polymorph of the title compound, see: Gharbi et al. (1995). For related structures, see: Averbuch-Pouchot & Durif (1991); Bridi & Jouini (1989); Kamoun et al. (1990); Khedhiri et al. (2007); Schülke & Kayser (1985); Khedhiri et al. (2003).

Experimental top

Single crystals of the title compound were prepared in two steps. In the first one, 50 ml of an aqueous solution of cyclohexaphosphoric acid was prepared by protonation of 4 g of Li6P6O18.6H2O, obtained by the Schülke process (Schülke et al., 1985), with an ion-exchange resin (Amberlite IR 120). In the second one, the frech acidic solution (20 ml, 2.6 mmol) was immediately neutralized with a solution of aza-3 pentanediyl-1,5 diamine (2.8 mmol in 10 ml of ehanol) under continuous stirring. Good quality of prismatic-shaped crystals were obtained after a slow evaporation during few days at ambient temperature

Refinement top

All H atoms attached to C and N atoms were fixed geometrically and treated as riding, with C—H = 0.97 Å and N—H = 0.89 Å and with Uiso(H) = 1.2Ueq(C or N).The water H atoms were refined using restraints [O— H = 0.85 (1) A °, H···H = 1.44 (2) A ° and Uiso(H) = 1.5Ueq(O)].

Structure description top

The title compound (I), was prepared as part of our ongoing structural studies of inorganic-organic cyclohexaphosphates systems. Its chemical composition includes three entities, P6O18 ring, water molecules and organic cations [C4N3H16]3+ and is polymorphic with a previously described triclinic phase (Gharbi et al., 1995). The geometrical configuration of these entities is depicted in Figure 1, whereas Figure 2 shows the complete atomic arrangement.

The packing of (I) consists of hybrid layers where the organic and inorganic species are alternated. Theses layers, extended perpendicularly to the b axis, are also connected between them in the two other directions via H-bonds assuring the cohesion of the network. The P6O18 rings are located around the inversion centers (0, 0, 0) and (1/2, 1/2, 1/2) and are built up by only three independent PO4 tetrahedra. The P—P—P angles of 98.85 (1), 109.09 (1) and 138.42 (1)° show that the rings are significantly distorted from the ideal threefold symmetry. It should be noted that these large deviations are commonly observed in cyclohexaphosphates with a ring of low local symmetry (Khedhiri et al., 2003, Khedhiri et al., 2007), as in the title compound. Nevertheless, this distortion is comparatively less important than that observed in Cs6P6O18.6H2O, which shows the greatest distortion for the same angles, ranging between 93.2 and 145.5° (Averbuch-Pouchot and Durif, 1991). The great flexibility of the hexamembered P6O18 rings can probably explain the pronounced distortion observed for the big rings compared with their smaller ring analogues. Examination of the main geometrical features of the three independent PO4 tetrahedra (P—O and P–P distances as well as P–O–P or O–P–O angles) shows clearly that, in spite of the P–P–P angles deformation, they are in accordance with values generally observed in condensed phosphate anions.

In the organic entity, N–C and C–C distances and N–C–C and C–N–C angles, spreading within the respective ranges 1.477 (1) - 1.512 (2) Å and 109 (1) -111.5 (9)°, are similar to those observed in others compounds (Kamoun et al., 1990; Bridi et al., 1989). All nitrogen atoms of the used amine are protonated and so it is formulated by [C4N3H16]3+. Among the eight hydrogen atoms of this group, only one, H1B, establishes a hydrogen bond with a water molecule, the remaining ones are connected to the external oxygen atoms of three phosphoric rings to form an anionic entity of formula [C4N3H16(P6O18)3]15-. The two hydrogen atoms of the water molecule act as a link between successive anions. A three dimensional network of N–H···O and O–H···O hydrogen bonds interconnects the structural arrangement.

This study shows that (I) is a polymorph of the triclinic structure published elsewhere (Gharbi et al., 1995). Both phases have the same chemical formula and some structural analogeous but they present several differences in their crystal data, H-bonding scheme, internal symmetry of the cyclohexaphosphoric anions and particularly the aza-3 pentanediyl-1,5 diaminium which has different conformations where the torsion angles N2–C3–C4–N3, C2–N2–C3–C4, N1–C1–C2–N2 and C3–N2–C2–C1 exhibit the following values -175.34 (9)°, -178.34 (9)°, 171.15 (9)° and 177.79 (9)° in the title compound and 177.67°, 175.32°, 66.45° and -69.92° in the bibliography one.

For the triclinic polymorph of the title compound, see: Gharbi et al. (1995). For related structures, see: Averbuch-Pouchot & Durif (1991); Bridi & Jouini (1989); Kamoun et al. (1990); Khedhiri et al. (2007); Schülke & Kayser (1985); Khedhiri et al. (2003).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are represented as dashed lines. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.]
[Figure 2] Fig. 2. Structure projection of (I) along the a axis. The H-atoms not involved in H-bonding are omitted.
Bis(3-azoniapentane-1,5-diaminium) cyclohexaphosphate dihydrate top
Crystal data top
2C4H16N33+·P6O186·2H2OF(000) = 752
Mr = 722.25Dx = 1.863 Mg m3
Monoclinic, P21/cAg Kα radiation, λ = 0.56087 Å
a = 10.033 (4) ÅCell parameters from 25 reflections
b = 16.597 (2) Åθ = 9–11°
c = 8.007 (3) ŵ = 0.27 mm1
β = 105.07 (2)°T = 293 K
V = 1287.6 (7) Å3Prism, colorless
Z = 20.32 × 0.27 × 0.21 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.014
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.3°
Graphite monochromatorh = 163
non–profiled ω scansk = 272
9091 measured reflectionsl = 1313
6303 independent reflections2 standard reflections every 120 min
5211 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0609P)2 + 0.1509P]
where P = (Fo2 + 2Fc2)/3
6303 reflections(Δ/σ)max = 0.003
189 parametersΔρmax = 0.47 e Å3
3 restraintsΔρmin = 0.97 e Å3
Crystal data top
2C4H16N33+·P6O186·2H2OV = 1287.6 (7) Å3
Mr = 722.25Z = 2
Monoclinic, P21/cAg Kα radiation, λ = 0.56087 Å
a = 10.033 (4) ŵ = 0.27 mm1
b = 16.597 (2) ÅT = 293 K
c = 8.007 (3) Å0.32 × 0.27 × 0.21 mm
β = 105.07 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.014
9091 measured reflections2 standard reflections every 120 min
6303 independent reflections intensity decay: 2%
5211 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0343 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.47 e Å3
6303 reflectionsΔρmin = 0.97 e Å3
189 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.20977 (2)0.430603 (15)0.26986 (3)0.01668 (6)
P20.22574 (3)0.561419 (16)0.52233 (3)0.01743 (6)
P30.50730 (2)0.627794 (15)0.61516 (3)0.01533 (5)
O10.14711 (9)0.48310 (6)0.11911 (10)0.02688 (16)
O20.15970 (10)0.34709 (5)0.26697 (13)0.03036 (18)
O30.37237 (8)0.43405 (4)0.29127 (10)0.01950 (13)
O40.19351 (8)0.47242 (5)0.44433 (9)0.01962 (13)
O50.16446 (10)0.62392 (5)0.39346 (12)0.02936 (17)
O60.18261 (11)0.55876 (6)0.68613 (12)0.03256 (19)
O70.38893 (8)0.56033 (5)0.56188 (13)0.02876 (18)
O80.47732 (10)0.68151 (5)0.74802 (10)0.02667 (16)
O90.53563 (11)0.66399 (6)0.46030 (11)0.0340 (2)
O1W0.00786 (13)0.72797 (7)0.5688 (2)0.0500 (3)
H1W10.061 (2)0.6947 (11)0.540 (3)0.060*
H2W10.0488 (19)0.7066 (13)0.618 (3)0.060*
N10.13894 (10)0.63794 (6)0.02369 (13)0.02486 (17)
H1A0.13170.62120.13130.037*
H1B0.06920.67090.02280.037*
H1C0.13630.59570.04380.037*
N20.52234 (9)0.66493 (5)0.10700 (11)0.01944 (14)
H2A0.52520.69670.01690.023*
H2B0.52980.69660.20030.023*
N30.88883 (10)0.59139 (7)0.20294 (12)0.02576 (18)
H3A0.87370.55000.26630.039*
H3B0.96920.61430.25450.039*
H3C0.89110.57390.09860.039*
C10.27111 (11)0.68116 (7)0.04148 (16)0.02540 (19)
H1D0.27260.70760.14990.030*
H1E0.28100.72200.04110.030*
C20.38863 (11)0.62149 (6)0.06828 (14)0.02173 (17)
H2C0.38650.58570.16340.026*
H2D0.37840.58910.03510.026*
C30.63924 (10)0.60786 (6)0.14047 (14)0.02126 (17)
H3D0.63240.57480.03870.026*
H3E0.63440.57250.23520.026*
C40.77604 (12)0.65144 (8)0.18517 (19)0.0315 (2)
H4A0.77910.68980.09480.038*
H4B0.78740.68070.29280.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01475 (10)0.01827 (10)0.01602 (10)0.00204 (7)0.00221 (8)0.00203 (7)
P20.01514 (10)0.01911 (11)0.01686 (10)0.00136 (8)0.00204 (8)0.00171 (7)
P30.01797 (10)0.01535 (10)0.01216 (9)0.00046 (7)0.00302 (7)0.00027 (7)
O10.0259 (4)0.0339 (4)0.0167 (3)0.0062 (3)0.0019 (3)0.0011 (3)
O20.0304 (4)0.0226 (4)0.0406 (5)0.0104 (3)0.0137 (4)0.0089 (3)
O30.0149 (3)0.0209 (3)0.0223 (3)0.0003 (2)0.0043 (2)0.0044 (2)
O40.0214 (3)0.0203 (3)0.0178 (3)0.0036 (2)0.0063 (2)0.0028 (2)
O50.0276 (4)0.0240 (4)0.0311 (4)0.0032 (3)0.0020 (3)0.0059 (3)
O60.0412 (5)0.0361 (5)0.0248 (4)0.0009 (4)0.0165 (4)0.0082 (3)
O70.0154 (3)0.0231 (3)0.0438 (5)0.0011 (3)0.0005 (3)0.0097 (3)
O80.0383 (4)0.0210 (3)0.0211 (3)0.0043 (3)0.0083 (3)0.0055 (3)
O90.0430 (5)0.0408 (5)0.0204 (3)0.0056 (4)0.0121 (3)0.0133 (3)
O1W0.0487 (7)0.0299 (5)0.0854 (9)0.0048 (4)0.0424 (7)0.0120 (6)
N10.0197 (4)0.0278 (4)0.0272 (4)0.0013 (3)0.0063 (3)0.0007 (3)
N20.0197 (3)0.0188 (3)0.0203 (3)0.0004 (3)0.0059 (3)0.0006 (3)
N30.0182 (4)0.0354 (5)0.0225 (4)0.0010 (3)0.0031 (3)0.0015 (3)
C10.0205 (4)0.0232 (4)0.0324 (5)0.0012 (3)0.0067 (4)0.0026 (4)
C20.0188 (4)0.0215 (4)0.0241 (4)0.0003 (3)0.0042 (3)0.0004 (3)
C30.0183 (4)0.0207 (4)0.0242 (4)0.0011 (3)0.0044 (3)0.0010 (3)
C40.0209 (4)0.0270 (5)0.0436 (7)0.0024 (4)0.0031 (4)0.0081 (5)
Geometric parameters (Å, º) top
P1—O21.4725 (9)N2—C31.4769 (14)
P1—O11.4889 (9)N2—C21.4831 (14)
P1—O31.5964 (10)N2—H2A0.9000
P1—O41.6058 (9)N2—H2B0.9000
P2—O51.4796 (9)N3—C41.4867 (16)
P2—O61.4847 (10)N3—H3A0.8900
P2—O71.5849 (11)N3—H3B0.8900
P2—O41.6037 (8)N3—H3C0.8900
P3—O91.4706 (9)C1—C21.5119 (15)
P3—O81.4776 (9)C1—H1D0.9700
P3—O71.6072 (9)C1—H1E0.9700
P3—O3i1.6132 (8)C2—H2C0.9700
O3—P3i1.6132 (8)C2—H2D0.9700
O1W—H1W10.840 (9)C3—C41.5099 (16)
O1W—H2W10.849 (9)C3—H3D0.9700
N1—C11.4783 (15)C3—H3E0.9700
N1—H1A0.8900C4—H4A0.9700
N1—H1B0.8900C4—H4B0.9700
N1—H1C0.8900
O2—P1—O1117.88 (6)C2—N2—H2B109.4
O2—P1—O3111.74 (5)H2A—N2—H2B108.0
O1—P1—O3105.69 (5)C4—N3—H3A109.5
O2—P1—O4108.01 (5)C4—N3—H3B109.5
O1—P1—O4109.60 (5)H3A—N3—H3B109.5
O3—P1—O4102.90 (4)C4—N3—H3C109.5
O5—P2—O6118.24 (6)H3A—N3—H3C109.5
O5—P2—O7111.58 (6)H3B—N3—H3C109.5
O6—P2—O7110.27 (6)N1—C1—C2109.10 (9)
O5—P2—O4111.65 (5)N1—C1—H1D109.9
O6—P2—O4103.95 (5)C2—C1—H1D109.9
O7—P2—O499.24 (4)N1—C1—H1E109.9
O9—P3—O8118.73 (6)C2—C1—H1E109.9
O9—P3—O7110.62 (6)H1D—C1—H1E108.3
O8—P3—O7109.68 (6)N2—C2—C1109.94 (9)
O9—P3—O3i111.48 (5)N2—C2—H2C109.7
O8—P3—O3i108.51 (5)C1—C2—H2C109.7
O7—P3—O3i95.29 (5)N2—C2—H2D109.7
P1—O3—P3i130.36 (5)C1—C2—H2D109.7
P2—O4—P1132.93 (5)H2C—C2—H2D108.2
P2—O7—P3134.33 (6)N2—C3—C4111.46 (9)
H1W1—O1W—H2W1113.7 (19)N2—C3—H3D109.3
C1—N1—H1A109.5C4—C3—H3D109.3
C1—N1—H1B109.5N2—C3—H3E109.3
H1A—N1—H1B109.5C4—C3—H3E109.3
C1—N1—H1C109.5H3D—C3—H3E108.0
H1A—N1—H1C109.5N3—C4—C3108.90 (10)
H1B—N1—H1C109.5N3—C4—H4A109.9
C3—N2—C2111.02 (9)C3—C4—H4A109.9
C3—N2—H2A109.4N3—C4—H4B109.9
C2—N2—H2A109.4C3—C4—H4B109.9
C3—N2—H2B109.4H4A—C4—H4B108.3
O2—P1—O3—P3i28.76 (9)O6—P2—O7—P382.21 (10)
O1—P1—O3—P3i158.18 (6)O4—P2—O7—P3169.10 (9)
O4—P1—O3—P3i86.88 (7)O9—P3—O7—P289.73 (10)
O5—P2—O4—P150.02 (9)O8—P3—O7—P243.13 (11)
O6—P2—O4—P1178.57 (7)O3i—P3—O7—P2154.95 (9)
O7—P2—O4—P167.73 (8)C3—N2—C2—C1177.79 (9)
O2—P1—O4—P2178.70 (7)N1—C1—C2—N2171.15 (9)
O1—P1—O4—P249.08 (8)C2—N2—C3—C4178.34 (9)
O3—P1—O4—P263.01 (8)N2—C3—C4—N3175.34 (9)
O5—P2—O7—P351.30 (11)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O50.84 (1)2.12 (1)2.9274 (17)163 (2)
O1W—H2W1···O2ii0.85 (1)1.85 (1)2.6938 (16)175 (2)
N1—H1B···O1Wiii0.891.992.7817 (15)147
N1—H1C···O10.891.962.8054 (14)159
N1—H1A···O6iv0.891.962.8013 (15)156
N2—H2A···O8iv0.902.102.8049 (16)135
N2—H2A···O9iii0.902.363.0891 (15)138
N2—H2B···O90.902.142.7973 (16)130
N2—H2B···O8iii0.902.152.8706 (13)137
N3—H3B···O5v0.891.992.8414 (17)159
N3—H3C···O1vi0.891.932.7973 (16)164
N3—H3A···O6i0.891.962.8008 (16)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x, y+3/2, z1/2; (iv) x, y, z1; (v) x+1, y, z; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula2C4H16N33+·P6O186·2H2O
Mr722.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.033 (4), 16.597 (2), 8.007 (3)
β (°) 105.07 (2)
V3)1287.6 (7)
Z2
Radiation typeAg Kα, λ = 0.56087 Å
µ (mm1)0.27
Crystal size (mm)0.32 × 0.27 × 0.21
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9091, 6303, 5211
Rint0.014
(sin θ/λ)max1)0.836
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.099, 1.07
No. of reflections6303
No. of parameters189
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.97

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O50.840 (9)2.115 (11)2.9274 (17)163 (2)
O1W—H2W1···O2i0.849 (9)1.847 (10)2.6938 (16)175 (2)
N1—H1B···O1Wii0.891.992.7817 (15)147
N1—H1C···O10.891.962.8054 (14)159
N1—H1A···O6iii0.891.962.8013 (15)156
N2—H2A···O8iii0.902.102.8049 (16)135
N2—H2A···O9ii0.902.363.0891 (15)138
N2—H2B···O90.902.142.7973 (16)130
N2—H2B···O8ii0.902.152.8706 (13)137
N3—H3B···O5iv0.891.992.8414 (17)159
N3—H3C···O1v0.891.932.7973 (16)164
N3—H3A···O6vi0.891.962.8008 (16)157
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+3/2, z1/2; (iii) x, y, z1; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x+1, y+1, z+1.
 

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University.

References

First citationAverbuch-Pouchot, M. T. & Durif, A. (1991). Eur. J. Solid State Inorg. Chem. 28, 9–22.  CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND, Crystal impact GbR, Bonn, Germany.  Google Scholar
First citationBridi, M. & Jouini, A. (1989). Eur. J. Solid State Inorg. Chem. 26, 585–590.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGharbi, A., Jouini, A. & Durif, A. (1995). J. Solid State Chem. 114, 42–51.  CSD CrossRef CAS Web of Science Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKamoun, S., Jouini, A. & Daoud, A. (1990). Acta Cryst. C46, 1481–1483.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhedhiri, L., Bel Haj Salah Raoudha,, Belam, W. & Rzaigui, M. (2007). Acta Cryst. E63, o2269–o2271.  Google Scholar
First citationKhedhiri, L., Ben Nasr, C., Rzaigui, M. & Lefebre, F. (2003). Helv. Chim. Acta, 86, 2662–2670.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchülke, U. & Kayser, R. (1985). Z. Anorg. Allg. Chem. 531, 167–175.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds