organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(4-Chloro­benzyl­­idene)-1-benzo­furan-2-carbohydrazide monohydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 11 June 2012; accepted 18 June 2012; online 23 June 2012)

The title compound, C16H11ClN2O2·H2O, exists in an E conformation with respect to the N=C bond. The benzofuran ring system forms a dihedral angle of 1.26 (4)° with the benzene ring. In the crystal, mol­ecules are linked via (N,C)—H⋯O bifurcated acceptor hydrogen bonds and (O,O,C)—H⋯O trifurcated acceptor hydrogen bonds, forming layers parallel to the bc plane.

Related literature

For general background to hydrazone derivatives, see: Sridhar & Perumal (2003[Sridhar, R. & Perumal, P. T. (2003). Synth. Commun. 33, 1483-1488.]); Vijayakumar et al. (2011[Vijayakumar, S., Adithya, A., Kalluraya, B., Sharafudeen, K. N. & Chandrasekharan, K. (2011). J. Appl. Polym. Sci. 119, 595-601.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For related structures, see: Fun, Quah & Abdel-Aziz (2012[Fun, H.-K., Quah, C. K. & Abdel-Aziz, H. A. (2012). Acta Cryst. E68, o1682.]); Fun, Quah, Nitinchandra et al. (2012[Fun, H.-K., Quah, C. K., Nitinchandra,, Kalluraya, B. & Babu, M. (2012). Acta Cryst. E68, o2121.]); Fun, Quah, Shyma et al. (2012[Fun, H.-K., Quah, C. K., Shyma, P. C., Kalluraya, B. & Vidyashree, J. H. S. (2012). Acta Cryst. E68, o2122.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11ClN2O2·H2O

  • Mr = 316.73

  • Monoclinic, C c

  • a = 24.6121 (15) Å

  • b = 4.6625 (3) Å

  • c = 12.6570 (8) Å

  • β = 99.294 (1)°

  • V = 1433.37 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 100 K

  • 0.57 × 0.34 × 0.09 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.856, Tmax = 0.975

  • 7338 measured reflections

  • 4620 independent reflections

  • 4511 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.073

  • S = 1.04

  • 4620 reflections

  • 211 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2025 Friedel pairs

  • Flack parameter: 0.03 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O2 0.855 (19) 2.040 (19) 2.8815 (11) 168.1 (18)
O1W—H2W1⋯O2i 0.75 (2) 2.06 (2) 2.8045 (11) 173 (2)
N1—H1N1⋯O1Wii 0.909 (19) 1.952 (19) 2.8083 (12) 156.2 (18)
C2—H2A⋯O2ii 0.95 2.57 3.3710 (14) 142
C10—H10A⋯O1Wii 0.95 2.54 3.3067 (13) 138
Symmetry codes: (i) x, y-1, z; (ii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrazones are versatile intermediates and important building blocks. Aryl hydrazones are important building blocks for the synthesis of a variety of heterocyclic compounds such as pyrazolines and pyrazoles (Sridhar & Perumal, 2003). Hydrazones of aliphatic and aromatic methyl ketones yield pyrazole-4-carboxaldehyde on formylation by treatment with Vilsmeier reagent. Hydrazones derived from anisaldehyde and 4-nitro-5-ethoxycarbonyl phenylhydrazine showed excellent NLO property (Vijayakumar et al., 2011). Prompted by these observations, the title compound was synthesized and its crystal structure is reported.

The title compound (Fig. 1) consists of a N'-[4-chlorophenyl)methylidene]-1-benzofuran-2-carbohydrazide molecule and a water molecule in the asymmetric unit and exists in an E configuration with respect to the N2C10 bond [1.2848 (13) Å]. The benzofuran ring system (O1/C1-C8, r.m.s deviation = 0.012 Å) forms a dihedral angle of 1.26 (4)° with the benzene ring (C11–C16). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun, Quah & Abdel-Aziz, 2012; Fun, Quah, Nitinchandra et al., 2012; Fun, Quah, Shyma et al., 2012).

In the crystal (Fig. 2), molecules are linked via intermolecular N1—H1N1···O1W, C10—H10A···O1W bifurcated acceptor hydrogen bonds and O1W—H2W1···O2, O1W—H2W1···O2, C2—H2A···O2 trifurcated acceptor hydrogen bonds (Table 1) to form two-dimensional layers parallel to (100).

Related literature top

For general background to hydrazone derivatives, see: Sridhar & Perumal (2003); Vijayakumar et al. (2011). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For related structures, see: Fun, Quah & Abdel-Aziz (2012); Fun, Quah, Nitinchandra et al. (2012); Fun, Quah, Shyma et al. (2012).

Experimental top

The title compound was obtained by refluxing a mixture of 1-benzofuran-2-carbohydrazide (0.01 mol), 4-chlorobenzaldehyde (0.01 mol) in ethanol (30 ml) and 3 drops of concentrated sulfuric acid for 1 h. Excess ethanol was removed from the reaction mixture under reduced pressure. The solid product obtained was filtered, washed with ethanol and dried. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol-N,N-dimethylformamide (DMF) (3:1) solution.

Refinement top

N-bound and O-bound H atoms were located in a difference Fourier map and refined freely [N—H = 0.909 (18) Å, and O—H = 0.75 (3) and 0.857 (19) Å]. The rest of hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Hydrazones are versatile intermediates and important building blocks. Aryl hydrazones are important building blocks for the synthesis of a variety of heterocyclic compounds such as pyrazolines and pyrazoles (Sridhar & Perumal, 2003). Hydrazones of aliphatic and aromatic methyl ketones yield pyrazole-4-carboxaldehyde on formylation by treatment with Vilsmeier reagent. Hydrazones derived from anisaldehyde and 4-nitro-5-ethoxycarbonyl phenylhydrazine showed excellent NLO property (Vijayakumar et al., 2011). Prompted by these observations, the title compound was synthesized and its crystal structure is reported.

The title compound (Fig. 1) consists of a N'-[4-chlorophenyl)methylidene]-1-benzofuran-2-carbohydrazide molecule and a water molecule in the asymmetric unit and exists in an E configuration with respect to the N2C10 bond [1.2848 (13) Å]. The benzofuran ring system (O1/C1-C8, r.m.s deviation = 0.012 Å) forms a dihedral angle of 1.26 (4)° with the benzene ring (C11–C16). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun, Quah & Abdel-Aziz, 2012; Fun, Quah, Nitinchandra et al., 2012; Fun, Quah, Shyma et al., 2012).

In the crystal (Fig. 2), molecules are linked via intermolecular N1—H1N1···O1W, C10—H10A···O1W bifurcated acceptor hydrogen bonds and O1W—H2W1···O2, O1W—H2W1···O2, C2—H2A···O2 trifurcated acceptor hydrogen bonds (Table 1) to form two-dimensional layers parallel to (100).

For general background to hydrazone derivatives, see: Sridhar & Perumal (2003); Vijayakumar et al. (2011). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For related structures, see: Fun, Quah & Abdel-Aziz (2012); Fun, Quah, Nitinchandra et al. (2012); Fun, Quah, Shyma et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
(E)-N'-(4-Chlorobenzylidene)-1-benzofuran-2-carbohydrazide monohydrate top
Crystal data top
C16H11ClN2O2·H2OF(000) = 656
Mr = 316.73Dx = 1.468 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 5261 reflections
a = 24.6121 (15) Åθ = 3.3–32.6°
b = 4.6625 (3) ŵ = 0.28 mm1
c = 12.6570 (8) ÅT = 100 K
β = 99.294 (1)°Plate, yellow
V = 1433.37 (16) Å30.57 × 0.34 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4620 independent reflections
Radiation source: fine-focus sealed tube4511 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 32.6°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3536
Tmin = 0.856, Tmax = 0.975k = 67
7338 measured reflectionsl = 1918
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.2352P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
4620 reflectionsΔρmax = 0.34 e Å3
211 parametersΔρmin = 0.19 e Å3
2 restraintsAbsolute structure: Flack (1983), 2025 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (3)
Crystal data top
C16H11ClN2O2·H2OV = 1433.37 (16) Å3
Mr = 316.73Z = 4
Monoclinic, CcMo Kα radiation
a = 24.6121 (15) ŵ = 0.28 mm1
b = 4.6625 (3) ÅT = 100 K
c = 12.6570 (8) Å0.57 × 0.34 × 0.09 mm
β = 99.294 (1)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4620 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4511 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 0.975Rint = 0.019
7338 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.073Δρmax = 0.34 e Å3
S = 1.04Δρmin = 0.19 e Å3
4620 reflectionsAbsolute structure: Flack (1983), 2025 Friedel pairs
211 parametersAbsolute structure parameter: 0.03 (3)
2 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.362378 (12)2.08150 (5)0.62418 (2)0.02405 (7)
O10.66851 (3)0.45040 (16)0.85030 (6)0.01364 (14)
O20.61809 (3)0.76090 (16)0.59506 (6)0.01549 (14)
N10.59805 (4)0.87204 (18)0.76135 (7)0.01207 (15)
N20.56127 (4)1.07881 (18)0.71696 (7)0.01267 (15)
C10.70999 (4)0.2512 (2)0.87293 (8)0.01263 (16)
C20.72801 (5)0.1294 (2)0.97208 (8)0.01605 (18)
H2A0.71190.17581.03320.019*
C30.77114 (5)0.0650 (2)0.97685 (9)0.0174 (2)
H3A0.78510.15371.04330.021*
C40.79475 (5)0.1341 (2)0.88576 (9)0.01846 (19)
H4A0.82450.26630.89220.022*
C50.77532 (5)0.0121 (2)0.78699 (9)0.01828 (19)
H5A0.79110.06070.72560.022*
C60.73181 (4)0.1849 (2)0.77992 (8)0.01348 (17)
C70.70075 (4)0.3521 (2)0.69570 (8)0.01474 (17)
H7A0.70490.35420.62240.018*
C80.66431 (4)0.5062 (2)0.74233 (8)0.01243 (16)
C90.62453 (4)0.7225 (2)0.69371 (8)0.01223 (17)
C100.53404 (4)1.2045 (2)0.78210 (8)0.01311 (17)
H10A0.54031.15510.85590.016*
C110.49318 (4)1.4248 (2)0.74216 (8)0.01304 (17)
C120.46196 (5)1.5490 (2)0.81314 (9)0.01721 (19)
H12A0.46861.49500.88650.021*
C130.42134 (5)1.7509 (2)0.77787 (10)0.0192 (2)
H13A0.39981.83210.82610.023*
C140.41298 (4)1.8308 (2)0.67104 (10)0.01754 (19)
C150.44432 (5)1.7160 (2)0.59957 (9)0.0181 (2)
H15A0.43861.77710.52700.022*
C160.48413 (4)1.5106 (2)0.63496 (8)0.01574 (18)
H16A0.50521.42840.58610.019*
O1W0.58492 (4)0.25083 (19)0.47297 (6)0.01780 (15)
H1W10.5989 (8)0.402 (4)0.5046 (15)0.026 (5)*
H2W10.5934 (10)0.127 (5)0.510 (2)0.044 (6)*
H1N10.6041 (8)0.820 (4)0.8315 (15)0.021 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01451 (11)0.01539 (10)0.03983 (16)0.00472 (8)0.00296 (10)0.00640 (11)
O10.0150 (3)0.0136 (3)0.0126 (3)0.0039 (2)0.0033 (3)0.0011 (2)
O20.0206 (4)0.0144 (3)0.0122 (3)0.0019 (3)0.0046 (3)0.0009 (3)
N10.0125 (4)0.0121 (3)0.0117 (3)0.0020 (3)0.0019 (3)0.0011 (3)
N20.0120 (4)0.0116 (3)0.0144 (4)0.0009 (3)0.0018 (3)0.0008 (3)
C10.0126 (4)0.0109 (4)0.0144 (4)0.0010 (3)0.0024 (3)0.0005 (3)
C20.0175 (5)0.0169 (4)0.0137 (4)0.0026 (4)0.0024 (4)0.0009 (3)
C30.0179 (5)0.0170 (4)0.0164 (5)0.0023 (3)0.0004 (4)0.0019 (3)
C40.0165 (5)0.0183 (4)0.0207 (5)0.0060 (4)0.0034 (4)0.0012 (4)
C50.0186 (5)0.0187 (4)0.0185 (5)0.0062 (4)0.0060 (4)0.0003 (4)
C60.0140 (4)0.0130 (4)0.0140 (4)0.0017 (3)0.0040 (3)0.0003 (3)
C70.0165 (4)0.0147 (4)0.0135 (4)0.0023 (3)0.0038 (3)0.0009 (3)
C80.0134 (4)0.0120 (4)0.0121 (4)0.0012 (3)0.0026 (3)0.0009 (3)
C90.0134 (4)0.0106 (4)0.0131 (4)0.0003 (3)0.0034 (3)0.0003 (3)
C100.0140 (4)0.0127 (4)0.0129 (4)0.0007 (3)0.0029 (3)0.0007 (3)
C110.0124 (4)0.0122 (4)0.0150 (4)0.0002 (3)0.0039 (3)0.0022 (3)
C120.0193 (5)0.0159 (4)0.0180 (4)0.0011 (4)0.0077 (4)0.0020 (4)
C130.0169 (5)0.0166 (4)0.0257 (5)0.0017 (4)0.0080 (4)0.0050 (4)
C140.0116 (4)0.0119 (4)0.0284 (5)0.0014 (3)0.0009 (4)0.0040 (4)
C150.0175 (5)0.0170 (4)0.0187 (5)0.0039 (3)0.0000 (4)0.0012 (4)
C160.0153 (4)0.0166 (4)0.0155 (4)0.0044 (3)0.0028 (3)0.0007 (3)
O1W0.0256 (4)0.0159 (3)0.0116 (3)0.0015 (3)0.0022 (3)0.0006 (3)
Geometric parameters (Å, º) top
Cl1—C141.7407 (11)C6—C71.4371 (14)
O1—C11.3757 (12)C7—C81.3566 (14)
O1—C81.3785 (12)C7—H7A0.9500
O2—C91.2459 (12)C8—C91.4696 (13)
N1—C91.3505 (12)C10—C111.4690 (14)
N1—N21.3785 (12)C10—H10A0.9500
N1—H1N10.909 (18)C11—C161.3975 (14)
N2—C101.2848 (13)C11—C121.3984 (14)
C1—C21.3837 (14)C12—C131.3931 (16)
C1—C61.4049 (13)C12—H12A0.9500
C2—C31.3896 (15)C13—C141.3856 (18)
C2—H2A0.9500C13—H13A0.9500
C3—C41.4097 (16)C14—C151.3876 (16)
C3—H3A0.9500C15—C161.3916 (15)
C4—C51.3863 (16)C15—H15A0.9500
C4—H4A0.9500C16—H16A0.9500
C5—C61.4025 (14)O1W—H1W10.857 (19)
C5—H5A0.9500O1W—H2W10.75 (3)
C1—O1—C8105.55 (8)C7—C8—C9128.60 (9)
C9—N1—N2117.07 (8)O1—C8—C9118.87 (8)
C9—N1—H1N1117.6 (12)O2—C9—N1124.39 (9)
N2—N1—H1N1125.2 (12)O2—C9—C8119.11 (9)
C10—N2—N1115.70 (9)N1—C9—C8116.48 (8)
O1—C1—C2125.76 (9)N2—C10—C11119.81 (9)
O1—C1—C6110.21 (8)N2—C10—H10A120.1
C2—C1—C6124.03 (9)C11—C10—H10A120.1
C1—C2—C3115.97 (10)C16—C11—C12119.16 (10)
C1—C2—H2A122.0C16—C11—C10121.81 (9)
C3—C2—H2A122.0C12—C11—C10119.02 (9)
C2—C3—C4121.76 (10)C13—C12—C11120.95 (10)
C2—C3—H3A119.1C13—C12—H12A119.5
C4—C3—H3A119.1C11—C12—H12A119.5
C5—C4—C3121.07 (10)C14—C13—C12118.71 (10)
C5—C4—H4A119.5C14—C13—H13A120.6
C3—C4—H4A119.5C12—C13—H13A120.6
C4—C5—C6118.35 (10)C13—C14—C15121.45 (10)
C4—C5—H5A120.8C13—C14—Cl1119.90 (8)
C6—C5—H5A120.8C15—C14—Cl1118.65 (9)
C5—C6—C1118.81 (9)C14—C15—C16119.50 (10)
C5—C6—C7135.37 (10)C14—C15—H15A120.2
C1—C6—C7105.81 (9)C16—C15—H15A120.2
C8—C7—C6105.94 (9)C15—C16—C11120.20 (10)
C8—C7—H7A127.0C15—C16—H16A119.9
C6—C7—H7A127.0C11—C16—H16A119.9
C7—C8—O1112.48 (9)H1W1—O1W—H2W1107 (2)
C9—N1—N2—C10175.60 (9)N2—N1—C9—O20.48 (14)
C8—O1—C1—C2179.09 (10)N2—N1—C9—C8179.00 (8)
C8—O1—C1—C60.46 (11)C7—C8—C9—O27.15 (16)
O1—C1—C2—C3179.16 (10)O1—C8—C9—O2175.52 (9)
C6—C1—C2—C31.35 (16)C7—C8—C9—N1171.45 (10)
C1—C2—C3—C40.30 (16)O1—C8—C9—N15.88 (13)
C2—C3—C4—C50.69 (18)N1—N2—C10—C11179.00 (8)
C3—C4—C5—C60.67 (17)N2—C10—C11—C162.28 (15)
C4—C5—C6—C10.32 (16)N2—C10—C11—C12176.82 (10)
C4—C5—C6—C7179.70 (12)C16—C11—C12—C131.54 (16)
O1—C1—C6—C5179.05 (9)C10—C11—C12—C13177.59 (10)
C2—C1—C6—C51.38 (16)C11—C12—C13—C141.15 (16)
O1—C1—C6—C70.94 (11)C12—C13—C14—C150.46 (17)
C2—C1—C6—C7178.62 (10)C12—C13—C14—Cl1179.76 (8)
C5—C6—C7—C8178.95 (12)C13—C14—C15—C161.64 (17)
C1—C6—C7—C81.04 (11)Cl1—C14—C15—C16178.57 (9)
C6—C7—C8—O10.81 (12)C14—C15—C16—C111.23 (16)
C6—C7—C8—C9176.66 (10)C12—C11—C16—C150.34 (16)
C1—O1—C8—C70.24 (11)C10—C11—C16—C15178.77 (10)
C1—O1—C8—C9177.51 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O20.855 (19)2.040 (19)2.8815 (11)168.1 (18)
O1W—H2W1···O2i0.75 (2)2.06 (2)2.8045 (11)173 (2)
N1—H1N1···O1Wii0.909 (19)1.952 (19)2.8083 (12)156.2 (18)
C2—H2A···O2ii0.952.573.3710 (14)142
C10—H10A···O1Wii0.952.543.3067 (13)138
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H11ClN2O2·H2O
Mr316.73
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)24.6121 (15), 4.6625 (3), 12.6570 (8)
β (°) 99.294 (1)
V3)1433.37 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.57 × 0.34 × 0.09
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.856, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
7338, 4620, 4511
Rint0.019
(sin θ/λ)max1)0.758
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.073, 1.04
No. of reflections4620
No. of parameters211
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.19
Absolute structureFlack (1983), 2025 Friedel pairs
Absolute structure parameter0.03 (3)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O20.855 (19)2.040 (19)2.8815 (11)168.1 (18)
O1W—H2W1···O2i0.75 (2)2.06 (2)2.8045 (11)173 (2)
N1—H1N1···O1Wii0.909 (19)1.952 (19)2.8083 (12)156.2 (18)
C2—H2A···O2ii0.952.573.3710 (14)142
C10—H10A···O1Wii0.952.543.3067 (13)138
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). CKQ also thanks USM for an Incentive Grant. BK thanks the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for financial assistance.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K. & Abdel-Aziz, H. A. (2012). Acta Cryst. E68, o1682.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nitinchandra,, Kalluraya, B. & Babu, M. (2012). Acta Cryst. E68, o2121.  Google Scholar
First citationFun, H.-K., Quah, C. K., Shyma, P. C., Kalluraya, B. & Vidyashree, J. H. S. (2012). Acta Cryst. E68, o2122.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, R. & Perumal, P. T. (2003). Synth. Commun. 33, 1483–1488.  Web of Science CrossRef CAS Google Scholar
First citationVijayakumar, S., Adithya, A., Kalluraya, B., Sharafudeen, K. N. & Chandrasekharan, K. (2011). J. Appl. Polym. Sci. 119, 595–601.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds