organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-acet­amido-4,5,6,7-tetra­hydro-1-benzo­thio­phene-3-carboxyl­ate

aInstitute of Chemistry, University of the Punjab, Lahore, Pakistan, bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and cApplied Chemistry Research Center, PCSIR Laboratories Complex, Lahore 54600, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 3 June 2012; accepted 3 June 2012; online 13 June 2012)

In the title compound, C13H17NO3S, the dihedral angles between the thio­phene ring and the ethyl ester and acetamide groups are 5.21 (13) and 10.06 (16)°, respectively. The cyclo­hezene ring adopts a half-chair conformation. An S(6) ring is formed due to an intra­molecular N—H⋯O hydrogen bond. In the crystal, mol­ecules are linked by C—H⋯O inter­actions between the tetra­hydro-1-benzothio­phene unit and the ethyl ester group, forming C(7) chains propagating along the b-axis direction.

Related literature

For related structures, see: Mukhtar et al. (2010a[Mukhtar, A., Tahir, M. N., Khan, M. A. & Khan, M. N. (2010a). Acta Cryst. E66, o2652.],b[Mukhtar, A., Tahir, M. N., Khan, M. A. & Khan, M. N. (2010b). Acta Cryst. E66, o3171.]).

[Scheme 1]

Experimental

Crystal data
  • C13H17NO3S

  • Mr = 267.34

  • Monoclinic, P 21 /c

  • a = 10.4267 (4) Å

  • b = 16.6554 (7) Å

  • c = 8.0961 (3) Å

  • β = 109.610 (1)°

  • V = 1324.43 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.28 × 0.20 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.953, Tmax = 0.958

  • 9994 measured reflections

  • 2389 independent reflections

  • 1831 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.105

  • S = 1.05

  • 2389 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3 0.86 2.03 2.674 (2) 131
C7—H7B⋯O3i 0.97 2.50 3.392 (3) 153
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We reported the crystal structures of ethyl 2-benzamido-4,5,6,7-tetrahydro-1- benzothiophene-3-carboxylate (Mukhtar et al., 2010a) and diethyl 5-acetamido-3-methylthiophene-2,4-dicarboxylate (Mukhtar et al., 2010b) which are related to the tile compound (I), (Fig. 1).

In (I), the thiophene ring A (S1/C8/C3/C2/C9), ethyl ester group B (O1/C1/O3/C10/C11) and acetamide moiety C (N1/C12/O2/C13) are planar with r. m. s. deviation of 0.0034, 0.0560 and 0.0029 Å, respectively. The dihedral angle between A/B, A/C and B/C is 5.21 (13), 5.17 (14) and 10.06 (16)°, respectively. In the title compound an S(6) ring motif is formed due to intramolecular H-bonding of N—H···O type (Table 1, Fig. 1). The molecules are linked in the form of C(7) chains extending along the [010] direction due to C—H···O type of H-bonding.

Related literature top

For related structures, see: Mukhtar et al. (2010a,b).

Experimental top

Ethyl 2-amino-4,5,6,7-tetrahydrobenzothiophene-3-carboxylate (0.3 g, 1 mmol) was dissolved in chloroform and in this solution 1 ml of acetyl chloride was added. The reaction mixture was refluxed for 8 h. The solvent was removed and the residue was recrystallized by ethanol to get colorless prisms of (I). m.p. 383 K, yield: 0.24 g, 85%.

Refinement top

The H-atoms were positioned geometrically (N—H = 0.86, C–H = 0.96–0.97 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and x = 1.2 for other H-atoms.

Structure description top

We reported the crystal structures of ethyl 2-benzamido-4,5,6,7-tetrahydro-1- benzothiophene-3-carboxylate (Mukhtar et al., 2010a) and diethyl 5-acetamido-3-methylthiophene-2,4-dicarboxylate (Mukhtar et al., 2010b) which are related to the tile compound (I), (Fig. 1).

In (I), the thiophene ring A (S1/C8/C3/C2/C9), ethyl ester group B (O1/C1/O3/C10/C11) and acetamide moiety C (N1/C12/O2/C13) are planar with r. m. s. deviation of 0.0034, 0.0560 and 0.0029 Å, respectively. The dihedral angle between A/B, A/C and B/C is 5.21 (13), 5.17 (14) and 10.06 (16)°, respectively. In the title compound an S(6) ring motif is formed due to intramolecular H-bonding of N—H···O type (Table 1, Fig. 1). The molecules are linked in the form of C(7) chains extending along the [010] direction due to C—H···O type of H-bonding.

For related structures, see: Mukhtar et al. (2010a,b).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted line show intramolecular H-bonding.
[Figure 2] Fig. 2. The partial packing, which shows that molecules form C(7) chains extending along the b axis.
Ethyl 2-acetamido-4,5,6,7-tetrahydro-1-benzothiophene-3-carboxylate top
Crystal data top
C13H17NO3SF(000) = 568
Mr = 267.34Dx = 1.341 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1831 reflections
a = 10.4267 (4) Åθ = 2.4–25.3°
b = 16.6554 (7) ŵ = 0.24 mm1
c = 8.0961 (3) ÅT = 296 K
β = 109.610 (1)°Prism, colorless
V = 1324.43 (9) Å30.28 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2389 independent reflections
Radiation source: fine-focus sealed tube1831 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 2.4°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1919
Tmin = 0.953, Tmax = 0.958l = 99
9994 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.4757P]
where P = (Fo2 + 2Fc2)/3
2389 reflections(Δ/σ)max < 0.001
165 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C13H17NO3SV = 1324.43 (9) Å3
Mr = 267.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4267 (4) ŵ = 0.24 mm1
b = 16.6554 (7) ÅT = 296 K
c = 8.0961 (3) Å0.28 × 0.20 × 0.18 mm
β = 109.610 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2389 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1831 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.958Rint = 0.032
9994 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.05Δρmax = 0.27 e Å3
2389 reflectionsΔρmin = 0.16 e Å3
165 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.07735 (6)0.14705 (4)0.26031 (7)0.0539 (2)
O10.22774 (14)0.08502 (9)0.4124 (2)0.0570 (5)
O20.31724 (17)0.09817 (13)0.0095 (2)0.0848 (8)
O30.03140 (16)0.11247 (10)0.2017 (2)0.0646 (6)
N10.15117 (16)0.00537 (11)0.0871 (2)0.0514 (6)
C10.1049 (2)0.06486 (13)0.3047 (3)0.0471 (7)
C20.06878 (18)0.01882 (12)0.3219 (2)0.0408 (6)
C30.14704 (19)0.07906 (12)0.4432 (2)0.0414 (6)
C40.2851 (2)0.06876 (13)0.5811 (3)0.0488 (7)
C50.3212 (3)0.13991 (14)0.7081 (3)0.0653 (8)
C60.2832 (3)0.21870 (14)0.6192 (3)0.0690 (9)
C70.1317 (2)0.22493 (13)0.5254 (3)0.0591 (8)
C80.0810 (2)0.14974 (12)0.4223 (3)0.0459 (7)
C90.05484 (19)0.04848 (13)0.2159 (3)0.0444 (7)
C100.2653 (3)0.16924 (14)0.4095 (4)0.0742 (10)
C110.3917 (3)0.18249 (18)0.5583 (4)0.0926 (13)
C120.2783 (2)0.03142 (17)0.0096 (3)0.0592 (9)
C130.3644 (2)0.02882 (17)0.1363 (3)0.0729 (9)
H10.128940.042270.065810.0616*
H4A0.353400.063650.524670.0585*
H4B0.285940.019770.646240.0585*
H5A0.275010.133590.793240.0783*
H5B0.418410.139400.771200.0783*
H6A0.330360.225750.535370.0828*
H6B0.311930.261330.705450.0828*
H7A0.085530.232610.610170.0709*
H7B0.112220.270860.447240.0709*
H10A0.279660.181700.299950.0889*
H10B0.193310.203560.420150.0889*
H11A0.378050.166550.665140.1389*
H11B0.463810.151190.541980.1389*
H11C0.415480.238360.564660.1389*
H13A0.410820.002950.246100.1095*
H13B0.430070.051160.089770.1095*
H13C0.307550.070920.154080.1095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0487 (3)0.0506 (4)0.0574 (4)0.0098 (3)0.0112 (3)0.0046 (3)
O10.0475 (8)0.0389 (9)0.0741 (10)0.0041 (7)0.0066 (7)0.0051 (7)
O20.0593 (11)0.0900 (15)0.0849 (13)0.0170 (10)0.0024 (9)0.0038 (11)
O30.0608 (10)0.0489 (10)0.0724 (10)0.0073 (8)0.0068 (8)0.0142 (8)
N10.0423 (10)0.0563 (12)0.0496 (10)0.0041 (8)0.0077 (8)0.0017 (9)
C10.0448 (12)0.0451 (13)0.0505 (12)0.0040 (10)0.0148 (10)0.0003 (10)
C20.0381 (10)0.0407 (12)0.0439 (11)0.0022 (9)0.0142 (8)0.0012 (9)
C30.0441 (11)0.0401 (12)0.0407 (10)0.0008 (9)0.0152 (9)0.0028 (9)
C40.0471 (12)0.0443 (12)0.0481 (12)0.0007 (9)0.0069 (9)0.0002 (10)
C50.0655 (15)0.0544 (15)0.0590 (14)0.0056 (12)0.0015 (12)0.0052 (12)
C60.0776 (17)0.0502 (15)0.0660 (15)0.0082 (12)0.0067 (13)0.0079 (12)
C70.0723 (16)0.0418 (14)0.0577 (13)0.0061 (11)0.0147 (12)0.0016 (10)
C80.0488 (12)0.0424 (12)0.0461 (11)0.0033 (9)0.0154 (9)0.0028 (10)
C90.0428 (11)0.0465 (12)0.0448 (11)0.0016 (9)0.0159 (9)0.0035 (9)
C100.0717 (17)0.0403 (14)0.103 (2)0.0095 (12)0.0192 (15)0.0085 (13)
C110.0626 (17)0.0620 (18)0.139 (3)0.0162 (14)0.0149 (18)0.0113 (18)
C120.0469 (13)0.0751 (18)0.0500 (13)0.0002 (12)0.0087 (10)0.0071 (12)
C130.0527 (14)0.096 (2)0.0562 (14)0.0106 (14)0.0001 (11)0.0007 (14)
Geometric parameters (Å, º) top
S1—C81.731 (2)C10—C111.474 (4)
S1—C91.714 (2)C12—C131.499 (4)
O1—C11.328 (3)C4—H4A0.9700
O1—C101.459 (3)C4—H4B0.9700
O2—C121.211 (3)C5—H5A0.9700
O3—C11.218 (3)C5—H5B0.9700
N1—C91.382 (3)C6—H6A0.9700
N1—C121.364 (3)C6—H6B0.9700
N1—H10.8600C7—H7A0.9700
C1—C21.463 (3)C7—H7B0.9700
C2—C91.378 (3)C10—H10A0.9700
C2—C31.449 (3)C10—H10B0.9700
C3—C41.506 (3)C11—H11A0.9600
C3—C81.346 (3)C11—H11B0.9600
C4—C51.531 (3)C11—H11C0.9600
C5—C61.485 (3)C13—H13A0.9600
C6—C71.509 (4)C13—H13B0.9600
C7—C81.499 (3)C13—H13C0.9600
C8—S1—C991.19 (10)C4—C5—H5A109.00
C1—O1—C10115.95 (19)C4—C5—H5B109.00
C9—N1—C12126.0 (2)C6—C5—H5A109.00
C9—N1—H1117.00C6—C5—H5B109.00
C12—N1—H1117.00H5A—C5—H5B108.00
O1—C1—O3122.1 (2)C5—C6—H6A109.00
O3—C1—C2124.3 (2)C5—C6—H6B109.00
O1—C1—C2113.63 (18)C7—C6—H6A109.00
C1—C2—C9119.95 (18)C7—C6—H6B109.00
C1—C2—C3128.32 (17)H6A—C6—H6B108.00
C3—C2—C9111.72 (18)C6—C7—H7A110.00
C2—C3—C8111.88 (17)C6—C7—H7B110.00
C2—C3—C4127.17 (18)C8—C7—H7A110.00
C4—C3—C8120.95 (18)C8—C7—H7B110.00
C3—C4—C5111.59 (19)H7A—C7—H7B108.00
C4—C5—C6113.14 (19)O1—C10—H10A110.00
C5—C6—C7111.6 (2)O1—C10—H10B110.00
C6—C7—C8109.67 (18)C11—C10—H10A110.00
C3—C8—C7126.2 (2)C11—C10—H10B110.00
S1—C8—C3112.99 (16)H10A—C10—H10B108.00
S1—C8—C7120.80 (16)C10—C11—H11A109.00
N1—C9—C2125.09 (19)C10—C11—H11B109.00
S1—C9—N1122.70 (16)C10—C11—H11C109.00
S1—C9—C2112.22 (16)H11A—C11—H11B109.00
O1—C10—C11107.6 (2)H11A—C11—H11C109.00
N1—C12—C13115.0 (2)H11B—C11—H11C109.00
O2—C12—N1121.4 (2)C12—C13—H13A109.00
O2—C12—C13123.5 (2)C12—C13—H13B109.00
C3—C4—H4A109.00C12—C13—H13C109.00
C3—C4—H4B109.00H13A—C13—H13B109.00
C5—C4—H4A109.00H13A—C13—H13C110.00
C5—C4—H4B109.00H13B—C13—H13C109.00
H4A—C4—H4B108.00
C9—S1—C8—C30.74 (18)C9—C2—C3—C4178.71 (19)
C9—S1—C8—C7179.82 (19)C9—C2—C3—C80.6 (2)
C8—S1—C9—N1179.31 (19)C1—C2—C9—S1179.01 (15)
C8—S1—C9—C20.37 (17)C1—C2—C9—N11.3 (3)
C10—O1—C1—O34.5 (3)C3—C2—C9—S10.0 (2)
C10—O1—C1—C2175.9 (2)C3—C2—C9—N1179.72 (19)
C1—O1—C10—C11169.7 (2)C2—C3—C4—C5167.96 (19)
C12—N1—C9—S15.9 (3)C8—C3—C4—C511.3 (3)
C12—N1—C9—C2174.4 (2)C2—C3—C8—S10.9 (2)
C9—N1—C12—O21.2 (4)C2—C3—C8—C7179.9 (2)
C9—N1—C12—C13177.8 (2)C4—C3—C8—S1178.48 (15)
O1—C1—C2—C32.4 (3)C4—C3—C8—C70.6 (3)
O1—C1—C2—C9178.80 (19)C3—C4—C5—C641.8 (3)
O3—C1—C2—C3178.0 (2)C4—C5—C6—C761.4 (3)
O3—C1—C2—C90.8 (3)C5—C6—C7—C846.2 (3)
C1—C2—C3—C40.2 (3)C6—C7—C8—S1164.26 (17)
C1—C2—C3—C8179.5 (2)C6—C7—C8—C316.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.862.032.674 (2)131
C7—H7B···O3i0.972.503.392 (3)153
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H17NO3S
Mr267.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.4267 (4), 16.6554 (7), 8.0961 (3)
β (°) 109.610 (1)
V3)1324.43 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.28 × 0.20 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.953, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
9994, 2389, 1831
Rint0.032
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.105, 1.05
No. of reflections2389
No. of parameters165
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.16

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.862.032.674 (2)131
C7—H7B···O3i0.972.503.392 (3)153
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMukhtar, A., Tahir, M. N., Khan, M. A. & Khan, M. N. (2010a). Acta Cryst. E66, o2652.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMukhtar, A., Tahir, M. N., Khan, M. A. & Khan, M. N. (2010b). Acta Cryst. E66, o3171.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds