metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­kis­(μ2-4-amino-3,5-di­methyl-4H-1,2,4-triazole)hexa­aqua­tricobalt(II) naphthalene-1,5-di­sulfonate tetra­chloride

aSchool of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
*Correspondence e-mail: zhiguogu@jiangnan.edu.cn

(Received 29 March 2012; accepted 7 May 2012; online 2 June 2012)

In the centrosymmetric trinuclear cation of the title compound, [Co3(C4H8N4)6(H2O)6](C10H6O6S2)Cl4, the three CoII atoms are bridged by six triazole mol­ecules via the N atoms in the 1,2-positions. The central CoII atom, lying on an inversion center, is coordinated by six triazole N atoms while the terminal CoII atoms are coordinated by three triazole N atoms and three water O atoms in a distorted octa­hedral geometry. The naphthalene­disulfonate anion is also centrosymmetric. The four chloride counter anions are half-occupied; the H atoms of the amino groups show an occupancy of 2/3. O—H⋯Cl, O—H⋯O and N—H⋯O hydrogen bonds link the complex cations and the chloride and naphthalene-1,5-disulfonate anions.

Related literature

For the structure of the title cation as hydrated nitrate salt, see: Tong et al. (2011[Tong, Y.-Z., Wang, Q.-L., Si, M., Qi, J., Yan, S.-P., Yang, G.-M., Cheng, P. & Liao, D.-Z. (2011). Polyhedron, 30, 3151-3157.]).

[Scheme 1]

Experimental

Crystal data
  • [Co3(C4H8N4)6(H2O)6](C10H6O6S2)Cl4

  • Mr = 1385.82

  • Triclinic, [P \overline 1]

  • a = 11.1641 (4) Å

  • b = 12.2744 (5) Å

  • c = 13.2265 (5) Å

  • α = 106.924 (2)°

  • β = 99.622 (3)°

  • γ = 103.452 (2)°

  • V = 1631.79 (11) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 100 K

  • 0.26 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.763, Tmax = 0.815

  • 23481 measured reflections

  • 6410 independent reflections

  • 5057 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.108

  • S = 1.06

  • 6410 reflections

  • 386 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1X⋯Cl3i 0.98 2.06 2.765 (3) 127
O1W—H1Y⋯Cl3ii 0.98 1.89 2.701 (3) 138
O2W—H2X⋯Cl1 0.98 2.28 2.929 (3) 122
O2W—H2Y⋯Cl3ii 0.98 2.82 3.749 (3) 158
O3W—H3X⋯O2iii 0.98 1.89 2.773 (3) 148
O3W—H3Y⋯Cl4iii 0.98 2.18 3.114 (3) 159
N8—H8A⋯O3i 0.91 2.21 3.009 (3) 146
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y, z-1; (iii) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A recent study has reported a centrosymmetric trinuclear cobalt nitrate complex of 4-amino-3,5-dimethanyl-1,2,4-triazole (C4H8N4), which crystallizes in the monoclinic system, P21/n space group (Tong et al., 2011). The charge of the hexavalent cation, [Co3(C4H8N4)6(H2O)6]6+, is balanced by the nitrate anions. In the trinuclear unit of the title compound, the central CoII atom and two terminal CoII atoms are bridged by six triazole ligands (Fig. 1). The central CoII atom, lying on an inversion center, is coordinated by six N atoms from the triazole ligands whereas each terminal CoII atom completes its octahedral geometry by three water molecules. The title compound displays a similar structure to the previuosly reported cobalt analogs (Tong et al., 2011), but it crystallizes in the triclinic system, P1 space group. The charge of the trinuclear cation is balanced by one naphthalene-1,5-disulfonate dianion and four chloride anions. O—H···Cl, O—H···O and N—H···O hydrogen bonds link the complex cations, chloride and naphthalene-1,5-disulfonate anions (Table 1).

Related literature top

For the structure of the title cation as hydrated nitrate salt, see: Tong et al. (2011).

Experimental top

A 20 ml ethanol solution of 4-amino-3,5-dimethanyl-1,2,4-triazole (0.6 mmol) was mixed with a 10 ml aqueous solution of CoCl2.6H2O (0.3 mmol). naphthalene-1,5-disulfonate acid (0.1 mmol) in 5 ml of ethanol was added to this reaction mixture with continuous stirring. The resulting solution was filtered and left to stand at room temperature. Pink bolck-shaped crystals of the title compound were obtained by slow evaporation of the solvent within two weeks (yield: 48%).

Refinement top

H atoms on water molecules and on N8 atom were located from a difference Fourier map and refined as riding atoms, with Uiso(H) = 1.2Ueq(O) or 1.5Ueq(N). The other H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 (CH) and 0.98 (CH3) and N—H = 0.88 Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C, N). Cl atoms were refined with a fixed occupancy factor of 0.50.

Structure description top

A recent study has reported a centrosymmetric trinuclear cobalt nitrate complex of 4-amino-3,5-dimethanyl-1,2,4-triazole (C4H8N4), which crystallizes in the monoclinic system, P21/n space group (Tong et al., 2011). The charge of the hexavalent cation, [Co3(C4H8N4)6(H2O)6]6+, is balanced by the nitrate anions. In the trinuclear unit of the title compound, the central CoII atom and two terminal CoII atoms are bridged by six triazole ligands (Fig. 1). The central CoII atom, lying on an inversion center, is coordinated by six N atoms from the triazole ligands whereas each terminal CoII atom completes its octahedral geometry by three water molecules. The title compound displays a similar structure to the previuosly reported cobalt analogs (Tong et al., 2011), but it crystallizes in the triclinic system, P1 space group. The charge of the trinuclear cation is balanced by one naphthalene-1,5-disulfonate dianion and four chloride anions. O—H···Cl, O—H···O and N—H···O hydrogen bonds link the complex cations, chloride and naphthalene-1,5-disulfonate anions (Table 1).

For the structure of the title cation as hydrated nitrate salt, see: Tong et al. (2011).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1-x, 1-y, 1-z; (ii) 2-x, -y, 2-z.]
Hexakis(µ2-4-amino-3,5-dimethyl-4H- 1,2,4-triazole)hexaaquatricobalt(II) naphthalene-1,5-disulfonate tetrachloride top
Crystal data top
[Co3(C4H8N4)6(H2O)6](C10H6O6S2)Cl4Z = 1
Mr = 1385.82F(000) = 715
Triclinic, P1Dx = 1.410 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.1641 (4) ÅCell parameters from 3738 reflections
b = 12.2744 (5) Åθ = 2.2–25.7°
c = 13.2265 (5) ŵ = 1.05 mm1
α = 106.924 (2)°T = 100 K
β = 99.622 (3)°Block, pink
γ = 103.452 (2)°0.26 × 0.22 × 0.20 mm
V = 1631.79 (11) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
6410 independent reflections
Radiation source: sealed tube5057 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1313
Tmin = 0.763, Tmax = 0.815k = 1515
23481 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0427P)2 + 2.0543P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
6410 reflectionsΔρmax = 0.67 e Å3
386 parametersΔρmin = 0.75 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0020 (5)
Crystal data top
[Co3(C4H8N4)6(H2O)6](C10H6O6S2)Cl4γ = 103.452 (2)°
Mr = 1385.82V = 1631.79 (11) Å3
Triclinic, P1Z = 1
a = 11.1641 (4) ÅMo Kα radiation
b = 12.2744 (5) ŵ = 1.05 mm1
c = 13.2265 (5) ÅT = 100 K
α = 106.924 (2)°0.26 × 0.22 × 0.20 mm
β = 99.622 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6410 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5057 reflections with I > 2σ(I)
Tmin = 0.763, Tmax = 0.815Rint = 0.043
23481 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.06Δρmax = 0.67 e Å3
6410 reflectionsΔρmin = 0.75 e Å3
386 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.63106 (4)0.64428 (4)0.31065 (4)0.02470 (13)
Co20.50000.50000.50000.02126 (15)
O1W0.5966 (2)0.56654 (19)0.14192 (17)0.0265 (5)
H1X0.50550.52530.11060.040*
H1Y0.62340.62850.11050.040*
O2W0.6118 (2)0.79286 (19)0.27619 (18)0.0261 (5)
H2X0.62320.85780.34440.039*
H2Y0.59420.77530.19710.039*
O3W0.8229 (2)0.70517 (19)0.31226 (18)0.0268 (5)
H3X0.82920.70980.24060.040*
H3Y0.87640.71960.38450.040*
N10.6573 (2)0.4793 (2)0.3235 (2)0.0223 (6)
N20.6086 (2)0.4269 (2)0.3951 (2)0.0215 (5)
N30.7090 (2)0.3163 (2)0.3066 (2)0.0213 (5)
N40.7638 (3)0.2234 (2)0.2677 (2)0.0229 (6)
H4A0.73290.18850.19400.034*0.667
H4B0.74360.16800.30010.034*0.667
H4C0.84990.25450.28420.034*0.667
N50.4307 (2)0.5840 (2)0.2976 (2)0.0223 (6)
N60.3797 (2)0.5345 (2)0.3702 (2)0.0210 (5)
N70.2246 (2)0.5399 (2)0.2502 (2)0.0214 (5)
N80.0988 (2)0.5242 (2)0.1957 (2)0.0233 (6)
H8A0.09970.55320.13980.035*0.667
H8B0.06040.56400.24340.035*0.667
H8C0.05490.44510.16870.035*0.667
N90.6756 (2)0.7319 (2)0.4850 (2)0.0234 (6)
N100.6331 (2)0.6759 (2)0.5555 (2)0.0214 (5)
N110.7398 (2)0.8597 (2)0.6501 (2)0.0228 (6)
N120.7993 (3)0.9696 (2)0.7368 (2)0.0302 (7)
H12A0.83191.02680.70950.045*0.667
H12B0.86320.96150.78390.045*0.667
H12C0.74110.99110.77270.045*0.667
C10.7852 (3)0.4237 (3)0.1853 (3)0.0292 (7)
H1D0.85290.50010.21430.044*
H1E0.72460.42220.12170.044*
H1F0.82250.35840.16350.044*
C20.7179 (3)0.4095 (3)0.2710 (2)0.0213 (6)
C30.6427 (3)0.3295 (3)0.3836 (2)0.0204 (6)
C40.6189 (3)0.2409 (3)0.4412 (2)0.0206 (6)
H4D0.56580.26270.49110.031*
H4E0.70030.24100.48290.031*
H4F0.57510.16110.38740.031*
C50.3332 (3)0.6312 (3)0.1326 (3)0.0209 (6)
H5D0.41860.68150.13960.031*
H5E0.27310.67800.13210.031*
H5F0.30680.56300.06420.031*
C60.3351 (3)0.5871 (3)0.2273 (2)0.0219 (6)
C70.2558 (3)0.5085 (3)0.3398 (2)0.0219 (6)
C80.1563 (3)0.4586 (3)0.3906 (3)0.0287 (7)
H8D0.19680.44130.45330.043*
H8E0.09590.38500.33670.043*
H8F0.11100.51690.41500.043*
C90.8092 (3)0.9393 (3)0.5089 (3)0.0281 (7)
H9A0.75690.99220.50300.042*
H9B0.82510.90380.43770.042*
H9C0.89050.98530.56270.042*
C100.7414 (3)0.8433 (3)0.5442 (2)0.0211 (6)
C110.6736 (3)0.7529 (3)0.6545 (2)0.0231 (7)
C120.6622 (3)0.7396 (3)0.7613 (3)0.0245 (7)
H12D0.61230.65770.74900.037*
H12E0.61960.79530.79740.037*
H12F0.74730.75690.80790.037*
S11.06020 (7)0.26397 (7)0.94747 (6)0.02274 (18)
O11.1780 (2)0.32512 (18)1.03387 (17)0.0229 (5)
O21.0829 (2)0.21065 (18)0.84071 (17)0.0222 (5)
O30.9768 (2)0.33792 (18)0.94574 (17)0.0238 (5)
C130.7946 (3)0.0438 (3)1.0283 (2)0.0211 (6)
H130.71400.04311.04270.025*
C140.8632 (3)0.1383 (3)1.0024 (3)0.0235 (7)
H140.82830.20110.99920.028*
C150.9796 (3)0.1417 (3)0.9818 (3)0.0229 (7)
C161.0358 (3)0.0482 (3)0.9874 (3)0.0226 (6)
C171.1565 (3)0.0484 (3)0.9670 (3)0.0245 (7)
H171.20410.11260.95010.029*
Cl10.45668 (16)0.91733 (15)0.39605 (14)0.0331 (4)0.50
Cl20.47349 (13)0.01196 (12)0.18426 (11)0.0180 (3)0.50
Cl30.57922 (14)0.65370 (13)0.97649 (13)0.0249 (3)0.50
Cl40.95318 (12)0.22467 (12)0.48318 (11)0.0172 (3)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0198 (2)0.0236 (2)0.0234 (2)0.00047 (17)0.00243 (17)0.00400 (18)
Co20.0170 (3)0.0209 (3)0.0225 (3)0.0040 (2)0.0033 (2)0.0048 (2)
O1W0.0259 (12)0.0256 (11)0.0212 (11)0.0007 (9)0.0044 (9)0.0047 (9)
O2W0.0255 (12)0.0253 (11)0.0179 (11)0.0031 (9)0.0005 (9)0.0047 (9)
O3W0.0229 (12)0.0313 (12)0.0218 (11)0.0013 (9)0.0037 (9)0.0094 (10)
N10.0169 (13)0.0225 (13)0.0235 (14)0.0027 (10)0.0053 (11)0.0043 (11)
N20.0226 (13)0.0186 (12)0.0208 (13)0.0064 (10)0.0067 (11)0.0024 (10)
N30.0245 (13)0.0222 (13)0.0171 (13)0.0120 (11)0.0064 (11)0.0022 (10)
N40.0327 (15)0.0256 (14)0.0203 (13)0.0210 (12)0.0139 (11)0.0085 (11)
N50.0223 (14)0.0188 (13)0.0214 (14)0.0036 (10)0.0026 (11)0.0039 (10)
N60.0180 (13)0.0211 (13)0.0213 (13)0.0045 (10)0.0047 (10)0.0047 (11)
N70.0188 (13)0.0228 (13)0.0201 (13)0.0043 (10)0.0037 (10)0.0059 (11)
N80.0166 (13)0.0243 (13)0.0256 (14)0.0034 (10)0.0009 (11)0.0092 (11)
N90.0232 (14)0.0245 (13)0.0205 (13)0.0048 (11)0.0048 (11)0.0070 (11)
N100.0196 (13)0.0203 (13)0.0206 (13)0.0054 (10)0.0033 (10)0.0029 (11)
N110.0217 (13)0.0240 (13)0.0172 (13)0.0037 (11)0.0059 (10)0.0012 (10)
N120.0273 (15)0.0239 (14)0.0193 (14)0.0075 (11)0.0020 (11)0.0079 (11)
C10.0257 (17)0.0386 (19)0.0260 (17)0.0113 (15)0.0110 (14)0.0111 (15)
C20.0212 (15)0.0205 (15)0.0180 (15)0.0050 (12)0.0011 (12)0.0036 (12)
C30.0204 (15)0.0189 (14)0.0169 (15)0.0054 (12)0.0011 (12)0.0011 (12)
C40.0187 (15)0.0227 (15)0.0230 (16)0.0110 (12)0.0063 (12)0.0074 (13)
C50.0148 (14)0.0225 (15)0.0265 (16)0.0034 (12)0.0041 (12)0.0125 (13)
C60.0221 (16)0.0212 (15)0.0148 (15)0.0014 (12)0.0024 (12)0.0003 (12)
C70.0194 (16)0.0245 (15)0.0153 (15)0.0025 (12)0.0023 (12)0.0018 (12)
C80.0263 (17)0.0353 (18)0.0307 (18)0.0078 (14)0.0070 (14)0.0217 (15)
C90.0279 (17)0.0238 (16)0.0290 (18)0.0020 (13)0.0129 (14)0.0052 (14)
C100.0240 (16)0.0233 (15)0.0147 (14)0.0075 (12)0.0069 (12)0.0034 (12)
C110.0246 (16)0.0223 (15)0.0190 (15)0.0064 (13)0.0062 (13)0.0023 (12)
C120.0239 (16)0.0196 (15)0.0242 (16)0.0021 (12)0.0050 (13)0.0032 (13)
S10.0218 (4)0.0219 (4)0.0222 (4)0.0040 (3)0.0031 (3)0.0076 (3)
O10.0187 (11)0.0242 (11)0.0227 (11)0.0010 (9)0.0035 (9)0.0088 (9)
O20.0221 (11)0.0241 (11)0.0225 (11)0.0046 (9)0.0091 (9)0.0108 (9)
O30.0239 (11)0.0239 (11)0.0273 (12)0.0080 (9)0.0003 (9)0.0169 (9)
C130.0220 (15)0.0191 (15)0.0184 (15)0.0072 (12)0.0050 (12)0.0002 (12)
C140.0200 (16)0.0253 (16)0.0215 (16)0.0072 (13)0.0035 (12)0.0032 (13)
C150.0238 (16)0.0169 (14)0.0246 (16)0.0019 (12)0.0058 (13)0.0055 (12)
C160.0195 (15)0.0212 (15)0.0207 (15)0.0032 (12)0.0002 (12)0.0028 (12)
C170.0237 (16)0.0220 (15)0.0225 (16)0.0017 (13)0.0042 (13)0.0051 (13)
Cl10.0314 (9)0.0308 (8)0.0284 (9)0.0015 (7)0.0048 (7)0.0074 (7)
Cl20.0182 (7)0.0195 (7)0.0128 (6)0.0016 (5)0.0015 (5)0.0050 (5)
Cl30.0226 (7)0.0253 (8)0.0287 (8)0.0041 (6)0.0114 (6)0.0115 (6)
Cl40.0133 (6)0.0211 (7)0.0223 (7)0.0067 (5)0.0008 (5)0.0155 (6)
Geometric parameters (Å, º) top
Co1—O2W2.053 (2)N12—H12A0.9100
Co1—O1W2.084 (2)N12—H12B0.9100
Co1—O3W2.092 (2)N12—H12C0.9100
Co1—N52.146 (3)C1—C21.490 (4)
Co1—N92.156 (3)C1—H1D0.9800
Co1—N12.162 (3)C1—H1E0.9800
Co2—N2i2.132 (3)C1—H1F0.9800
Co2—N22.132 (3)C3—C41.501 (4)
Co2—N102.151 (2)C4—H4D0.9800
Co2—N10i2.151 (2)C4—H4E0.9800
Co2—N6i2.201 (3)C4—H4F0.9800
Co2—N62.201 (3)C5—C61.502 (4)
O1W—H1X0.9796C5—H5D0.9800
O1W—H1Y0.9802C5—H5E0.9800
O2W—H2X0.9801C5—H5F0.9800
O2W—H2Y0.9797C7—C81.494 (4)
O3W—H3X0.9793C8—H8D0.9800
O3W—H3Y0.9807C8—H8E0.9800
N1—C21.325 (4)C8—H8F0.9800
N1—N21.404 (4)C9—C101.485 (4)
N2—C31.312 (4)C9—H9A0.9800
N3—C21.346 (4)C9—H9B0.9800
N3—C31.350 (4)C9—H9C0.9800
N3—N41.423 (3)C11—C121.492 (4)
N4—H4A0.9100C12—H12D0.9800
N4—H4B0.9100C12—H12E0.9800
N4—H4C0.9100C12—H12F0.9800
N5—C61.308 (4)S1—O31.445 (2)
N5—N61.407 (3)S1—O11.462 (2)
N6—C71.308 (4)S1—O21.464 (2)
N7—C61.358 (4)S1—C151.781 (3)
N7—C71.366 (4)C13—C17ii1.377 (4)
N7—N81.409 (3)C13—C141.398 (4)
N8—H8A0.9100C13—H130.9500
N8—H8B0.9100C14—C151.365 (4)
N8—H8C0.9100C14—H140.9500
N9—C101.319 (4)C15—C161.444 (4)
N9—N101.391 (3)C16—C171.417 (5)
N10—C111.302 (4)C16—C16ii1.425 (6)
N11—C101.359 (4)C17—C13ii1.377 (4)
N11—C111.369 (4)C17—H170.9500
N11—N121.416 (3)
O2W—Co1—O1W84.31 (9)H12A—N12—H12B109.5
O2W—Co1—O3W86.35 (9)N11—N12—H12C109.5
O1W—Co1—O3W86.73 (9)H12A—N12—H12C109.5
O2W—Co1—N590.77 (9)H12B—N12—H12C109.5
O1W—Co1—N589.79 (9)C2—C1—H1D109.5
O3W—Co1—N5175.68 (9)C2—C1—H1E109.5
O2W—Co1—N994.08 (9)H1D—C1—H1E109.5
O1W—Co1—N9176.90 (9)C2—C1—H1F109.5
O3W—Co1—N990.53 (9)H1D—C1—H1F109.5
N5—Co1—N992.89 (10)H1E—C1—H1F109.5
O2W—Co1—N1171.49 (10)N1—C2—N3108.6 (3)
O1W—Co1—N187.76 (9)N1—C2—C1128.7 (3)
O3W—Co1—N190.13 (9)N3—C2—C1122.7 (3)
N5—Co1—N192.27 (9)N2—C3—N3108.8 (3)
N9—Co1—N193.70 (10)N2—C3—C4130.0 (3)
N2i—Co2—N2180.00 (11)N3—C3—C4121.1 (3)
N2i—Co2—N1087.58 (9)C3—C4—H4D109.5
N2—Co2—N1092.42 (10)C3—C4—H4E109.5
N2i—Co2—N10i92.42 (10)H4D—C4—H4E109.5
N2—Co2—N10i87.58 (9)C3—C4—H4F109.5
N10—Co2—N10i180.0H4D—C4—H4F109.5
N2i—Co2—N6i93.28 (9)H4E—C4—H4F109.5
N2—Co2—N6i86.72 (9)C6—C5—H5D109.5
N10—Co2—N6i87.17 (9)C6—C5—H5E109.5
N10i—Co2—N6i92.83 (9)H5D—C5—H5E109.5
N2i—Co2—N686.72 (9)C6—C5—H5F109.5
N2—Co2—N693.28 (9)H5D—C5—H5F109.5
N10—Co2—N692.83 (9)H5E—C5—H5F109.5
N10i—Co2—N687.17 (9)N5—C6—N7109.2 (3)
N6i—Co2—N6180.000 (1)N5—C6—C5130.4 (3)
Co1—O1W—H1X109.4N7—C6—C5120.4 (3)
Co1—O1W—H1Y109.6N6—C7—N7108.7 (3)
H1X—O1W—H1Y109.5N6—C7—C8129.9 (3)
Co1—O2W—H2X109.4N7—C7—C8121.4 (3)
Co1—O2W—H2Y109.5C7—C8—H8D109.5
H2X—O2W—H2Y141.1C7—C8—H8E109.5
Co1—O3W—H3X109.3H8D—C8—H8E109.5
Co1—O3W—H3Y109.6C7—C8—H8F109.5
H3X—O3W—H3Y141.1H8D—C8—H8F109.5
C2—N1—N2106.9 (2)H8E—C8—H8F109.5
C2—N1—Co1130.1 (2)C10—C9—H9A109.5
N2—N1—Co1123.00 (18)C10—C9—H9B109.5
C3—N2—N1107.4 (2)H9A—C9—H9B109.5
C3—N2—Co2129.0 (2)C10—C9—H9C109.5
N1—N2—Co2123.60 (18)H9A—C9—H9C109.5
C2—N3—C3108.1 (2)H9B—C9—H9C109.5
C2—N3—N4123.8 (2)N9—C10—N11108.1 (3)
C3—N3—N4128.1 (2)N9—C10—C9129.2 (3)
N3—N4—H4A109.5N11—C10—C9122.8 (3)
N3—N4—H4B109.5N10—C11—N11108.2 (3)
H4A—N4—H4B109.5N10—C11—C12131.1 (3)
N3—N4—H4C109.5N11—C11—C12120.7 (3)
H4A—N4—H4C109.5C11—C12—H12D109.5
H4B—N4—H4C109.5C11—C12—H12E109.5
C6—N5—N6107.3 (2)H12D—C12—H12E109.5
C6—N5—Co1129.4 (2)C11—C12—H12F109.5
N6—N5—Co1123.37 (18)H12D—C12—H12F109.5
C7—N6—N5107.7 (2)H12E—C12—H12F109.5
C7—N6—Co2130.1 (2)O3—S1—O1112.19 (13)
N5—N6—Co2122.12 (18)O3—S1—O2113.46 (13)
C6—N7—C7107.2 (2)O1—S1—O2112.75 (13)
C6—N7—N8128.9 (3)O3—S1—C15106.52 (14)
C7—N7—N8123.9 (2)O1—S1—C15105.66 (13)
N7—N8—H8A109.5O2—S1—C15105.50 (14)
N7—N8—H8B109.5C17ii—C13—C14120.3 (3)
H8A—N8—H8B109.5C17ii—C13—H13119.9
N7—N8—H8C109.5C14—C13—H13119.9
H8A—N8—H8C109.5C15—C14—C13121.1 (3)
H8B—N8—H8C109.5C15—C14—H14119.5
C10—N9—N10107.7 (2)C13—C14—H14119.5
C10—N9—Co1129.0 (2)C14—C15—C16120.7 (3)
N10—N9—Co1123.31 (18)C14—C15—S1118.5 (2)
C11—N10—N9108.3 (2)C16—C15—S1120.8 (2)
C11—N10—Co2127.8 (2)C17—C16—C16ii119.7 (4)
N9—N10—Co2123.28 (18)C17—C16—C15122.7 (3)
C10—N11—C11107.6 (2)C16ii—C16—C15117.6 (4)
C10—N11—N12123.8 (3)C13ii—C17—C16120.6 (3)
C11—N11—N12128.5 (3)C13ii—C17—H17119.7
N11—N12—H12A109.5C16—C17—H17119.7
N11—N12—H12B109.5
O1W—Co1—N1—C242.1 (3)Co1—N1—C2—N3179.84 (19)
O3W—Co1—N1—C244.6 (3)N2—N1—C2—C1179.3 (3)
N5—Co1—N1—C2131.8 (3)Co1—N1—C2—C11.0 (5)
N9—Co1—N1—C2135.2 (3)C3—N3—C2—N10.7 (3)
O1W—Co1—N1—N2138.2 (2)N4—N3—C2—N1179.8 (3)
O3W—Co1—N1—N2135.1 (2)C3—N3—C2—C1180.0 (3)
N5—Co1—N1—N248.5 (2)N4—N3—C2—C10.9 (4)
N9—Co1—N1—N244.5 (2)N1—N2—C3—N31.0 (3)
C2—N1—N2—C30.6 (3)Co2—N2—C3—N3178.92 (19)
Co1—N1—N2—C3179.2 (2)N1—N2—C3—C4178.6 (3)
C2—N1—N2—Co2179.37 (19)Co2—N2—C3—C41.4 (5)
Co1—N1—N2—Co20.9 (3)C2—N3—C3—N21.1 (3)
N10—Co2—N2—C3132.7 (3)N4—N3—C3—N2179.8 (3)
N10i—Co2—N2—C347.3 (3)C2—N3—C3—C4178.6 (3)
N6i—Co2—N2—C345.7 (3)N4—N3—C3—C40.5 (5)
N6—Co2—N2—C3134.3 (3)N6—N5—C6—N71.0 (3)
N10—Co2—N2—N147.3 (2)Co1—N5—C6—N7179.58 (19)
N10i—Co2—N2—N1132.7 (2)N6—N5—C6—C5179.7 (3)
N6i—Co2—N2—N1134.3 (2)Co1—N5—C6—C51.1 (5)
N6—Co2—N2—N145.7 (2)C7—N7—C6—N50.9 (3)
O2W—Co1—N5—C640.3 (3)N8—N7—C6—N5179.4 (3)
O1W—Co1—N5—C644.0 (3)C7—N7—C6—C5179.7 (3)
N9—Co1—N5—C6134.5 (3)N5—N6—C7—N70.2 (3)
N1—Co1—N5—C6131.7 (3)Co2—N6—C7—N7175.57 (19)
O2W—Co1—N5—N6138.0 (2)N5—N6—C7—C8177.4 (3)
O1W—Co1—N5—N6137.7 (2)Co2—N6—C7—C87.3 (5)
N9—Co1—N5—N643.9 (2)C6—N7—C7—N60.4 (3)
N1—Co1—N5—N649.9 (2)N8—N7—C7—N6179.9 (3)
C6—N5—N6—C70.8 (3)C6—N7—C7—C8177.1 (3)
Co1—N5—N6—C7179.4 (2)N8—N7—C7—C82.7 (5)
C6—N5—N6—Co2176.57 (19)N10—N9—C10—N111.1 (3)
Co1—N5—N6—Co24.8 (3)Co1—N9—C10—N11177.3 (2)
N2i—Co2—N6—C748.8 (3)N10—N9—C10—C9178.4 (3)
N2—Co2—N6—C7131.2 (3)Co1—N9—C10—C93.2 (5)
N10—Co2—N6—C7136.2 (3)C11—N11—C10—N91.9 (4)
N10i—Co2—N6—C743.8 (3)N12—N11—C10—N9178.9 (3)
N2i—Co2—N6—N5136.4 (2)C11—N11—C10—C9177.7 (3)
N2—Co2—N6—N543.6 (2)N12—N11—C10—C91.5 (5)
N10—Co2—N6—N549.0 (2)N9—N10—C11—N111.3 (3)
N10i—Co2—N6—N5131.0 (2)Co2—N10—C11—N11169.8 (2)
O2W—Co1—N9—C1035.7 (3)N9—N10—C11—C12176.3 (3)
O3W—Co1—N9—C1050.7 (3)Co2—N10—C11—C1212.5 (5)
N5—Co1—N9—C10126.7 (3)C10—N11—C11—N102.0 (4)
N1—Co1—N9—C10140.9 (3)N12—N11—C11—N10178.9 (3)
O2W—Co1—N9—N10142.5 (2)C10—N11—C11—C12175.9 (3)
O3W—Co1—N9—N10131.1 (2)N12—N11—C11—C123.2 (5)
N5—Co1—N9—N1051.5 (2)C17ii—C13—C14—C150.3 (5)
N1—Co1—N9—N1041.0 (2)C13—C14—C15—C160.7 (5)
C10—N9—N10—C110.2 (3)C13—C14—C15—S1179.1 (2)
Co1—N9—N10—C11178.7 (2)O3—S1—C15—C141.7 (3)
C10—N9—N10—Co2171.5 (2)O1—S1—C15—C14117.8 (3)
Co1—N9—N10—Co27.0 (3)O2—S1—C15—C14122.6 (3)
N2i—Co2—N10—C1141.0 (3)O3—S1—C15—C16178.2 (2)
N2—Co2—N10—C11139.0 (3)O1—S1—C15—C1662.3 (3)
N6i—Co2—N10—C1152.4 (3)O2—S1—C15—C1657.3 (3)
N6—Co2—N10—C11127.6 (3)C14—C15—C16—C17179.7 (3)
N2i—Co2—N10—N9128.9 (2)S1—C15—C16—C170.4 (4)
N2—Co2—N10—N951.1 (2)C14—C15—C16—C16ii1.4 (5)
N6i—Co2—N10—N9137.7 (2)S1—C15—C16—C16ii178.5 (3)
N6—Co2—N10—N942.3 (2)C16ii—C16—C17—C13ii0.1 (5)
N2—N1—C2—N30.1 (3)C15—C16—C17—C13ii179.0 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1X···Cl3i0.982.062.765 (3)127
O1W—H1Y···Cl3iii0.981.892.701 (3)138
O2W—H2X···Cl10.982.282.929 (3)122
O2W—H2Y···Cl3iii0.982.823.749 (3)158
O3W—H3X···O2iv0.981.892.773 (3)148
O3W—H3Y···Cl4iv0.982.183.114 (3)159
N8—H8A···O3i0.912.213.009 (3)146
Symmetry codes: (i) x+1, y+1, z+1; (iii) x, y, z1; (iv) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Co3(C4H8N4)6(H2O)6](C10H6O6S2)Cl4
Mr1385.82
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)11.1641 (4), 12.2744 (5), 13.2265 (5)
α, β, γ (°)106.924 (2), 99.622 (3), 103.452 (2)
V3)1631.79 (11)
Z1
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.26 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.763, 0.815
No. of measured, independent and
observed [I > 2σ(I)] reflections
23481, 6410, 5057
Rint0.043
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.108, 1.06
No. of reflections6410
No. of parameters386
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.75

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1X···Cl3i0.982.062.765 (3)127
O1W—H1Y···Cl3ii0.981.892.701 (3)138
O2W—H2X···Cl10.982.282.929 (3)122
O2W—H2Y···Cl3ii0.982.823.749 (3)158
O3W—H3X···O2iii0.981.892.773 (3)148
O3W—H3Y···Cl4iii0.982.183.114 (3)159
N8—H8A···O3i0.912.213.009 (3)146
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z1; (iii) x+2, y+1, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 21101078), the Program for New Century Excellent Talents in Universities of China (NCET-11–0657), the Natural Science Foundation of Jiangsu Province (BK2011143), the Fundamental Research Funds for the Central Universities (JUSRP21111), the State Key Laboratory of Coordination Chemistry of Nanjing University and the Scientific Research Foundation of Jiangnan University (20101951).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTong, Y.-Z., Wang, Q.-L., Si, M., Qi, J., Yan, S.-P., Yang, G.-M., Cheng, P. & Liao, D.-Z. (2011). Polyhedron, 30, 3151–3157.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds