organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl α-L-rhamnosyl-(1→2)[α-L-rhamnosyl-(1→3)]-α-L-rhamnoside penta­hydrate: synchrotron study

aDepartment of Material and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden, and bDepartment of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
*Correspondence e-mail: lars.eriksson@mmk.su.se

(Received 8 June 2012; accepted 16 June 2012; online 27 June 2012)

The title hydrate, C19H34O13·5H2O, contains a vicinally disubstituted tris­accharide in which the two terminal rhamnosyl sugar groups are positioned adjacent to each other. The conformation of the tris­accharide is described by the glycosidic torsion angles φ2 = 48 (1)°, ψ2 = −29 (1)°, φ3 = 44 (1)° and ψ3 = 4 (1)°, whereas the ψ2 torsion angle represents a conformation from the major state in solution, the ψ3 torsion angle conformation may have been caught near a potential energy saddle-point when compared to its solution structure, in which at least two but probably three conformational states are populated. Extensive inter­molecular O—H⋯O hydrogen bonding is present in the crystal and a water-containing channel is formed along the b-axis direction.

Related literature

For a description of L-rhamnose as part of polysaccharides, see: Marie et al. (1998[Marie, C., Weintraub, A. & Widmalm, G. (1998). Eur. J. Biochem. 254, 378-381.]); Perry & MacLean (2000[Perry, M. B. & MacLean, L. (2000). Eur. J. Biochem. 267, 2567-2572.]). For a description of the conformational dynamics of the title tris­accharide, see: Eklund et al. (2005[Eklund, R., Lycknert, K., Söderman, P. & Widmalm, G. (2005). J. Phys. Chem. B, 109, 19936-19945.]); Jonsson et al. (2011[Jonsson, K. H. M., Pendrill, R. & Widmalm, G. (2011). Magn. Reson. Chem. 49, 117-124.]). For a description of the puckering analysis of the residues, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For further background to L-rhamnose, see: Ansaruzzaman et al. (1996[Ansaruzzaman, M., Albert, M. J., Holme, T., Jansson, P.-E., Rahman, M. M. & Widmalm, G. (1996). Eur. J. Biochem. 237, 786-791.]); Varki et al. (1999)[Varki, A., Cummings, R., Esko, J., Freeze, H., Hart, G. & Marth, J. (1999). Editors. Essentials of Glycobiology. Cold Spring Harbor Laboratory Press.]; Kulber-Kielb et al. (2007[Kulber-Kielb, J., Vinogradov, E., Chu, C. & Schneerson, R. (2007). Carbohydr. Res. 342, 643-647.]); Lindberg (1998[Lindberg, B. (1998). Polysaccharides, edited by S. Dumitriu, pp. 237-273. New York: Marcel Dekker.]); Säwén et al. (2010[Säwén, E., Massad, T., Landersjö, C., Damberg, P. & Widmalm, G. (2010). Org. Biomol. Chem. 8, 3684-3695.]).

[Scheme 1]

Experimental

Crystal data
  • C19H34O13·5H2O

  • Mr = 560.54

  • Monoclinic, C 2

  • a = 19.345 (3) Å

  • b = 6.4870 (13) Å

  • c = 21.145 (3) Å

  • β = 97.617 (14)°

  • V = 2630.0 (8) Å3

  • Z = 4

  • Synchrotron radiation

  • λ = 0.8970 Å

  • μ = 0.22 mm−1

  • T = 100 K

  • 0.20 × 0.05 × 0.01 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.97, Tmax = 0.99

  • 17172 measured reflections

  • 2906 independent reflections

  • 2655 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.087

  • S = 1.07

  • 2906 reflections

  • 376 parameters

  • 16 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
OW1—H101⋯O33i 0.88 (3) 1.85 (3) 2.726 (2) 176 (2)
OW1—H102⋯OW3ii 0.88 (3) 1.95 (3) 2.802 (2) 162 (2)
OW1—H102⋯O32iii 0.88 (3) 2.55 (3) 2.976 (2) 110 (2)
OW2—H201⋯O12iv 0.88 (3) 2.03 (3) 2.875 (2) 163 (2)
OW2—H202⋯O35ii 0.87 (3) 2.08 (3) 2.877 (2) 153 (2)
OW3—H301⋯OW5 0.88 (3) 2.04 (3) 2.845 (2) 151 (2)
OW3—H302⋯O13v 0.88 (3) 1.96 (3) 2.836 (2) 176 (2)
OW4—H401⋯OW3 0.88 (3) 1.97 (3) 2.840 (2) 168 (2)
OW4—H402⋯OW1 0.88 (3) 1.92 (3) 2.771 (2) 160 (2)
OW5—H501⋯O33vi 0.87 (3) 2.07 (3) 2.918 (2) 168 (2)
OW5—H502⋯OW5vii 0.87 (3) 2.50 (3) 3.333 (2) 159 (2)
O12—H12A⋯O32iii 0.84 2.01 2.767 (2) 149
O13—H13A⋯O15ii 0.84 2.10 2.858 (2) 149
O14—H14A⋯O24iii 0.84 1.95 2.733 (2) 157
O24—H24A⋯OW2 0.84 1.88 2.722 (2) 176
O32—H32A⋯OW5viii 0.84 2.13 2.864 (2) 146
O33—H33A⋯O34i 0.84 1.91 2.684 (2) 152
O34—H34A⋯OW4 0.84 1.86 2.687 (2) 168
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+1]; (ii) x, y-1, z; (iii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (v) x, y+1, z; (vi) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (vii) -x+2, y, -z+1; (viii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In carbohydrate structures from humans the number of different monosaccharides is quite limited; typically seven different sugars are present in glycoproteins and glycolipids (Varki et al., 1999). Constituents of polysaccharides in man add a few more monosaccharides to the repertoire. In bacteria, however, more than 100 different monosaccharide components have been found (Lindberg, 1998). One of them, L-rhamnose (6-deoxy-L-mannose) is present as a major constituent of the O-antigen polysaccharides from Shigella flexneri (Kulber-Kielb et al., 2007) and is the sole monosaccharide in the repeating unit of an O-antigen from a Klebsiella pneumoniae strain (Ansaruzzaman et al., 1996). L-rhamnose is also found a the branch point sugar in some polysaccharides, e.g., from Escherichia coli O139 (Marie et al., 1998) and Yersinia enterocolitica serotype O:28 (Perry & MacLean, 2000).

In the title compound (I) the three sugar components are all L-rhamnose residues having the α-anomeric configuration. The O-methyl residue (a) is vicinally disubstituted at O2 (residue b) and O3 (residue c) which leads to spatial proximity of also the two latter rhamnosyl groups. The major degrees of freedom in trisaccharide (I) are present at the (1 2)- and (1 3)-linkages, i.e., between residues b and a as well as between residues c and a, respectively. The torsion angles are given by φ2 = 48°, ψ2 = -29°, φ3 = 44° and ψ3 = 4°. In a recent NMR and molecular dynamics (MD) simulation study of (I) in water solution <φ> 40°, when the exo-anomeric conformation was populated, but non-exo conformations with φ < 0° were also significantly populated (Eklund et al., 2005). The dynamics of the ψ torsion angles were found to be highly correlated with both ψ2 and ψ3 being either > 0° or < 0°. The conformation of the X-ray structure (Figure 1) is reminiscent of the conformational states found from the MD simulation and the values of the glycosidic torsion angles are observed to correspond to conformational regions that are highly populated, albeit the ψ torsion angles in the solid state structure deviate somewhat from the pattern observed from the molecular simulations with water as a solvent.

In studies of the conformational dynamics of the title trisaccharide trans-glycosidic heteronuclear carbon-proton coupling constants were measured (Eklund et al., 2005; Jonsson et al., 2011) which, when interpreted by Karplus-type relationships (Säwén et al., 2010), can yield information on conformation via torsion angles at the glycosidic linkages. Calculation of the three-bond coupling constants based on the torsion angles in the crystal structure of the trisaccharide showed that for the φ torsion angles and the ψ torsion angle at the α-(1 2)-linkage the differences to the experimental data were not larger than ca 0.5 Hz, indicating that for these torsions the conformation in the solid state is similar to that populated to a large extent in solution. However, for the ψ torsion angle at the α-(1 3)-linkage the corresponding difference was larger, ca 1 Hz, suggesting that in the crystal structure the latter torsion describes a conformation that is less populated in water solution. The crystal structure conformation is still, however, one in a low potential energy region, since conformational exchange occurs for both of the ψ torsion angles between states for which ψ takes either positive or negative values according to the molecular dynamics simulation (Eklund et al., 2005).

The calculated Cremer & Pople (1975) parameters for the three different rings are: ring O15 C15 [Q=0.570 (2) Å, θ=177.9 (2) ° and φ=20 (9) °], ring O25 C25 [Q=0.580 (2) Å, θ=171.4 (2) ° and φ=72.5 (14) °] and for the ring O35 C35 [Q=0.582 (2) Å, θ=177.1 (2) ° and φ=131 (5) °].

Extensive water-water hydrogen bonding was observed (Table 1) between the title compound and water molecules leading to a water channel in the b-direction (Fig. 2 and Fig. 3). The title compound showed hydrogen bonds to water and to other adjacent (symmetry related) trisaccharides, but no intra-molecular hydrogen bonds were found.

Related literature top

For a description of L-rhamnose as part of polysaccharides, see: Marie et al. (1998); Perry & MacLean (2000). For a description of the conformational dynamics of the title trisaccharide, see: Eklund et al. (2005); Jonsson et al. (2011). For a description of the puckering analysis of the residues, see: Cremer & Pople (1975). For further background to L-rhamnose, see: Ansaruzzaman et al. (1996); Varki et al. (1999); Kulber-Kielb et al. (2007); Lindberg (1998); Säwén et al. (2010).

Experimental top

The synthesis of (I) was described by Eklund et al. (2005) in which all three rhamnosyl residues have the L absolute configuration. The trisaccharide was crystallized at ambient temperature by slow evaporation from a mixture of water and ethanol (1:1). The crystal was mounted in a capillary tube and diffraction data were collected at 100 K on beamline I711 at the Swedish synchrotron radiation facility, MAXLAB, Lund.

Refinement top

All hydrogen atoms, except those on the water molecules, were geometrically placed and constrained to ride on the parent atom. The C—H bond distances are 0.98 Å for CH3, 0.99 Å for CH2, 1.00 Å for CH. The O—H bond distance is 0.84 Å for OH groups. The Uiso(H) = 1.5 Ueq(C,O) for the CH3 and OH while it was set to 1.2 Ueq(C) for all other H atoms. Due to the abscence of significant anomalous scatterers, the value of the Flack parameter was not meaningful, thus the 3220 Friedel equivalents were included in the merging process (MERG 4 in SHELXL). The absolute configuration of each sugar residue is known from the starting compounds used in the synthesis. The hydrogen atoms of the water molecule were located from difference density map, given Uiso(H) = 1.5Ueq(O) and in the refinement the d(O—H) and d(H..H) were restrained to retain the previously known geometry of the water molecule. The H502 is an hydrogen atom connected to a solvent water molecule where the H502 related by a 2 fold axis will be positioned at a much too close distance. The water molecule defined by OW5, H501 and H502 do not strictly fulfil the crystallographic symmetry of the rest of the strucutre, at least this is true for one of the H atoms for this very water molecule.

Structure description top

In carbohydrate structures from humans the number of different monosaccharides is quite limited; typically seven different sugars are present in glycoproteins and glycolipids (Varki et al., 1999). Constituents of polysaccharides in man add a few more monosaccharides to the repertoire. In bacteria, however, more than 100 different monosaccharide components have been found (Lindberg, 1998). One of them, L-rhamnose (6-deoxy-L-mannose) is present as a major constituent of the O-antigen polysaccharides from Shigella flexneri (Kulber-Kielb et al., 2007) and is the sole monosaccharide in the repeating unit of an O-antigen from a Klebsiella pneumoniae strain (Ansaruzzaman et al., 1996). L-rhamnose is also found a the branch point sugar in some polysaccharides, e.g., from Escherichia coli O139 (Marie et al., 1998) and Yersinia enterocolitica serotype O:28 (Perry & MacLean, 2000).

In the title compound (I) the three sugar components are all L-rhamnose residues having the α-anomeric configuration. The O-methyl residue (a) is vicinally disubstituted at O2 (residue b) and O3 (residue c) which leads to spatial proximity of also the two latter rhamnosyl groups. The major degrees of freedom in trisaccharide (I) are present at the (1 2)- and (1 3)-linkages, i.e., between residues b and a as well as between residues c and a, respectively. The torsion angles are given by φ2 = 48°, ψ2 = -29°, φ3 = 44° and ψ3 = 4°. In a recent NMR and molecular dynamics (MD) simulation study of (I) in water solution <φ> 40°, when the exo-anomeric conformation was populated, but non-exo conformations with φ < 0° were also significantly populated (Eklund et al., 2005). The dynamics of the ψ torsion angles were found to be highly correlated with both ψ2 and ψ3 being either > 0° or < 0°. The conformation of the X-ray structure (Figure 1) is reminiscent of the conformational states found from the MD simulation and the values of the glycosidic torsion angles are observed to correspond to conformational regions that are highly populated, albeit the ψ torsion angles in the solid state structure deviate somewhat from the pattern observed from the molecular simulations with water as a solvent.

In studies of the conformational dynamics of the title trisaccharide trans-glycosidic heteronuclear carbon-proton coupling constants were measured (Eklund et al., 2005; Jonsson et al., 2011) which, when interpreted by Karplus-type relationships (Säwén et al., 2010), can yield information on conformation via torsion angles at the glycosidic linkages. Calculation of the three-bond coupling constants based on the torsion angles in the crystal structure of the trisaccharide showed that for the φ torsion angles and the ψ torsion angle at the α-(1 2)-linkage the differences to the experimental data were not larger than ca 0.5 Hz, indicating that for these torsions the conformation in the solid state is similar to that populated to a large extent in solution. However, for the ψ torsion angle at the α-(1 3)-linkage the corresponding difference was larger, ca 1 Hz, suggesting that in the crystal structure the latter torsion describes a conformation that is less populated in water solution. The crystal structure conformation is still, however, one in a low potential energy region, since conformational exchange occurs for both of the ψ torsion angles between states for which ψ takes either positive or negative values according to the molecular dynamics simulation (Eklund et al., 2005).

The calculated Cremer & Pople (1975) parameters for the three different rings are: ring O15 C15 [Q=0.570 (2) Å, θ=177.9 (2) ° and φ=20 (9) °], ring O25 C25 [Q=0.580 (2) Å, θ=171.4 (2) ° and φ=72.5 (14) °] and for the ring O35 C35 [Q=0.582 (2) Å, θ=177.1 (2) ° and φ=131 (5) °].

Extensive water-water hydrogen bonding was observed (Table 1) between the title compound and water molecules leading to a water channel in the b-direction (Fig. 2 and Fig. 3). The title compound showed hydrogen bonds to water and to other adjacent (symmetry related) trisaccharides, but no intra-molecular hydrogen bonds were found.

For a description of L-rhamnose as part of polysaccharides, see: Marie et al. (1998); Perry & MacLean (2000). For a description of the conformational dynamics of the title trisaccharide, see: Eklund et al. (2005); Jonsson et al. (2011). For a description of the puckering analysis of the residues, see: Cremer & Pople (1975). For further background to L-rhamnose, see: Ansaruzzaman et al. (1996); Varki et al. (1999); Kulber-Kielb et al. (2007); Lindberg (1998); Säwén et al. (2010).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecule with displacement ellipsoids drawn at the 50% probablity level.
[Figure 2] Fig. 2. Four unit cells viewed along the b axis with the water molecules symbolized by the large blue discs. The water molecules mediate intermolecular hydrogen bonds between the sugar molecules and along the b axis.
[Figure 3] Fig. 3. Stereoview of the hydrogen bonded water structure of approximately two unit-cell lengths along the b axis. The water O atoms are shown with blue color and the hydroxyl O atoms are shown with red color.
Methyl α-L-rhamnosyl-(1 2)[α-L-rhamnosyl- (1 3)]-α-L-rhamnoside pentahydrate top
Crystal data top
C19H34O13·5H2OF(000) = 1208
Mr = 560.54Dx = 1.416 Mg m3
Monoclinic, C2Synchrotron radiation, λ = 0.8970 Å
Hall symbol: C 2yCell parameters from 963 reflections
a = 19.345 (3) Åθ = 2.5–39.8°
b = 6.4870 (13) ŵ = 0.22 mm1
c = 21.145 (3) ÅT = 100 K
β = 97.617 (14)°Plate, colourless
V = 2630.0 (8) Å30.20 × 0.05 × 0.01 mm
Z = 4
Data collection top
Bruker SMART 1K CCD
diffractometer
2906 independent reflections
Radiation source: Beamline I711, Maxlab2655 reflections with I > 2σ(I)
Silicon monochromatorRint = 0.046
Detector resolution: 10 pixels mm-1θmax = 34.1°, θmin = 2.5°
ω scan at different φh = 2324
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
k = 88
Tmin = 0.97, Tmax = 0.99l = 2326
17172 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0607P)2]
where P = (Fo2 + 2Fc2)/3
2906 reflections(Δ/σ)max < 0.001
376 parametersΔρmax = 0.56 e Å3
16 restraintsΔρmin = 0.29 e Å3
Crystal data top
C19H34O13·5H2OV = 2630.0 (8) Å3
Mr = 560.54Z = 4
Monoclinic, C2Synchrotron radiation, λ = 0.8970 Å
a = 19.345 (3) ŵ = 0.22 mm1
b = 6.4870 (13) ÅT = 100 K
c = 21.145 (3) Å0.20 × 0.05 × 0.01 mm
β = 97.617 (14)°
Data collection top
Bruker SMART 1K CCD
diffractometer
2906 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2655 reflections with I > 2σ(I)
Tmin = 0.97, Tmax = 0.99Rint = 0.046
17172 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03316 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.56 e Å3
2906 reflectionsΔρmin = 0.29 e Å3
376 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
OW10.93266 (10)0.3863 (3)0.46456 (9)0.0236 (4)
H1010.9098 (15)0.456 (4)0.4905 (12)0.035*
H1020.9424 (17)0.474 (4)0.4352 (12)0.035*
OW20.55372 (9)0.3755 (3)0.25876 (10)0.0244 (4)
H2010.5191 (11)0.458 (4)0.2626 (15)0.037*
H2020.5911 (10)0.422 (5)0.2816 (14)0.037*
OW30.93523 (9)0.2971 (3)0.37476 (9)0.0213 (4)
H3010.9740 (11)0.225 (5)0.3809 (13)0.032*
H3020.9301 (15)0.339 (5)0.3350 (8)0.032*
OW40.85929 (11)0.0490 (3)0.41056 (10)0.0321 (5)
H4010.8879 (15)0.052 (4)0.4032 (17)0.048*
H4020.8891 (14)0.133 (4)0.4327 (16)0.048*
OW51.04589 (10)0.0556 (3)0.43863 (9)0.0271 (4)
H5011.0791 (14)0.144 (5)0.4484 (14)0.041*
H5021.0265 (15)0.022 (5)0.4722 (11)0.041*
C110.85217 (11)0.0103 (3)0.23565 (11)0.0109 (5)
H110.85270.09850.26920.013*
C120.88270 (11)0.2061 (3)0.26740 (11)0.0116 (5)
H120.85280.25730.29920.014*
C130.88938 (12)0.3693 (3)0.21708 (11)0.0126 (5)
H130.84190.40740.19570.015*
C140.93200 (12)0.2870 (3)0.16795 (11)0.0116 (5)
H140.98060.25870.18860.014*
C150.89936 (12)0.0874 (4)0.13897 (11)0.0121 (5)
H150.85210.11810.11570.014*
O150.89286 (8)0.0599 (2)0.18944 (7)0.0107 (3)
O120.94950 (8)0.1441 (2)0.29873 (8)0.0133 (4)
H12A0.96700.24050.32210.020*
O130.92191 (9)0.5475 (3)0.24839 (8)0.0174 (4)
H13A0.92330.64270.22170.026*
O140.93366 (8)0.4346 (3)0.11879 (8)0.0155 (4)
H14A0.97280.49260.12300.023*
C160.94325 (14)0.0139 (4)0.09399 (12)0.0192 (5)
H16A0.92050.14120.07710.029*
H16B0.94850.08010.05860.029*
H16C0.98930.04650.11690.029*
C210.74537 (12)0.1967 (4)0.12541 (11)0.0135 (5)
H210.79510.19230.11730.016*
C220.74289 (11)0.1369 (3)0.19460 (11)0.0109 (5)
H220.76280.25130.22310.013*
O220.78200 (8)0.0481 (2)0.21047 (7)0.0106 (3)
C230.66745 (11)0.0994 (3)0.20516 (11)0.0105 (5)
H230.64170.23290.19860.013*
C240.63267 (11)0.0554 (4)0.15733 (11)0.0120 (5)
H240.65840.18930.16150.014*
C250.63456 (12)0.0347 (4)0.09175 (11)0.0147 (5)
H250.61150.17300.08960.018*
O230.66298 (8)0.0302 (2)0.26878 (7)0.0111 (3)
O240.56178 (8)0.0859 (3)0.16682 (8)0.0151 (4)
H24A0.56000.17060.19660.023*
O250.70645 (8)0.0599 (3)0.08206 (8)0.0150 (4)
C260.59920 (13)0.0981 (5)0.03875 (12)0.0228 (6)
H26A0.60340.03340.00240.034*
H26B0.54980.11320.04360.034*
H26C0.62130.23420.04060.034*
O270.72203 (9)0.4015 (2)0.11823 (8)0.0160 (4)
C270.74020 (15)0.4932 (5)0.06129 (14)0.0277 (6)
H27A0.78950.46600.05810.042*
H27B0.73240.64230.06250.042*
H27C0.71120.43410.02420.042*
C310.62082 (12)0.1575 (4)0.30105 (11)0.0110 (5)
H310.57760.19230.27150.013*
C320.60030 (11)0.0409 (4)0.35762 (10)0.0110 (5)
H320.58080.09560.34220.013*
C330.66440 (12)0.0023 (3)0.40588 (11)0.0106 (5)
H330.69660.08940.38540.013*
C340.70281 (12)0.2040 (3)0.42416 (11)0.0108 (5)
H340.67190.29600.44600.013*
C350.72015 (12)0.3104 (3)0.36380 (11)0.0111 (5)
H350.75150.21940.34220.013*
O350.65577 (8)0.3437 (2)0.32144 (7)0.0117 (3)
O320.54699 (8)0.1518 (3)0.38395 (8)0.0126 (3)
H32A0.56450.25580.40370.019*
O330.64458 (8)0.1032 (2)0.45946 (8)0.0133 (4)
H33A0.68050.13880.48380.020*
O340.76396 (8)0.1594 (3)0.46677 (8)0.0157 (4)
H34A0.78980.08050.44880.024*
C360.75423 (13)0.5176 (4)0.37637 (12)0.0187 (5)
H36A0.75460.59100.33590.028*
H36B0.80230.49850.39690.028*
H36C0.72810.59800.40440.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
OW10.0248 (10)0.0236 (10)0.0246 (10)0.0013 (8)0.0114 (8)0.0030 (8)
OW20.0130 (9)0.0193 (9)0.0394 (12)0.0022 (8)0.0019 (8)0.0144 (8)
OW30.0211 (10)0.0208 (9)0.0218 (10)0.0004 (8)0.0019 (8)0.0010 (8)
OW40.0354 (12)0.0274 (11)0.0349 (12)0.0050 (10)0.0102 (10)0.0050 (9)
OW50.0270 (11)0.0176 (9)0.0343 (11)0.0025 (8)0.0046 (9)0.0022 (9)
C110.0078 (11)0.0104 (10)0.0138 (11)0.0012 (9)0.0008 (9)0.0032 (9)
C120.0066 (11)0.0135 (11)0.0143 (12)0.0022 (9)0.0000 (9)0.0007 (9)
C130.0112 (11)0.0085 (10)0.0171 (12)0.0003 (9)0.0018 (9)0.0011 (9)
C140.0086 (11)0.0113 (10)0.0139 (11)0.0015 (9)0.0025 (9)0.0015 (9)
C150.0108 (11)0.0108 (10)0.0140 (12)0.0002 (9)0.0006 (9)0.0005 (9)
O150.0098 (8)0.0089 (7)0.0133 (8)0.0001 (6)0.0020 (6)0.0003 (7)
O120.0097 (8)0.0133 (8)0.0149 (9)0.0010 (7)0.0055 (6)0.0006 (7)
O130.0251 (9)0.0082 (8)0.0185 (9)0.0040 (7)0.0017 (7)0.0012 (7)
O140.0131 (8)0.0163 (8)0.0164 (9)0.0063 (7)0.0006 (7)0.0047 (7)
C160.0241 (14)0.0176 (12)0.0172 (13)0.0002 (10)0.0075 (10)0.0026 (10)
C210.0104 (12)0.0126 (11)0.0179 (12)0.0031 (9)0.0032 (9)0.0022 (10)
C220.0080 (11)0.0083 (10)0.0161 (12)0.0034 (9)0.0009 (9)0.0015 (9)
O220.0055 (8)0.0099 (7)0.0156 (8)0.0017 (6)0.0012 (6)0.0010 (6)
C230.0092 (11)0.0120 (11)0.0100 (11)0.0023 (9)0.0003 (8)0.0011 (9)
C240.0054 (10)0.0154 (11)0.0154 (11)0.0028 (9)0.0014 (9)0.0010 (10)
C250.0100 (11)0.0196 (12)0.0139 (12)0.0027 (10)0.0010 (9)0.0000 (10)
O230.0088 (8)0.0131 (8)0.0113 (8)0.0038 (6)0.0016 (6)0.0013 (7)
O240.0084 (8)0.0199 (9)0.0167 (9)0.0017 (7)0.0007 (6)0.0043 (7)
O250.0124 (8)0.0204 (9)0.0123 (8)0.0013 (7)0.0018 (6)0.0015 (7)
C260.0146 (13)0.0365 (15)0.0163 (13)0.0014 (11)0.0014 (10)0.0060 (12)
O270.0161 (9)0.0126 (8)0.0199 (9)0.0052 (7)0.0050 (7)0.0070 (7)
C270.0283 (15)0.0270 (14)0.0291 (15)0.0056 (12)0.0082 (12)0.0162 (12)
C310.0073 (10)0.0126 (10)0.0128 (11)0.0009 (9)0.0004 (8)0.0017 (9)
C320.0092 (11)0.0102 (10)0.0131 (11)0.0006 (9)0.0004 (9)0.0008 (9)
C330.0118 (11)0.0079 (10)0.0124 (11)0.0010 (9)0.0030 (9)0.0017 (9)
C340.0101 (11)0.0097 (10)0.0123 (11)0.0004 (9)0.0003 (9)0.0017 (9)
C350.0074 (11)0.0118 (11)0.0137 (12)0.0013 (9)0.0005 (9)0.0012 (9)
O350.0111 (8)0.0106 (7)0.0125 (8)0.0002 (6)0.0015 (6)0.0001 (6)
O320.0087 (8)0.0153 (8)0.0142 (8)0.0009 (7)0.0029 (6)0.0009 (7)
O330.0105 (8)0.0141 (8)0.0142 (8)0.0013 (7)0.0024 (6)0.0036 (7)
O340.0103 (8)0.0193 (9)0.0165 (9)0.0017 (7)0.0022 (7)0.0008 (7)
C360.0204 (13)0.0152 (12)0.0201 (13)0.0065 (10)0.0006 (10)0.0002 (10)
Geometric parameters (Å, º) top
OW1—H1010.875 (15)C23—O231.432 (3)
OW1—H1020.879 (15)C23—C241.517 (3)
OW2—H2010.871 (15)C23—H231.0000
OW2—H2020.869 (15)C24—O241.426 (3)
OW3—H3010.878 (14)C24—C251.510 (3)
OW3—H3020.877 (14)C24—H241.0000
OW4—H4010.883 (15)C25—O251.442 (3)
OW4—H4020.883 (15)C25—C261.504 (3)
OW5—H5010.867 (15)C25—H251.0000
OW5—H5020.873 (14)O23—C311.400 (3)
C11—O151.409 (3)O24—H24A0.8400
C11—O221.412 (3)C26—H26A0.9800
C11—C121.519 (3)C26—H26B0.9800
C11—H111.0000C26—H26C0.9800
C12—O121.429 (3)O27—C271.428 (3)
C12—C131.519 (3)C27—H27A0.9800
C12—H121.0000C27—H27B0.9800
C13—O131.435 (3)C27—H27C0.9800
C13—C141.507 (3)C31—O351.423 (3)
C13—H131.0000C31—C321.512 (3)
C14—O141.417 (3)C31—H311.0000
C14—C151.532 (3)C32—O321.429 (3)
C14—H141.0000C32—C331.519 (3)
C15—O151.451 (3)C32—H321.0000
C15—C161.507 (3)C33—O331.419 (3)
C15—H151.0000C33—C341.529 (3)
O12—H12A0.8400C33—H331.0000
O13—H13A0.8400C34—O341.419 (3)
O14—H14A0.8400C34—C351.527 (3)
C16—H16A0.9800C34—H341.0000
C16—H16B0.9800C35—O351.451 (3)
C16—H16C0.9800C35—C361.505 (3)
C21—O271.405 (3)C35—H351.0000
C21—O251.419 (3)O32—H32A0.8400
C21—C221.521 (3)O33—H33A0.8400
C21—H211.0000O34—H34A0.8400
C22—O221.434 (3)C36—H36A0.9800
C22—C231.525 (3)C36—H36B0.9800
C22—H221.0000C36—H36C0.9800
H101—OW1—H102106 (2)C25—C24—C23107.07 (19)
H201—OW2—H202109 (2)O24—C24—H24110.2
H301—OW3—H302107 (2)C25—C24—H24110.2
H401—OW4—H402100 (2)C23—C24—H24110.2
H501—OW5—H502111 (2)O25—C25—C26108.12 (19)
O15—C11—O22113.08 (18)O25—C25—C24108.40 (17)
O15—C11—C12110.89 (18)C26—C25—C24113.5 (2)
O22—C11—C12108.63 (17)O25—C25—H25108.9
O15—C11—H11108.0C26—C25—H25108.9
O22—C11—H11108.0C24—C25—H25108.9
C12—C11—H11108.0C31—O23—C23112.64 (17)
O12—C12—C13111.41 (18)C24—O24—H24A109.5
O12—C12—C11104.15 (17)C21—O25—C25114.75 (17)
C13—C12—C11109.73 (18)C25—C26—H26A109.5
O12—C12—H12110.5C25—C26—H26B109.5
C13—C12—H12110.5H26A—C26—H26B109.5
C11—C12—H12110.5C25—C26—H26C109.5
O13—C13—C14110.90 (19)H26A—C26—H26C109.5
O13—C13—C12108.14 (18)H26B—C26—H26C109.5
C14—C13—C12109.94 (19)C21—O27—C27111.92 (19)
O13—C13—H13109.3O27—C27—H27A109.5
C14—C13—H13109.3O27—C27—H27B109.5
C12—C13—H13109.3H27A—C27—H27B109.5
O14—C14—C13109.53 (18)O27—C27—H27C109.5
O14—C14—C15109.00 (18)H27A—C27—H27C109.5
C13—C14—C15109.94 (19)H27B—C27—H27C109.5
O14—C14—H14109.5O23—C31—O35111.35 (18)
C13—C14—H14109.5O23—C31—C32108.77 (18)
C15—C14—H14109.5O35—C31—C32110.42 (18)
O15—C15—C16106.72 (19)O23—C31—H31108.7
O15—C15—C14109.51 (17)O35—C31—H31108.7
C16—C15—C14112.6 (2)C32—C31—H31108.7
O15—C15—H15109.3O32—C32—C31109.59 (18)
C16—C15—H15109.3O32—C32—C33112.85 (18)
C14—C15—H15109.3C31—C32—C33109.72 (18)
C11—O15—C15114.07 (17)O32—C32—H32108.2
C12—O12—H12A109.5C31—C32—H32108.2
C13—O13—H13A109.5C33—C32—H32108.2
C14—O14—H14A109.5O33—C33—C32109.45 (18)
C15—C16—H16A109.5O33—C33—C34112.62 (18)
C15—C16—H16B109.5C32—C33—C34110.77 (18)
H16A—C16—H16B109.5O33—C33—H33107.9
C15—C16—H16C109.5C32—C33—H33107.9
H16A—C16—H16C109.5C34—C33—H33107.9
H16B—C16—H16C109.5O34—C34—C35111.48 (18)
O27—C21—O25112.73 (18)O34—C34—C33108.79 (18)
O27—C21—C22107.14 (19)C35—C34—C33109.19 (17)
O25—C21—C22112.34 (19)O34—C34—H34109.1
O27—C21—H21108.2C35—C34—H34109.1
O25—C21—H21108.2C33—C34—H34109.1
C22—C21—H21108.2O35—C35—C36107.24 (18)
O22—C22—C21110.84 (18)O35—C35—C34108.53 (18)
O22—C22—C23108.53 (17)C36—C35—C34113.29 (19)
C21—C22—C23109.54 (18)O35—C35—H35109.2
O22—C22—H22109.3C36—C35—H35109.2
C21—C22—H22109.3C34—C35—H35109.2
C23—C22—H22109.3C31—O35—C35113.29 (16)
C11—O22—C22113.20 (16)C32—O32—H32A109.5
O23—C23—C24110.01 (18)C33—O33—H33A109.5
O23—C23—C22111.45 (17)C34—O34—H34A109.5
C24—C23—C22110.88 (18)C35—C36—H36A109.5
O23—C23—H23108.1C35—C36—H36B109.5
C24—C23—H23108.1H36A—C36—H36B109.5
C22—C23—H23108.1C35—C36—H36C109.5
O24—C24—C25108.90 (17)H36A—C36—H36C109.5
O24—C24—C23110.37 (18)H36B—C36—H36C109.5
O15—C11—C12—O1263.1 (2)C22—C23—C24—C2560.4 (2)
O22—C11—C12—O12172.08 (17)O24—C24—C25—O25178.52 (18)
O15—C11—C12—C1356.3 (2)C23—C24—C25—O2562.1 (2)
O22—C11—C12—C1368.6 (2)O24—C24—C25—C2658.4 (3)
O12—C12—C13—O1362.0 (2)C23—C24—C25—C26177.72 (19)
C11—C12—C13—O13176.82 (17)C24—C23—O23—C31113.6 (2)
O12—C12—C13—C1459.2 (2)C22—C23—O23—C31122.95 (19)
C11—C12—C13—C1455.6 (2)O27—C21—O25—C2565.9 (2)
O13—C13—C14—O1464.7 (2)C22—C21—O25—C2555.2 (2)
C12—C13—C14—O14175.75 (17)C26—C25—O25—C21174.83 (19)
O13—C13—C14—C15175.54 (17)C24—C25—O25—C2161.7 (2)
C12—C13—C14—C1556.0 (2)O25—C21—O27—C2772.3 (2)
O14—C14—C15—O15176.01 (17)C22—C21—O27—C27163.6 (2)
C13—C14—C15—O1555.9 (2)C23—O23—C31—O3576.1 (2)
O14—C14—C15—C1665.4 (2)C23—O23—C31—C32162.03 (16)
C13—C14—C15—C16174.51 (19)O23—C31—C32—O32169.04 (17)
O22—C11—O15—C1563.2 (2)O35—C31—C32—O3268.5 (2)
C12—C11—O15—C1559.1 (2)O23—C31—C32—C3366.5 (2)
C16—C15—O15—C11179.25 (18)O35—C31—C32—C3355.9 (2)
C14—C15—O15—C1158.6 (2)O32—C32—C33—O3356.2 (2)
O27—C21—C22—O22165.21 (16)C31—C32—C33—O33178.75 (18)
O25—C21—C22—O2270.5 (2)O32—C32—C33—C3468.5 (2)
O27—C21—C22—C2375.1 (2)C31—C32—C33—C3454.0 (2)
O25—C21—C22—C2349.3 (2)O33—C33—C34—O3459.9 (2)
O15—C11—O22—C2272.0 (2)C32—C33—C34—O34177.17 (18)
C12—C11—O22—C22164.44 (18)O33—C33—C34—C35178.26 (18)
C21—C22—O22—C1191.8 (2)C32—C33—C34—C3555.3 (2)
C23—C22—O22—C11147.87 (18)O34—C34—C35—O35177.68 (17)
O22—C22—C23—O2355.3 (2)C33—C34—C35—O3557.5 (2)
C21—C22—C23—O23176.42 (18)O34—C34—C35—C3663.3 (2)
O22—C22—C23—C2467.6 (2)C33—C34—C35—C36176.44 (19)
C21—C22—C23—C2453.5 (2)O23—C31—O35—C3559.2 (2)
O23—C23—C24—O2457.5 (2)C32—C31—O35—C3561.8 (2)
C22—C23—C24—O24178.80 (17)C36—C35—O35—C31174.92 (19)
O23—C23—C24—C25175.84 (17)C34—C35—O35—C3162.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—H101···O33i0.88 (3)1.85 (3)2.726 (2)176 (2)
OW1—H102···OW3ii0.88 (3)1.95 (3)2.802 (2)162 (2)
OW1—H102···O32iii0.88 (3)2.55 (3)2.976 (2)110 (2)
OW2—H201···O12iv0.88 (3)2.03 (3)2.875 (2)163 (2)
OW2—H202···O35ii0.87 (3)2.08 (3)2.877 (2)153 (2)
OW3—H301···OW50.88 (3)2.04 (3)2.845 (2)151 (2)
OW3—H302···O13v0.88 (3)1.96 (3)2.836 (2)176 (2)
OW4—H401···OW30.88 (3)1.97 (3)2.840 (2)168 (2)
OW4—H402···OW10.88 (3)1.92 (3)2.771 (2)160 (2)
OW5—H501···O33vi0.87 (3)2.07 (3)2.918 (2)168 (2)
OW5—H502···OW5vii0.87 (3)2.50 (3)3.333 (2)159 (2)
O12—H12A···O32iii0.842.012.767 (2)149
O13—H13A···O15ii0.842.102.858 (2)149
O14—H14A···O24iii0.841.952.733 (2)157
O24—H24A···OW20.841.882.722 (2)176
O32—H32A···OW5viii0.842.132.864 (2)146
O33—H33A···O34i0.841.912.684 (2)152
O34—H34A···OW40.841.862.687 (2)168
Symmetry codes: (i) x+3/2, y1/2, z+1; (ii) x, y1, z; (iii) x+1/2, y1/2, z; (iv) x1/2, y1/2, z; (v) x, y+1, z; (vi) x+1/2, y+1/2, z; (vii) x+2, y, z+1; (viii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC19H34O13·5H2O
Mr560.54
Crystal system, space groupMonoclinic, C2
Temperature (K)100
a, b, c (Å)19.345 (3), 6.4870 (13), 21.145 (3)
β (°) 97.617 (14)
V3)2630.0 (8)
Z4
Radiation typeSynchrotron, λ = 0.8970 Å
µ (mm1)0.22
Crystal size (mm)0.20 × 0.05 × 0.01
Data collection
DiffractometerBruker SMART 1K CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.97, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
17172, 2906, 2655
Rint0.046
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.087, 1.07
No. of reflections2906
No. of parameters376
No. of restraints16
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.29

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW1—H101···O33i0.88 (3)1.85 (3)2.726 (2)176 (2)
OW1—H102···OW3ii0.88 (3)1.95 (3)2.802 (2)162 (2)
OW1—H102···O32iii0.88 (3)2.55 (3)2.976 (2)110 (2)
OW2—H201···O12iv0.88 (3)2.03 (3)2.875 (2)163 (2)
OW2—H202···O35ii0.87 (3)2.08 (3)2.877 (2)153 (2)
OW3—H301···OW50.88 (3)2.04 (3)2.845 (2)151 (2)
OW3—H302···O13v0.88 (3)1.96 (3)2.836 (2)176 (2)
OW4—H401···OW30.88 (3)1.97 (3)2.840 (2)168 (2)
OW4—H402···OW10.88 (3)1.92 (3)2.771 (2)160 (2)
OW5—H501···O33vi0.87 (3)2.07 (3)2.918 (2)168 (2)
OW5—H502···OW5vii0.87 (3)2.50 (3)3.333 (2)159 (2)
O12—H12A···O32iii0.842.0132.767 (2)149
O13—H13A···O15ii0.842.1042.858 (2)149
O14—H14A···O24iii0.841.9492.733 (2)157
O24—H24A···OW20.841.8842.722 (2)176
O32—H32A···OW5viii0.842.1282.864 (2)146
O33—H33A···O34i0.841.9142.684 (2)152
O34—H34A···OW40.841.8592.687 (2)168
Symmetry codes: (i) x+3/2, y1/2, z+1; (ii) x, y1, z; (iii) x+1/2, y1/2, z; (iv) x1/2, y1/2, z; (v) x, y+1, z; (vi) x+1/2, y+1/2, z; (vii) x+2, y, z+1; (viii) x1/2, y+1/2, z.
 

Acknowledgements

This work was supported by a grant from the Swedish Research Council (VR).

References

First citationAnsaruzzaman, M., Albert, M. J., Holme, T., Jansson, P.-E., Rahman, M. M. & Widmalm, G. (1996). Eur. J. Biochem. 237, 786–791.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEklund, R., Lycknert, K., Söderman, P. & Widmalm, G. (2005). J. Phys. Chem. B, 109, 19936–19945.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJonsson, K. H. M., Pendrill, R. & Widmalm, G. (2011). Magn. Reson. Chem. 49, 117–124.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKulber-Kielb, J., Vinogradov, E., Chu, C. & Schneerson, R. (2007). Carbohydr. Res. 342, 643–647.  Web of Science PubMed Google Scholar
First citationLindberg, B. (1998). Polysaccharides, edited by S. Dumitriu, pp. 237–273. New York: Marcel Dekker.  Google Scholar
First citationMarie, C., Weintraub, A. & Widmalm, G. (1998). Eur. J. Biochem. 254, 378–381.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPerry, M. B. & MacLean, L. (2000). Eur. J. Biochem. 267, 2567–2572.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSäwén, E., Massad, T., Landersjö, C., Damberg, P. & Widmalm, G. (2010). Org. Biomol. Chem. 8, 3684–3695.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVarki, A., Cummings, R., Esko, J., Freeze, H., Hart, G. & Marth, J. (1999). Editors. Essentials of Glycobiology. Cold Spring Harbor Laboratory Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds