organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-3-Chloro-2-fluoro­benzyl­­idene]-6-methyl­nicotinohydrazide monohydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 11 June 2012; accepted 13 June 2012; online 16 June 2012)

The title compound, C14H11ClFN3O·H2O, exists in an E conformation with respect to the N=C bond. The pyridine ring forms a dihedral angle of 5.00 (9)° with the benzene ring. In the crystal, the ketone O atom accepts one O—H⋯O and one C—H⋯O hydrogen bond, the water O atom accepts one N—H⋯O and two C—H⋯O hydrogen bonds and the pyridine N atom accepts one O—H⋯N hydrogen bond, forming layers parallel to the ab plane.

Related literature

For general background to and the biological properties of hydrazone derivatives, see: Rollas & Kucukguzel (2007[Rollas, S. & Kucukguzel, S. G. (2007). Molecules, 12, 1910-1939.]); Sondhi et al. (2009[Sondhi, S. M., Dinodia, M., Jain, S. & Kumar, M. (2009). Indian J. Chem. Sect. B, 48, 1128-1136.]); Belskaya et al. (2010[Belskaya, N. P., Dehaen, W. & Bakulev, V. A. (2010). Arkivoc, i, 275-332.]); Vijesh et al. (2011[Vijesh, A. M., Isloor, A. M., Peethambar, S. K., Shivananda, K. N., Arulmoli, T. & Isloor, N. A. (2011). Eur. J. Med. Chem. 46, 5591-5597.]); Galil & Amr (2000[Galil, A. E. & Amr, A. E. (2000). Indian J. Heterocycl. Chem. 10, 49-58.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For related structures, see: Fun, Quah & Abdel-Aziz (2012[Fun, H.-K., Quah, C. K. & Abdel-Aziz, H. A. (2012). Acta Cryst. E68, o1682.]); Fun, Quah, Shetty et al. (2012[Fun, H.-K., Quah, C. K., Shetty, D. N., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o1484.]); Fun, Quah, Nitinchandra et al. (2012[Fun, H.-K., Quah, C. K., Nitinchandra, Kalluraya, B. & Babu, M. (2012). Acta Cryst. E68, o2121.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11ClFN3O·H2O

  • Mr = 309.72

  • Monoclinic, P 21 /c

  • a = 9.7898 (12) Å

  • b = 6.4440 (8) Å

  • c = 23.121 (3) Å

  • β = 106.614 (5)°

  • V = 1397.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 100 K

  • 0.47 × 0.24 × 0.13 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.874, Tmax = 0.962

  • 12000 measured reflections

  • 3154 independent reflections

  • 2625 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.137

  • S = 1.05

  • 3154 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W1⋯O1i 0.78 2.11 2.8713 (18) 166
O1W—H1W1⋯N3ii 0.78 2.11 2.859 (2) 160
N2—H3⋯O1W 0.83 2.01 2.8104 (18) 162
C4—H4A⋯O1W 0.95 2.46 3.388 (2) 165
C7—H7A⋯O1W 0.95 2.39 3.1902 (19) 141
C12—H12A⋯O1iii 0.95 2.46 3.230 (2) 138
Symmetry codes: (i) x, y+1, z; (ii) -x+2, -y+1, -z; (iii) -x+1, -y-1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrazones and their derivatives constitute a versatile class of compounds in organic chemistry. These compounds have showed varied biological properties, such as anti-inflammatory, analgesic, anticonvulsant, antituberculur, antitumor, anti-HIV and antimicrobial activity (Rollas & Kucukguzel, 2007; Sondhi et al., 2009; Belskaya et al.., 2010). Hydrazones are important compounds for drug design, as possible ligands for metal complexes, and also for the syntheses of large number of heterocyclic compounds. Further, substituted pyridines have showed significant biological activities (Vijesh et al., 2011; Galil & Amr, 2000). These reports prompted us to synthesize the novel derivative of 6-mthyl nicotinic acid hydrazide hydrazone to study its crystal structure.

The title compound (Fig. 1) consists of a N'-[(1E)-(3-chloro-2- fluorophenyl)methylidene]-6-methylnicotinohydrazide molecule and a water molecule in the asymmetric unit and exists in an E configuration with respect to the N1C7 bond [1.279 (2) Å]. The pyridine ring (N3/C1–C5, r.m.s deviation = 0.008 Å) forms a dihedral angle of 5.00 (9)° with the benzene ring (C8–C13). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun, Quah & Abdel-Aziz, 2012; Fun, Quah, Shetty et al., 2012; Fun, Quah, Nitinchandra et al., 2012).

In the crystal (Fig.2), molecules are linked via intermolecular O1W—H2W1···O1, C12—H12A···O1 bifurcated acceptor bonds (Table 1) and N2—H3···O1W, C4—H4A···O1W, C7—H7A···O1W trifurcated acceptor bonds and together with O1W—H1W1···N3 hydrogen bonds to form two-dimensional layers parallel to (001).

Related literature top

For general background to and the biological properties of hydrazone derivatives, see: Rollas & Kucukguzel (2007); Sondhi et al. (2009); Belskaya et al. (2010); Vijesh et al. (2011); Galil & Amr (2000). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For related structures, see: Fun, Quah & Abdel-Aziz (2012); Fun, Quah, Shetty et al. (2012); Fun, Quah, Nitinchandra et al. (2012).

Experimental top

6-Methylnicotinohydrazide (1 g, 0.006 mol) and 3-chloro-2-flourobenzaldehyde (1.05 g, 0.006 mol) are refluxed for 1hr in ethanol(10 ml) by adding few drops of acetic acid. The solid separated on cooling was filtered, washed with chilled ethanol and dried. The crude material is recrystallized from hot ethanol(1.5 g, 78% ). M.p. : 457-458 °C. The crystals of appropriate size were obtained by the slow evaporation of the ethanolic solution of the compound.

Refinement top

N-bound and O-bound H atoms were located in a difference Fourier map and refined using a riding model with N—H = 0.8295 Å and O—H = 0.7778 or 0.7815 Å. The rest of hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.95 or 0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl group.

Structure description top

Hydrazones and their derivatives constitute a versatile class of compounds in organic chemistry. These compounds have showed varied biological properties, such as anti-inflammatory, analgesic, anticonvulsant, antituberculur, antitumor, anti-HIV and antimicrobial activity (Rollas & Kucukguzel, 2007; Sondhi et al., 2009; Belskaya et al.., 2010). Hydrazones are important compounds for drug design, as possible ligands for metal complexes, and also for the syntheses of large number of heterocyclic compounds. Further, substituted pyridines have showed significant biological activities (Vijesh et al., 2011; Galil & Amr, 2000). These reports prompted us to synthesize the novel derivative of 6-mthyl nicotinic acid hydrazide hydrazone to study its crystal structure.

The title compound (Fig. 1) consists of a N'-[(1E)-(3-chloro-2- fluorophenyl)methylidene]-6-methylnicotinohydrazide molecule and a water molecule in the asymmetric unit and exists in an E configuration with respect to the N1C7 bond [1.279 (2) Å]. The pyridine ring (N3/C1–C5, r.m.s deviation = 0.008 Å) forms a dihedral angle of 5.00 (9)° with the benzene ring (C8–C13). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun, Quah & Abdel-Aziz, 2012; Fun, Quah, Shetty et al., 2012; Fun, Quah, Nitinchandra et al., 2012).

In the crystal (Fig.2), molecules are linked via intermolecular O1W—H2W1···O1, C12—H12A···O1 bifurcated acceptor bonds (Table 1) and N2—H3···O1W, C4—H4A···O1W, C7—H7A···O1W trifurcated acceptor bonds and together with O1W—H1W1···N3 hydrogen bonds to form two-dimensional layers parallel to (001).

For general background to and the biological properties of hydrazone derivatives, see: Rollas & Kucukguzel (2007); Sondhi et al. (2009); Belskaya et al. (2010); Vijesh et al. (2011); Galil & Amr (2000). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For related structures, see: Fun, Quah & Abdel-Aziz (2012); Fun, Quah, Shetty et al. (2012); Fun, Quah, Nitinchandra et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
N'-[(E)-3-Chloro-2-fluorobenzylidene]-6- methylnicotinohydrazide monohydrate top
Crystal data top
C14H11ClFN3O·H2OF(000) = 640
Mr = 309.72Dx = 1.472 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5275 reflections
a = 9.7898 (12) Åθ = 3.2–30.0°
b = 6.4440 (8) ŵ = 0.29 mm1
c = 23.121 (3) ÅT = 100 K
β = 106.614 (5)°Block, colourless
V = 1397.7 (3) Å30.47 × 0.24 × 0.13 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
3154 independent reflections
Radiation source: fine-focus sealed tube2625 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.874, Tmax = 0.962k = 88
12000 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0777P)2 + 0.8539P]
where P = (Fo2 + 2Fc2)/3
3154 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
C14H11ClFN3O·H2OV = 1397.7 (3) Å3
Mr = 309.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.7898 (12) ŵ = 0.29 mm1
b = 6.4440 (8) ÅT = 100 K
c = 23.121 (3) Å0.47 × 0.24 × 0.13 mm
β = 106.614 (5)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
3154 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2625 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 0.962Rint = 0.031
12000 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.05Δρmax = 0.43 e Å3
3154 reflectionsΔρmin = 0.63 e Å3
191 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.13433 (5)0.04401 (12)0.22498 (2)0.0433 (2)
F10.41013 (12)0.18849 (16)0.14979 (5)0.0253 (3)
O10.90720 (13)0.28353 (18)0.07189 (6)0.0216 (3)
N10.69521 (15)0.1028 (2)0.01138 (6)0.0147 (3)
N20.81273 (15)0.0080 (2)0.02094 (6)0.0140 (3)
H30.82090.13290.01390.017*
N31.18040 (16)0.3394 (2)0.11873 (7)0.0175 (3)
C11.1389 (2)0.0710 (3)0.14649 (8)0.0213 (4)
H1A1.12600.21180.15590.026*
C21.2558 (2)0.0394 (3)0.17998 (8)0.0224 (4)
H2A1.32350.02460.21300.027*
C31.27378 (18)0.2453 (3)0.16504 (8)0.0158 (3)
C41.06603 (18)0.2327 (3)0.08720 (8)0.0164 (3)
H4A0.99870.30150.05510.020*
C51.04020 (18)0.0268 (2)0.09874 (7)0.0134 (3)
C60.91479 (18)0.0965 (2)0.06299 (7)0.0144 (3)
C70.60432 (18)0.0013 (2)0.05240 (7)0.0145 (3)
H7A0.62110.13970.06020.017*
C80.47374 (17)0.1065 (3)0.08721 (7)0.0146 (3)
C90.37845 (19)0.0051 (3)0.13481 (8)0.0182 (4)
C100.25093 (19)0.0955 (3)0.16783 (8)0.0243 (4)
C110.2185 (2)0.2941 (3)0.15368 (9)0.0276 (4)
H11A0.13210.35800.17600.033*
C120.3126 (2)0.3998 (3)0.10675 (9)0.0254 (4)
H12A0.29030.53650.09700.030*
C130.43891 (19)0.3077 (3)0.07395 (8)0.0191 (4)
H13A0.50270.38240.04200.023*
C141.4001 (2)0.3715 (3)0.19936 (8)0.0216 (4)
H14A1.36850.51110.20640.032*
H14B1.46890.38110.17590.032*
H14C1.44530.30460.23820.032*
O1W0.78116 (14)0.41994 (18)0.02068 (6)0.0207 (3)
H2W10.80160.51000.00260.031*
H1W10.78820.45800.05180.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0185 (3)0.0809 (5)0.0264 (3)0.0020 (3)0.00018 (19)0.0134 (3)
F10.0256 (6)0.0188 (5)0.0300 (6)0.0021 (4)0.0052 (4)0.0078 (4)
O10.0211 (7)0.0072 (6)0.0320 (7)0.0027 (5)0.0004 (5)0.0036 (5)
N10.0146 (7)0.0096 (6)0.0195 (7)0.0031 (5)0.0040 (5)0.0031 (5)
N20.0149 (7)0.0062 (6)0.0194 (7)0.0033 (5)0.0025 (5)0.0010 (5)
N30.0166 (7)0.0121 (7)0.0221 (7)0.0031 (5)0.0027 (6)0.0012 (5)
C10.0214 (9)0.0125 (8)0.0270 (9)0.0021 (7)0.0024 (7)0.0045 (7)
C20.0175 (9)0.0190 (9)0.0257 (9)0.0014 (7)0.0018 (7)0.0053 (7)
C30.0149 (8)0.0142 (8)0.0186 (8)0.0015 (6)0.0053 (6)0.0020 (6)
C40.0162 (8)0.0109 (7)0.0198 (8)0.0018 (6)0.0018 (6)0.0015 (6)
C50.0135 (8)0.0094 (7)0.0181 (8)0.0016 (6)0.0057 (6)0.0014 (6)
C60.0149 (8)0.0091 (7)0.0197 (8)0.0022 (6)0.0058 (6)0.0006 (6)
C70.0164 (8)0.0088 (7)0.0182 (8)0.0014 (6)0.0050 (6)0.0011 (6)
C80.0142 (8)0.0122 (7)0.0185 (7)0.0025 (6)0.0065 (6)0.0040 (6)
C90.0177 (8)0.0181 (8)0.0199 (8)0.0011 (7)0.0070 (6)0.0010 (6)
C100.0139 (8)0.0409 (11)0.0181 (8)0.0028 (8)0.0045 (6)0.0038 (8)
C110.0173 (9)0.0395 (12)0.0276 (10)0.0127 (8)0.0090 (7)0.0136 (8)
C120.0251 (10)0.0204 (9)0.0348 (10)0.0109 (8)0.0153 (8)0.0099 (8)
C130.0204 (9)0.0130 (8)0.0251 (9)0.0035 (7)0.0088 (7)0.0024 (6)
C140.0182 (9)0.0209 (9)0.0235 (8)0.0044 (7)0.0023 (7)0.0033 (7)
O1W0.0282 (7)0.0081 (5)0.0244 (6)0.0042 (5)0.0052 (5)0.0019 (5)
Geometric parameters (Å, º) top
Cl1—C101.731 (2)C5—C61.497 (2)
F1—C91.354 (2)C7—C81.467 (2)
O1—C61.228 (2)C7—H7A0.9500
N1—C71.279 (2)C8—C91.386 (2)
N1—N21.3786 (18)C8—C131.397 (2)
N2—C61.357 (2)C9—C101.391 (2)
N2—H30.8295C10—C111.380 (3)
N3—C31.338 (2)C11—C121.385 (3)
N3—C41.338 (2)C11—H11A0.9500
C1—C21.381 (2)C12—C131.386 (2)
C1—C51.393 (2)C12—H12A0.9500
C1—H1A0.9500C13—H13A0.9500
C2—C31.395 (2)C14—H14A0.9800
C2—H2A0.9500C14—H14B0.9800
C3—C141.503 (2)C14—H14C0.9800
C4—C51.391 (2)O1W—H2W10.7778
C4—H4A0.9500O1W—H1W10.7815
C7—N1—N2115.64 (14)C9—C8—C13117.44 (15)
C6—N2—N1117.43 (13)C9—C8—C7120.04 (15)
C6—N2—H3122.0C13—C8—C7122.51 (15)
N1—N2—H3120.6F1—C9—C8119.08 (15)
C3—N3—C4118.47 (15)F1—C9—C10118.73 (16)
C2—C1—C5119.13 (16)C8—C9—C10122.19 (17)
C2—C1—H1A120.4C11—C10—C9119.29 (18)
C5—C1—H1A120.4C11—C10—Cl1121.11 (15)
C1—C2—C3119.62 (16)C9—C10—Cl1119.59 (16)
C1—C2—H2A120.2C10—C11—C12119.69 (17)
C3—C2—H2A120.2C10—C11—H11A120.2
N3—C3—C2121.56 (15)C12—C11—H11A120.2
N3—C3—C14116.62 (15)C11—C12—C13120.50 (18)
C2—C3—C14121.81 (16)C11—C12—H12A119.8
N3—C4—C5123.74 (15)C13—C12—H12A119.8
N3—C4—H4A118.1C12—C13—C8120.87 (17)
C5—C4—H4A118.1C12—C13—H13A119.6
C4—C5—C1117.45 (15)C8—C13—H13A119.6
C4—C5—C6124.46 (15)C3—C14—H14A109.5
C1—C5—C6118.08 (15)C3—C14—H14B109.5
O1—C6—N2122.65 (15)H14A—C14—H14B109.5
O1—C6—C5120.50 (15)C3—C14—H14C109.5
N2—C6—C5116.85 (14)H14A—C14—H14C109.5
N1—C7—C8118.86 (15)H14B—C14—H14C109.5
N1—C7—H7A120.6H2W1—O1W—H1W1109.3
C8—C7—H7A120.6
C7—N1—N2—C6177.06 (15)N2—N1—C7—C8177.73 (13)
C5—C1—C2—C30.7 (3)N1—C7—C8—C9175.30 (16)
C4—N3—C3—C21.4 (3)N1—C7—C8—C135.6 (3)
C4—N3—C3—C14179.66 (15)C13—C8—C9—F1178.62 (15)
C1—C2—C3—N30.1 (3)C7—C8—C9—F12.2 (2)
C1—C2—C3—C14179.06 (18)C13—C8—C9—C101.4 (3)
C3—N3—C4—C51.8 (3)C7—C8—C9—C10177.74 (16)
N3—C4—C5—C10.9 (3)F1—C9—C10—C11178.90 (16)
N3—C4—C5—C6178.41 (16)C8—C9—C10—C111.1 (3)
C2—C1—C5—C40.4 (3)F1—C9—C10—Cl12.2 (2)
C2—C1—C5—C6179.74 (16)C8—C9—C10—Cl1177.77 (14)
N1—N2—C6—O11.7 (3)C9—C10—C11—C120.4 (3)
N1—N2—C6—C5178.62 (13)Cl1—C10—C11—C12178.47 (15)
C4—C5—C6—O1172.25 (17)C10—C11—C12—C130.0 (3)
C1—C5—C6—O17.1 (3)C11—C12—C13—C80.4 (3)
C4—C5—C6—N27.4 (2)C9—C8—C13—C121.0 (3)
C1—C5—C6—N2173.25 (15)C7—C8—C13—C12178.11 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W1···O1i0.782.112.8713 (18)166
O1W—H1W1···N3ii0.782.112.859 (2)160
N2—H3···O1W0.832.012.8104 (18)162
C4—H4A···O1W0.952.463.388 (2)165
C7—H7A···O1W0.952.393.1902 (19)141
C12—H12A···O1iii0.952.463.230 (2)138
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z; (iii) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC14H11ClFN3O·H2O
Mr309.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.7898 (12), 6.4440 (8), 23.121 (3)
β (°) 106.614 (5)
V3)1397.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.47 × 0.24 × 0.13
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.874, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
12000, 3154, 2625
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.137, 1.05
No. of reflections3154
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.63

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W1···O1i0.782.112.8713 (18)166
O1W—H1W1···N3ii0.782.112.859 (2)160
N2—H3···O1W0.832.012.8104 (18)162
C4—H4A···O1W0.952.463.388 (2)165
C7—H7A···O1W0.952.393.1902 (19)141
C12—H12A···O1iii0.952.463.230 (2)138
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z; (iii) x+1, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). CKQ also thanks USM for an Incentive Grant. BK also thanks the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for financial assistance.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBelskaya, N. P., Dehaen, W. & Bakulev, V. A. (2010). Arkivoc, i, 275–332.  CrossRef Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K. & Abdel-Aziz, H. A. (2012). Acta Cryst. E68, o1682.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nitinchandra, Kalluraya, B. & Babu, M. (2012). Acta Cryst. E68, o2121.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Shetty, D. N., Narayana, B. & Sarojini, B. K. (2012). Acta Cryst. E68, o1484.  CSD CrossRef IUCr Journals Google Scholar
First citationGalil, A. E. & Amr, A. E. (2000). Indian J. Heterocycl. Chem. 10, 49–58.  Google Scholar
First citationRollas, S. & Kucukguzel, S. G. (2007). Molecules, 12, 1910–1939.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSondhi, S. M., Dinodia, M., Jain, S. & Kumar, M. (2009). Indian J. Chem. Sect. B, 48, 1128–1136.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVijesh, A. M., Isloor, A. M., Peethambar, S. K., Shivananda, K. N., Arulmoli, T. & Isloor, N. A. (2011). Eur. J. Med. Chem. 46, 5591–5597.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds