metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{(S)-2-[({2-[1-(Anthracen-9-ylmeth­yl)pyrrolidine-2-carboxamido]­phen­yl}(phen­yl)methyl­­idene)amino]­acetato(2−)-κ4N,N′,N′′,O1}nickel(II)

aDepartment of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic, and bNa Klínku 1082, 530 06 Pardubice, Czech Republic
*Correspondence e-mail: zdenka.padelkova@upce.cz

(Received 14 May 2012; accepted 13 June 2012; online 20 June 2012)

The title compound, [Ni(C35H29N3O3)], includes a Schiff base ligand derived from (S)-1-[(anthracen-9-yl)meth­yl]-N-(2-benz­oyl­phen­yl)pyrrolidine-2-carboxamide and glycine. The NiII atom is coordinated by three N atoms [Ni—N = 1.937 (3), 1.850 (3) and 1.850 (3) Å] and one O atom [Ni—O = 1.859 (2) Å], resulting in a pseudo-square-planar coordination environment.

Related literature

For preparation and evaluation of similar compounds in model reactions, see: Belokon et al. (1988[Belokon, Y. N., Bakhmutov, V. I., Chernoglazova, N. I., Kochetkov, K. A., Vitt, S. V., Garbalinskaya, N. S. & Belikov, V. M. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 305-312.]); Kožíšek et al. (2004[Kožíšek, J., Fronc, M., Skubák, P., Popkov, A., Breza, M., Fuess, H. & Paulmann, C. (2004). Acta Cryst. A60, 510-516.]); Popkov et al. (2002[Popkov, A., Gee, A. D., Nádvorník, M. & Lyčka, A. (2002). Transition Met. Chem. 27, 884-887.], 2010[Popkov, A., Hanusek, J., Čermák, J., Langer, V., Jirásko, R., Holčapek, M. & Nádvorník, M. (2010). J. Radioanal. Nucl. Chem. 285, 621-626.]). For an overview of application procedures, see: Popkov et al. (2005[Popkov, A., Císařová, I., Sopková, J., Jirman, J., Lyčka, A. & Kochetkov, K. A. (2005). Coll. Czech. Chem. Commun. 70, 1397-1410.]) and works cited therein. For NMR in solutions and similar highly unusual long-range spin–spin inter­actions, see: Jirman et al. (1998[Jirman, J., Nádvorník, M., Sopková, J. & Popkov, A. (1998). Magn. Reson. Chem. 36, 351-355.]); Langer et al. (2007[Langer, V., Popkov, A., Nádvorník, M. & Lyčka, A. (2007). Polyhedron, 26, 911-917.]); Popkov et al. (1998[Popkov, A., Jirman, J., Nádvorník, M. & Manorik, P. A. (1998). Coll. Czech. Chem. Commun. 63, 990-994.], 2003[Popkov, A., Langer, V., Manorik, P. A. & Weidlich, T. (2003). Transition Met. Chem. 28, 475-481.]). For the review of applications in positron emission tomography (PET), see: Popkov & De Spiegeleer (2012[Popkov, A. & De Spiegeleer, B. (2012). Dalton Trans. 41, 1430-1440.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C35H29N3O3)]

  • Mr = 598.32

  • Orthorhombic, P 21 21 21

  • a = 8.9080 (5) Å

  • b = 16.5249 (12) Å

  • c = 18.6981 (13) Å

  • V = 2752.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 150 K

  • 0.31 × 0.26 × 0.14 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • Absorption correction: Gaussian (Coppens, 1970[Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.]) Tmin = 0.856, Tmax = 0.925

  • 23768 measured reflections

  • 6120 independent reflections

  • 5037 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.087

  • S = 1.19

  • 6120 reflections

  • 379 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.38 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2615 Friedel pairs

  • Flack parameter: −0.019 (14)

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]) and DENZO (Otwin­owski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Preparation of carbon-11 and fluorine-18 labelled amino acids for positron emission tomography (PET) is a big challenge for radiochemists. Due to time constrains brought by short half-life of the both isotopes, chromatographic separation steps should be avoided in PET radiosyntheses unless absolutely necessary (Popkov & De Spiegeleer (2012)). In order to meet this requirement we have been developing enantiospecific and highly enantioselective amino acid synthons based on Belokon's nickel(II) complexes (Belokon, et al., 1988). We already demonstrated the origin of the high stereoselectivity of the incorporation of amino acid side chains into these synthons. Intramolecular electrostatic interaction of the (substituted) benzyl ring and the nickel atom (Kožíšek et al., 2004) play a very important role as well as steric shielding by ortho-substituents of the benzyl ring (Popkov, et al., 2002). In this communication we describe the crystal structure of the nickel(II) complex with an electron-rich (9-antracenyl)methyl substituent at the nitrogen atom of the proline residue due to the fact that the Schiff base ligand was derived from (S)-N-(2-benzoylphenyl)1-(9-antracenyl)methylpyrrolidine-2-carboxamide and glycine (AMGK). This structure is a candidate for charge density measurement. Recently, we have shown such complexes to be very efficient synthons of glycine or alanine for the preparation of radiotracers for PET (Popkov et al., 2010). Similar complexes demonstrated highly unusual long-range spin-spin interactions in 13C-13C and 15N-13C NMR spectra (Jirman et al., 1998; Popkov et al., 1998; Langer et al., 2007). These interactions have been attributed to the influence of a diffuse electron cloud from the benzyl group (Popkov et al., 2003). We expect such interactions to be more pronounced in AMGK. For the future charge density measurement it is important that the conformation of AMGK described in this communication is similar to the conformation of the NiII complex of Schiff base of (S)-N-(2-benzoylphenyl)-1-benzylpyrrolidine-2-carboxamide and glycine (GK) (Popkov et al., 2003) which is the simplest complex in this class and which was comprehensively studied by diffraction of X-rays and by NMR in solutions (Popkov et al., 1998; Kožíšek et al., 2004). In the solid state both complexes exhibit no intra- or intermolecular hydrogen bonds. The crystal packing is therefore only determined by weak interactions. Packing of the molecules in both crystals as well as the conformations are very similar, although the conformations of the molecules themselves differ. In the [Ni(GK)] complex intramolecular interactions are weaker as exemplified by the distance Ni-C22 (2.9282 (17) Å) and the angles Ni-N1-C21 (107.53 (9)°) and N1-C21-C22 (114.04 (13)°), respectively. In the complex [Ni(AMGK)] (Fig. 1) much stronger intramolecular interactions are observed shown by the distance Ni-C22 (3.181 (3) Å) and the angles Ni-N1-C21 (111.82 (19)°) and N1-C21-C22 (114.9 (2)°). Bulkiness of the anthranylmethyl group practically does not change the conformation of the molecule. The interatomic distance Ni-C22 in the more sterically hindered complex is just 0.253Å longer which is not too big difference compared to the published data for (substituted) analogues of GK (Popkov et al. (2003)). MP2 ab initio modelling of the interactions is in progress.

Related literature top

For preparation and evaluation of similar compounds in model reactions, see: Belokon et al. (1988); Kožíšek et al. (2004); Popkov et al. (2002, 2010). For an overview of application procedures, see: Popkov et al. (2005) and works cited therein. For NMR in solutions and similar highly unusual long-range spin–spin interactions, see: Jirman et al. (1998); Langer et al. (2007); Popkov et al. (1998, 2003). For the review of applications in positron emission tomography (PET), see: Popkov & De Spiegeleer (2012).

Experimental top

The title compound has been prepared according to a procedure described elsewhere (Popkov et al., 2010). Crystals suitable for the measurement were obtained by slow evaporation of the solvent from a solution of the title compound in toluene/methanol (2:1).

Refinement top

Hydrogen atoms were mostly localized on a difference Fourier map, however to ensure uniformity of treatment of crystal, all hydrogen were recalculated into idealized positions (riding model) and assigned temperature factors Uiso(H) = 1.2 Ueq(pivot atom) or of 1.5 Ueq for the methyl moiety with C-H = 0.97, 0.98 and 0.93 Å for methylene, methine and hydrogen atoms at ain aromatic ring, respectively.

Structure description top

Preparation of carbon-11 and fluorine-18 labelled amino acids for positron emission tomography (PET) is a big challenge for radiochemists. Due to time constrains brought by short half-life of the both isotopes, chromatographic separation steps should be avoided in PET radiosyntheses unless absolutely necessary (Popkov & De Spiegeleer (2012)). In order to meet this requirement we have been developing enantiospecific and highly enantioselective amino acid synthons based on Belokon's nickel(II) complexes (Belokon, et al., 1988). We already demonstrated the origin of the high stereoselectivity of the incorporation of amino acid side chains into these synthons. Intramolecular electrostatic interaction of the (substituted) benzyl ring and the nickel atom (Kožíšek et al., 2004) play a very important role as well as steric shielding by ortho-substituents of the benzyl ring (Popkov, et al., 2002). In this communication we describe the crystal structure of the nickel(II) complex with an electron-rich (9-antracenyl)methyl substituent at the nitrogen atom of the proline residue due to the fact that the Schiff base ligand was derived from (S)-N-(2-benzoylphenyl)1-(9-antracenyl)methylpyrrolidine-2-carboxamide and glycine (AMGK). This structure is a candidate for charge density measurement. Recently, we have shown such complexes to be very efficient synthons of glycine or alanine for the preparation of radiotracers for PET (Popkov et al., 2010). Similar complexes demonstrated highly unusual long-range spin-spin interactions in 13C-13C and 15N-13C NMR spectra (Jirman et al., 1998; Popkov et al., 1998; Langer et al., 2007). These interactions have been attributed to the influence of a diffuse electron cloud from the benzyl group (Popkov et al., 2003). We expect such interactions to be more pronounced in AMGK. For the future charge density measurement it is important that the conformation of AMGK described in this communication is similar to the conformation of the NiII complex of Schiff base of (S)-N-(2-benzoylphenyl)-1-benzylpyrrolidine-2-carboxamide and glycine (GK) (Popkov et al., 2003) which is the simplest complex in this class and which was comprehensively studied by diffraction of X-rays and by NMR in solutions (Popkov et al., 1998; Kožíšek et al., 2004). In the solid state both complexes exhibit no intra- or intermolecular hydrogen bonds. The crystal packing is therefore only determined by weak interactions. Packing of the molecules in both crystals as well as the conformations are very similar, although the conformations of the molecules themselves differ. In the [Ni(GK)] complex intramolecular interactions are weaker as exemplified by the distance Ni-C22 (2.9282 (17) Å) and the angles Ni-N1-C21 (107.53 (9)°) and N1-C21-C22 (114.04 (13)°), respectively. In the complex [Ni(AMGK)] (Fig. 1) much stronger intramolecular interactions are observed shown by the distance Ni-C22 (3.181 (3) Å) and the angles Ni-N1-C21 (111.82 (19)°) and N1-C21-C22 (114.9 (2)°). Bulkiness of the anthranylmethyl group practically does not change the conformation of the molecule. The interatomic distance Ni-C22 in the more sterically hindered complex is just 0.253Å longer which is not too big difference compared to the published data for (substituted) analogues of GK (Popkov et al. (2003)). MP2 ab initio modelling of the interactions is in progress.

For preparation and evaluation of similar compounds in model reactions, see: Belokon et al. (1988); Kožíšek et al. (2004); Popkov et al. (2002, 2010). For an overview of application procedures, see: Popkov et al. (2005) and works cited therein. For NMR in solutions and similar highly unusual long-range spin–spin interactions, see: Jirman et al. (1998); Langer et al. (2007); Popkov et al. (1998, 2003). For the review of applications in positron emission tomography (PET), see: Popkov & De Spiegeleer (2012).

Computing details top

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); data reduction: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compounds with displacement ellipsoids shown at the 50% probability level. H atoms are shown as spheres with arbitrary radii.
{(S)-2-[({2-[1-(Anthracen-9-ylmethyl)pyrrolidine-2- carboxamido]phenyl}(phenyl)methylidene)amino]acetato(2-)- κ4N,N',N'',O1}nickel(II) top
Crystal data top
[Ni(C35H29N3O3)]F(000) = 1248
Mr = 598.32Dx = 1.444 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 23827 reflections
a = 8.9080 (5) Åθ = 1–27.5°
b = 16.5249 (12) ŵ = 0.75 mm1
c = 18.6981 (13) ÅT = 150 K
V = 2752.4 (3) Å3Block, red
Z = 40.31 × 0.26 × 0.14 mm
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
6120 independent reflections
Radiation source: fine-focus sealed tube5037 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 1.6°
φ and ω scans to fill the Ewald sphereh = 1110
Absorption correction: gaussian
(Coppens, 1970)
k = 1921
Tmin = 0.856, Tmax = 0.925l = 2224
23768 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0124P)2 + 2.2393P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max = 0.001
6120 reflectionsΔρmax = 0.32 e Å3
379 parametersΔρmin = 0.38 e Å3
0 restraintsAbsolute structure: Flack (1983), 2615 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.019 (14)
Crystal data top
[Ni(C35H29N3O3)]V = 2752.4 (3) Å3
Mr = 598.32Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.9080 (5) ŵ = 0.75 mm1
b = 16.5249 (12) ÅT = 150 K
c = 18.6981 (13) Å0.31 × 0.26 × 0.14 mm
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
6120 independent reflections
Absorption correction: gaussian
(Coppens, 1970)
5037 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 0.925Rint = 0.071
23768 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.087Δρmax = 0.32 e Å3
S = 1.19Δρmin = 0.38 e Å3
6120 reflectionsAbsolute structure: Flack (1983), 2615 Friedel pairs
379 parametersAbsolute structure parameter: 0.019 (14)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.24182 (5)0.29142 (2)0.341302 (19)0.01922 (9)
O20.3360 (2)0.30227 (14)0.42952 (11)0.0254 (5)
N30.0779 (3)0.34255 (16)0.38193 (14)0.0205 (6)
N10.4180 (3)0.24291 (16)0.29833 (14)0.0210 (6)
N20.1482 (3)0.27289 (15)0.25450 (14)0.0211 (6)
O30.2972 (2)0.34356 (15)0.54199 (12)0.0308 (6)
O10.1528 (3)0.17305 (14)0.16634 (15)0.0376 (6)
C70.0029 (4)0.3172 (2)0.15323 (19)0.0258 (7)
H70.05460.28540.12270.031*
C140.2558 (4)0.36460 (18)0.43374 (16)0.0243 (6)
H140.24990.30850.43080.029*
C50.2084 (3)0.2090 (2)0.21725 (17)0.0246 (7)
C200.2548 (4)0.33210 (17)0.48055 (15)0.0226 (6)
C180.1673 (4)0.4966 (2)0.3992 (2)0.0295 (8)
H180.10270.52890.37260.035*
C120.0396 (3)0.37223 (18)0.34982 (18)0.0210 (7)
C130.1571 (4)0.41254 (19)0.39428 (17)0.0210 (7)
C60.0284 (4)0.3172 (2)0.22744 (18)0.0216 (7)
C210.5180 (3)0.3056 (2)0.26366 (17)0.0249 (7)
H21A0.56820.33620.30090.030*
H21B0.59470.27770.23640.030*
C40.3570 (4)0.18159 (19)0.24694 (18)0.0248 (7)
H40.42840.17330.20780.030*
C220.4380 (4)0.3641 (2)0.21447 (18)0.0258 (8)
C20.4126 (4)0.1213 (2)0.36427 (19)0.0315 (8)
H2A0.33590.13450.39920.038*
H2B0.47090.07570.38160.038*
C150.3628 (4)0.4004 (2)0.47780 (19)0.0300 (8)
H150.42900.36840.50390.036*
C110.0600 (4)0.36713 (19)0.27272 (17)0.0210 (7)
C90.2021 (4)0.4135 (2)0.16876 (19)0.0297 (8)
H90.27800.44520.14930.036*
C10.5114 (3)0.1935 (2)0.34910 (18)0.0258 (7)
H1A0.53310.22350.39250.031*
H1B0.60510.17710.32700.031*
C160.3702 (4)0.4840 (2)0.4825 (2)0.0352 (9)
H160.44090.50800.51230.042*
C80.1158 (4)0.3641 (2)0.12543 (19)0.0291 (8)
H80.13480.36280.07650.035*
C300.3486 (5)0.4049 (2)0.0956 (2)0.0354 (9)
C100.1745 (4)0.4141 (2)0.24071 (19)0.0262 (7)
H100.23320.44710.26970.031*
C240.3850 (5)0.4572 (2)0.3174 (2)0.0379 (10)
H240.44280.42510.34760.045*
C350.4320 (4)0.3507 (2)0.13999 (18)0.0276 (8)
C190.0938 (4)0.3502 (2)0.45967 (17)0.0264 (8)
H19A0.02650.31280.48350.032*
H19B0.06780.40470.47430.032*
C340.5118 (4)0.2865 (3)0.10405 (19)0.0364 (8)
H340.56750.25000.13100.044*
C280.2807 (4)0.4858 (2)0.1981 (2)0.0341 (9)
C230.3690 (4)0.4337 (2)0.2440 (2)0.0283 (8)
C30.3427 (4)0.1027 (2)0.2911 (2)0.0319 (8)
H3A0.23800.08770.29630.038*
H3B0.39560.05860.26790.038*
C170.2732 (5)0.5318 (2)0.4430 (2)0.0355 (9)
H170.27860.58780.44640.043*
C250.3180 (5)0.5244 (2)0.3438 (3)0.0540 (12)
H250.33410.53940.39110.065*
C330.5074 (5)0.2784 (3)0.0321 (2)0.0535 (12)
H330.56010.23630.01070.064*
C310.3485 (6)0.3928 (3)0.0199 (2)0.0557 (13)
H310.29380.42790.00890.067*
C290.2727 (5)0.4695 (2)0.1259 (2)0.0407 (10)
H290.21400.50250.09690.049*
C260.2233 (6)0.5723 (3)0.2992 (3)0.0592 (15)
H260.17280.61650.31830.071*
C270.2067 (4)0.5540 (2)0.2292 (3)0.0501 (12)
H270.14550.58640.20090.060*
C320.4254 (6)0.3324 (3)0.0107 (2)0.0650 (15)
H320.42470.32620.06010.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02184 (17)0.02218 (17)0.01363 (16)0.0019 (2)0.00030 (18)0.00127 (17)
O20.0269 (11)0.0340 (14)0.0153 (11)0.0000 (11)0.0023 (9)0.0030 (11)
N30.0244 (14)0.0227 (14)0.0145 (14)0.0016 (11)0.0007 (11)0.0004 (11)
N10.0241 (14)0.0218 (14)0.0170 (14)0.0009 (11)0.0001 (11)0.0008 (11)
N20.0273 (14)0.0218 (15)0.0144 (13)0.0023 (11)0.0034 (11)0.0012 (11)
O30.0336 (14)0.0419 (15)0.0170 (12)0.0017 (11)0.0014 (9)0.0034 (11)
O10.0482 (14)0.0312 (13)0.0334 (15)0.0079 (11)0.0156 (13)0.0145 (12)
C70.0321 (17)0.0277 (18)0.0176 (17)0.0001 (14)0.0030 (15)0.0016 (15)
C140.0232 (15)0.0272 (15)0.0225 (15)0.0020 (17)0.0029 (16)0.0003 (12)
C50.0318 (18)0.0224 (15)0.0197 (15)0.0027 (15)0.0005 (12)0.0036 (15)
C200.0284 (15)0.0231 (14)0.0162 (14)0.0000 (17)0.0001 (17)0.0004 (11)
C180.0340 (19)0.0246 (18)0.030 (2)0.0003 (16)0.0079 (16)0.0028 (16)
C120.0255 (15)0.0153 (15)0.0220 (18)0.0023 (13)0.0019 (13)0.0014 (14)
C130.0231 (16)0.0236 (17)0.0162 (16)0.0008 (14)0.0005 (13)0.0021 (13)
C60.0266 (17)0.0208 (17)0.0173 (17)0.0006 (13)0.0010 (13)0.0006 (13)
C210.0230 (16)0.032 (2)0.0196 (17)0.0019 (15)0.0011 (12)0.0032 (15)
C40.0278 (17)0.0281 (18)0.0184 (17)0.0051 (14)0.0005 (14)0.0070 (14)
C220.0250 (17)0.030 (2)0.0228 (18)0.0053 (15)0.0019 (14)0.0034 (15)
C20.045 (2)0.0235 (19)0.026 (2)0.0072 (16)0.0020 (15)0.0050 (14)
C150.0225 (17)0.045 (2)0.0225 (19)0.0059 (16)0.0019 (14)0.0027 (16)
C110.0227 (16)0.0197 (17)0.0206 (17)0.0029 (13)0.0010 (13)0.0024 (13)
C90.0333 (18)0.0305 (18)0.025 (2)0.0022 (14)0.0065 (14)0.0060 (16)
C10.0287 (15)0.0320 (19)0.0165 (16)0.0092 (14)0.0006 (13)0.0007 (15)
C160.0296 (19)0.048 (2)0.028 (2)0.0051 (17)0.0049 (16)0.0073 (18)
C80.037 (2)0.032 (2)0.0185 (17)0.0005 (16)0.0059 (14)0.0037 (15)
C300.044 (2)0.032 (2)0.029 (2)0.0119 (18)0.0077 (17)0.0065 (17)
C100.0266 (17)0.0279 (18)0.0241 (19)0.0023 (14)0.0015 (14)0.0037 (15)
C240.051 (2)0.031 (2)0.032 (2)0.0039 (18)0.0139 (18)0.0006 (17)
C350.0278 (17)0.035 (2)0.0197 (19)0.0051 (15)0.0012 (13)0.0035 (14)
C190.0296 (18)0.034 (2)0.0156 (17)0.0082 (15)0.0003 (13)0.0015 (14)
C340.042 (2)0.045 (2)0.0228 (19)0.004 (2)0.0042 (15)0.0018 (19)
C280.030 (2)0.0249 (18)0.047 (2)0.0092 (15)0.0032 (17)0.0067 (16)
C230.0252 (17)0.0260 (18)0.034 (2)0.0071 (15)0.0066 (15)0.0019 (16)
C30.033 (2)0.0241 (18)0.039 (2)0.0053 (16)0.0028 (16)0.0011 (16)
C170.043 (2)0.0275 (17)0.037 (2)0.0073 (18)0.0062 (18)0.0041 (15)
C250.080 (3)0.038 (2)0.043 (3)0.004 (2)0.029 (3)0.006 (2)
C330.070 (3)0.062 (3)0.028 (2)0.003 (3)0.010 (2)0.008 (2)
C310.080 (3)0.061 (3)0.025 (2)0.013 (3)0.018 (2)0.015 (2)
C290.042 (2)0.035 (2)0.046 (2)0.008 (2)0.013 (2)0.0141 (17)
C260.067 (4)0.033 (2)0.077 (4)0.005 (2)0.039 (3)0.002 (2)
C270.041 (3)0.033 (2)0.076 (4)0.0018 (18)0.014 (2)0.013 (2)
C320.103 (4)0.076 (4)0.015 (2)0.019 (3)0.008 (2)0.001 (2)
Geometric parameters (Å, º) top
Ni1—N21.850 (3)C15—H150.9300
Ni1—N31.850 (3)C11—C101.415 (4)
Ni1—O21.859 (2)C9—C101.368 (5)
Ni1—N11.937 (3)C9—C81.383 (5)
O2—C201.295 (4)C9—H90.9300
N3—C121.303 (4)C1—H1A0.9701
N3—C191.466 (4)C1—H1B0.9700
N1—C41.499 (4)C16—C171.384 (5)
N1—C11.503 (4)C16—H160.9300
N1—C211.512 (4)C8—H80.9300
N2—C51.374 (4)C30—C291.385 (6)
N2—C61.389 (4)C30—C351.429 (5)
O3—C201.224 (4)C30—C311.431 (6)
O1—C51.226 (4)C10—H100.9300
C7—C81.372 (5)C24—C251.354 (5)
C7—C61.415 (5)C24—C231.433 (5)
C7—H70.9300C24—H240.9299
C14—C151.392 (5)C35—C341.442 (5)
C14—C131.395 (4)C19—H19A0.9701
C14—H140.9299C19—H19B0.9701
C5—C41.505 (4)C34—C331.353 (5)
C20—C191.516 (5)C34—H340.9301
C18—C171.378 (5)C28—C291.379 (5)
C18—C131.394 (5)C28—C271.429 (6)
C18—H180.9300C28—C231.447 (5)
C12—C111.455 (4)C3—H3A0.9701
C12—C131.493 (4)C3—H3B0.9700
C6—C111.421 (4)C17—H170.9299
C21—C221.513 (5)C25—C261.426 (7)
C21—H21A0.9700C25—H250.9300
C21—H21B0.9700C33—C321.403 (7)
C4—C31.548 (5)C33—H330.9300
C4—H40.9800C31—C321.339 (7)
C22—C351.411 (5)C31—H310.9300
C22—C231.417 (5)C29—H290.9300
C2—C11.511 (5)C26—C271.350 (7)
C2—C31.534 (5)C26—H260.9300
C2—H2A0.9701C27—H270.9300
C2—H2B0.9701C32—H320.9300
C15—C161.386 (5)
N2—Ni1—N394.59 (12)C10—C9—H9120.7
N2—Ni1—O2176.00 (11)C8—C9—H9120.5
N3—Ni1—O287.01 (11)N1—C1—C2103.0 (3)
N2—Ni1—N186.14 (11)N1—C1—H1A111.2
N3—Ni1—N1177.26 (12)C2—C1—H1A111.3
O2—Ni1—N192.43 (11)N1—C1—H1B111.1
C20—O2—Ni1116.0 (2)C2—C1—H1B111.1
C12—N3—C19120.2 (3)H1A—C1—H1B109.2
C12—N3—Ni1128.1 (2)C17—C16—C15120.4 (3)
C19—N3—Ni1111.7 (2)C17—C16—H16119.9
C4—N1—C1103.8 (2)C15—C16—H16119.8
C4—N1—C21113.7 (3)C7—C8—C9121.2 (3)
C1—N1—C21108.4 (2)C7—C8—H8119.5
C4—N1—Ni1104.59 (19)C9—C8—H8119.2
C1—N1—Ni1114.3 (2)C29—C30—C35120.0 (3)
C21—N1—Ni1111.8 (2)C29—C30—C31120.8 (4)
C5—N2—C6121.3 (3)C35—C30—C31119.2 (4)
C5—N2—Ni1113.3 (2)C9—C10—C11122.8 (3)
C6—N2—Ni1125.3 (2)C9—C10—H10118.5
C8—C7—C6121.1 (3)C11—C10—H10118.7
C8—C7—H7119.4C25—C24—C23121.8 (4)
C6—C7—H7119.6C25—C24—H24119.4
C15—C14—C13120.2 (3)C23—C24—H24118.8
C15—C14—H14119.8C22—C35—C30119.6 (3)
C13—C14—H14120.0C22—C35—C34123.8 (3)
O1—C5—N2127.5 (3)C30—C35—C34116.5 (3)
O1—C5—C4119.7 (3)N3—C19—C20109.3 (3)
N2—C5—C4112.8 (3)N3—C19—H19A110.0
O3—C20—O2125.3 (3)C20—C19—H19A109.9
O3—C20—C19120.2 (3)N3—C19—H19B109.7
O2—C20—C19114.4 (3)C20—C19—H19B109.6
C17—C18—C13120.3 (3)H19A—C19—H19B108.3
C17—C18—H18119.9C33—C34—C35121.5 (4)
C13—C18—H18119.8C33—C34—H34119.4
N3—C12—C11122.3 (3)C35—C34—H34119.2
N3—C12—C13118.3 (3)C29—C28—C27121.9 (4)
C11—C12—C13119.3 (3)C29—C28—C23119.6 (4)
C18—C13—C14119.3 (3)C27—C28—C23118.5 (4)
C18—C13—C12121.8 (3)C22—C23—C24123.3 (3)
C14—C13—C12118.9 (3)C22—C23—C28119.2 (3)
N2—C6—C7120.6 (3)C24—C23—C28117.5 (3)
N2—C6—C11121.0 (3)C2—C3—C4105.9 (3)
C7—C6—C11118.3 (3)C2—C3—H3A110.6
N1—C21—C22114.9 (3)C4—C3—H3A110.4
N1—C21—H21A108.8C2—C3—H3B110.5
C22—C21—H21A108.6C4—C3—H3B110.7
N1—C21—H21B108.4H3A—C3—H3B108.7
C22—C21—H21B108.4C18—C17—C16120.2 (3)
H21A—C21—H21B107.5C18—C17—H17119.7
N1—C4—C5110.6 (3)C16—C17—H17120.0
N1—C4—C3104.9 (3)C24—C25—C26120.1 (5)
C5—C4—C3112.2 (3)C24—C25—H25119.8
N1—C4—H4109.7C26—C25—H25120.0
C5—C4—H4109.7C34—C33—C32121.3 (5)
C3—C4—H4109.6C34—C33—H33119.2
C35—C22—C23119.7 (3)C32—C33—H33119.5
C35—C22—C21121.2 (3)C32—C31—C30121.8 (4)
C23—C22—C21119.1 (3)C32—C31—H31119.1
C1—C2—C3103.1 (3)C30—C31—H31119.1
C1—C2—H2A111.0C28—C29—C30121.7 (4)
C3—C2—H2A111.1C28—C29—H29119.1
C1—C2—H2B111.3C30—C29—H29119.3
C3—C2—H2B111.1C27—C26—C25120.5 (4)
H2A—C2—H2B109.1C27—C26—H26119.7
C16—C15—C14119.6 (3)C25—C26—H26119.8
C16—C15—H15120.2C26—C27—C28121.4 (4)
C14—C15—H15120.2C26—C27—H27119.2
C10—C11—C6117.8 (3)C28—C27—H27119.5
C10—C11—C12118.5 (3)C31—C32—C33119.8 (4)
C6—C11—C12123.7 (3)C31—C32—H32120.1
C10—C9—C8118.8 (3)C33—C32—H32120.1

Experimental details

Crystal data
Chemical formula[Ni(C35H29N3O3)]
Mr598.32
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)8.9080 (5), 16.5249 (12), 18.6981 (13)
V3)2752.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.31 × 0.26 × 0.14
Data collection
DiffractometerBruker–Nonius KappaCCD area-detector
Absorption correctionGaussian
(Coppens, 1970)
Tmin, Tmax0.856, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
23768, 6120, 5037
Rint0.071
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.087, 1.19
No. of reflections6120
No. of parameters379
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.38
Absolute structureFlack (1983), 2615 Friedel pairs
Absolute structure parameter0.019 (14)

Computer programs: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

ZP and MN would like to thank the Faculty of Chemical Technology, University of Pardubice, for financial support of this work.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBelokon, Y. N., Bakhmutov, V. I., Chernoglazova, N. I., Kochetkov, K. A., Vitt, S. V., Garbalinskaya, N. S. & Belikov, V. M. (1988). J. Chem. Soc. Perkin Trans. 1, pp. 305–312.  CrossRef Web of Science Google Scholar
First citationCoppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJirman, J., Nádvorník, M., Sopková, J. & Popkov, A. (1998). Magn. Reson. Chem. 36, 351–355.  CrossRef CAS Google Scholar
First citationKožíšek, J., Fronc, M., Skubák, P., Popkov, A., Breza, M., Fuess, H. & Paulmann, C. (2004). Acta Cryst. A60, 510–516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLanger, V., Popkov, A., Nádvorník, M. & Lyčka, A. (2007). Polyhedron, 26, 911–917.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPopkov, A., Císařová, I., Sopková, J., Jirman, J., Lyčka, A. & Kochetkov, K. A. (2005). Coll. Czech. Chem. Commun. 70, 1397–1410.  Web of Science CSD CrossRef CAS Google Scholar
First citationPopkov, A. & De Spiegeleer, B. (2012). Dalton Trans. 41, 1430–1440.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPopkov, A., Gee, A. D., Nádvorník, M. & Lyčka, A. (2002). Transition Met. Chem. 27, 884–887.  Web of Science CrossRef CAS Google Scholar
First citationPopkov, A., Hanusek, J., Čermák, J., Langer, V., Jirásko, R., Holčapek, M. & Nádvorník, M. (2010). J. Radioanal. Nucl. Chem. 285, 621–626.  Web of Science CrossRef CAS Google Scholar
First citationPopkov, A., Jirman, J., Nádvorník, M. & Manorik, P. A. (1998). Coll. Czech. Chem. Commun. 63, 990–994.  Web of Science CrossRef CAS Google Scholar
First citationPopkov, A., Langer, V., Manorik, P. A. & Weidlich, T. (2003). Transition Met. Chem. 28, 475–481.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds