metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Acetato(aqua){6,6′-dimeth­­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methanylyl­­idene)]diphenolato}cobalt(III) methanol disolvate

aNelson Mandela African Institute of Science and Technology, Department of Materials Science and Engineering, PO Box 447, Arusha, Tanzania, and bDepartment of Chemistry, Howard University, 525 College Street, NW, Washington, DC 2059, USA
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 24 May 2012; accepted 18 June 2012; online 23 June 2012)

In the title complex, [Co(C18H18N2O4)(C2H3O2)(H2O)]·2CH3OH, the CoIII atom is hexa­coordinated by water and acetate groups in the axial positions and by the tetra­dentate Schiff base occupying equatorial positions. These axial bonds are longer than the equatorial bonds to the tetra­dentate Schiff base. Two mol­ecules form a dimer through strong hydrogen bonds from the coordinated water of one mol­ecule to the meth­oxy O atoms of an adjoining mol­ecule. There is extensive intra- and inter­molecular O—H⋯O hydrogen bonding between the coordinated water and acetate ligands and the methanol solvent mol­ecules. In addition, there are weak inter­molecular C—H⋯O inter­actions, which link the mol­ecules into a three-dimensional array.

Related literature

For reports on O2 binding of related cobalt complexes, see: Huie et al. (1979[Huie, B. T., Leyden, R. M. & Schaefer, W. P. (1979). Inorg. Chem. 18, 125-129.]); Lindblom et al. (1971[Lindblom, L. A., Schaefer, W. P. & Marsh, R. E. (1971). Acta Cryst. B27, 1461-1467.]). For related dimeric structures formed through hydrogen bonding, see: Huie et al. (1979[Huie, B. T., Leyden, R. M. & Schaefer, W. P. (1979). Inorg. Chem. 18, 125-129.]); Assey et al. (2010b[Assey, G., Butcher, R. J. & Gultneh, Y. (2010b). Acta Cryst. E66, m851-m852.]). For structurally related complexes with included hydrogen-bonded solvent mol­ecules, see: Assey et al. (2010a[Assey, G. E., Butcher, A. M., Butcher, R. J. & Gultneh, Y. (2010a). Acta Cryst. E66, m1384-m1385.],b[Assey, G., Butcher, R. J. & Gultneh, Y. (2010b). Acta Cryst. E66, m851-m852.]); Ayikoe et al. (2010[Ayikoe, K., Butcher, R. J. & Gultneh, Y. (2010). Acta Cryst. E66, m1487-m1488.]); Bao et al. (2009[Bao, Y., Li, H.-F., Yan, P.-F., Li, G.-M. & Hou, G.-F. (2009). Acta Cryst. E65, m770.]); Ayikoé et al. (2011[Ayikoé, K., Butcher, R. J. & Gultneh, Y. (2011). Acta Cryst. E67, m328.]). For the use of cobalt(III)–salen complexes as catalysts, see: Morandi et al. (2011[Morandi, B., Mariampillai, B. & Carreira, E. M. (2011). Angew. Chem. Int. Ed. 50, 1101-1104.]); Haak et al. (2010[Haak, R. M., Martínez Belmonte, M., Escudero-Adán, E. C., Benet-Buchholz, J. & Kleij, A. W. (2010). Dalton Trans. 39, 593-602.]) and for the potential applications of cobalt–Schiff base complexes for magnetic and/or conducting devices, see: Nabei et al. (2009[Nabei, A., Kuroda-Sowa, T., Okubo, T., Maekawa, M. & Munakata, M. (2009). Acta Cryst. E65, m188-m189.]); Lin et al. (2011[Lin, Y., Li, G.-M., Chen, P., Yan, P.-F. & Hou, G.-F. (2011). Acta Cryst. E67, m1162.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C18H18N2O4)(C2H3O2)(H2O)]·2CH4O

  • Mr = 526.42

  • Monoclinic, P 21 /c

  • a = 9.6306 (3) Å

  • b = 13.4129 (5) Å

  • c = 17.9746 (7) Å

  • β = 90.716 (3)°

  • V = 2321.67 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 115 K

  • 0.49 × 0.45 × 0.38 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Mo) detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.916, Tmax = 1.000

  • 16513 measured reflections

  • 7669 independent reflections

  • 5549 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.106

  • S = 1.00

  • 7669 reflections

  • 322 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected bond lengths (Å)

Co—O2 1.8839 (8)
Co—N1 1.8870 (10)
Co—O1 1.8892 (8)
Co—N2 1.8910 (10)
Co—O11 1.8995 (8)
Co—O1W 1.9454 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1S—H1S⋯O12 0.84 1.83 2.6671 (14) 174
O2S—H2S⋯O1S 0.84 1.95 2.7682 (17) 165
O1W—H1W1⋯O1i 0.80 (1) 1.99 (1) 2.7334 (11) 153 (1)
O1W—H1W1⋯O3i 0.80 (1) 2.32 (1) 2.9124 (13) 131 (1)
O1W—H1W2⋯O2i 0.80 (1) 2.18 (2) 2.8071 (11) 136 (1)
O1W—H1W2⋯O4i 0.80 (1) 2.17 (1) 2.8840 (12) 148 (2)
C9—H9A⋯O1Sii 0.99 2.52 3.2610 (16) 132
C13—H13A⋯O11iii 0.95 2.61 3.5380 (15) 165
C12A—H12B⋯O1 0.98 2.38 3.1807 (15) 139
C8—H8A⋯O2Siv 0.95 2.55 3.4335 (16) 155
C10—H10A⋯O2Sii 0.99 2.61 3.5119 (17) 151
C12A—H12C⋯O2Sv 0.98 2.62 3.5541 (19) 161
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Cobalt Schiff base complexes are of great importance because of their involvement in biological systems. One of their reactions of biological importance is that of binding O2 to a metal chelate (Lindblom et al. 1971). In recent years, there have been reports about many studies of metal complexes with di-oxygen as one ligand (Huie et al., 1979). The reason behind these studies is to understand the binding between oxygen and transition metals in the proteins that are involved in oxygen transport in living creatures. Another area where the cobalt Schiff bases have find application is that of organic reactions catalysis (Haak et al. 2010). Cobalt(III) salen complexes have been described in the literature as catalysts for enantioselective cyclopropagation with diazoacetates in organic media (Morandi et al. 2011). Cobalt Schiff base complexes have also been investigated with respect to their potential application for magnetic and/or conducting devices (Nabei et al., 2009; Lin et al., 2011).

In view of the importance of cobalt Schiff base complexes the structure of the title compound, CoC20 H23N2O7.2(CH3OH), has been determined. Schiff base ligands containing a methoxy or ethoxy substituent in the 3 position in the aromatic ring and in a cis conformation about the central metal are often involved in interactions where these substituent are either coordinated to a metal (Assey et al., 2010a,b; Ayikoe, et al., 2010) or form strong hydrogen bonds to a water molecule (or some other suitable solvent such as dimethylformamide) in the cavity created by this conformation (Bao et al., 2009; Ayikoé et al., 2011). In this case, as is found in related Mn and Co complexes (Assey et al., 2010b; Huie, et al., 1979), this is achieved by two metal complexes coming together to form a hydrogen bonded dimer. The axially coordinated water molecules of each metal complex form strong hydrogen bonds to the two methoxy groups of the adjoining complex (O1W···O1 2.7335 (11), O1W···O3 2.9124 (13), O1W··· O2 2.8071 (11), O1W···O4 2.8840 (12) Å).

The structure consists of six coordinate Co(III) in a slightly distorted octahedral geometry with both methanol and water occupying the axial positions and a tetradentate Schiff base (N2O2) which is in the equatorial plane. In addition there are two molecules of solvate methanol in the lattice (Fig. 1). From Table 1 it can be seen that the equatorial metal ligand bond lengths are very similar and vary from 1.8839 (8)Å to 1.8910 (10)Å while the axial bond lengths to the water and acetate moieties are slightly longer at 1.9454 (8)Å and 1.8995 (8)Å respectively. The only slightly distorted nature of the coordination sphere about the Co is emphasized by the fact that the cis angles vary from 78.40 (4)° to 94.18 (4)° while the trans angles range from 173.73 (3)° to 178.40 (4)°.

There is extensive O—H···O intra- and intermolecular hydrogen bonding between the coordinated water and acetate moieties and the methanol solvate molecules (Fig. 2). In addition there are weak C—H···O intermolecular interactions. These link the structure into a three-dimensional array.

Related literature top

For reports on O2 binding of related cobalt complexes, see: Huie et al. (1979); Lindblom et al. (1971). For related dimeric structures formed through hydrogen bonding, see: Huie et al. (1979); Assey et al. (2010b); For structurally related complexes with included hydrogen-bonded solvent molecules, see: Assey et al. (2010a,b); Ayikoe et al. (2010); Bao et al. (2009); Ayikoé et al. (2011). For the use of cobalt(III)–salen complexes as catalysts, see: Morandi et al. (2011); Haak et al. (2010) and for the potential applications of cobalt–Schiff base complexes for magnetic and/or conducting devices, see: Nabei et al. (2009); Lin et al. (2011).

Experimental top

The synthesis of the ligand 3-methoxyethylenediaminebissalicylaldimine was accomplished by the reaction of the solution of (2 g, 33.3 mmol) of ethylenediamine in 10 ml methanol which was added to the solution of o-vanillin in 40 ml methanol dropwise using a glass pipette. The mixture was refluxed for 24 h. After solvent evaporation under reduced pressure yellow solids were obtained.

The complex was synthesized by mixing a solution of (0.25 g, 1 mmol) of Co(CH3COO)2.4H2O in 5 ml me thanol with a solution of (0.33 g, 1 mmol) 3-methoxyethylenediaminebissalicylaldimine in 3 ml of dichloromethene. The mixture was stirred for 1 h at room temperature, filtered and layered with diethyl ether for crystallization. Crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.95 and 0.99 Å Uiso(H) = 1.2Ueq(C) and 0.98 Å for CH3 [Uiso(H) = 1.5Ueq(C)]. The H atoms attached to methanol O were idealized with an O–H distance of 0.84 Å. The water H's were constrained to have a bond length of 0.82 Å and bond angle of 104.5°.

Structure description top

Cobalt Schiff base complexes are of great importance because of their involvement in biological systems. One of their reactions of biological importance is that of binding O2 to a metal chelate (Lindblom et al. 1971). In recent years, there have been reports about many studies of metal complexes with di-oxygen as one ligand (Huie et al., 1979). The reason behind these studies is to understand the binding between oxygen and transition metals in the proteins that are involved in oxygen transport in living creatures. Another area where the cobalt Schiff bases have find application is that of organic reactions catalysis (Haak et al. 2010). Cobalt(III) salen complexes have been described in the literature as catalysts for enantioselective cyclopropagation with diazoacetates in organic media (Morandi et al. 2011). Cobalt Schiff base complexes have also been investigated with respect to their potential application for magnetic and/or conducting devices (Nabei et al., 2009; Lin et al., 2011).

In view of the importance of cobalt Schiff base complexes the structure of the title compound, CoC20 H23N2O7.2(CH3OH), has been determined. Schiff base ligands containing a methoxy or ethoxy substituent in the 3 position in the aromatic ring and in a cis conformation about the central metal are often involved in interactions where these substituent are either coordinated to a metal (Assey et al., 2010a,b; Ayikoe, et al., 2010) or form strong hydrogen bonds to a water molecule (or some other suitable solvent such as dimethylformamide) in the cavity created by this conformation (Bao et al., 2009; Ayikoé et al., 2011). In this case, as is found in related Mn and Co complexes (Assey et al., 2010b; Huie, et al., 1979), this is achieved by two metal complexes coming together to form a hydrogen bonded dimer. The axially coordinated water molecules of each metal complex form strong hydrogen bonds to the two methoxy groups of the adjoining complex (O1W···O1 2.7335 (11), O1W···O3 2.9124 (13), O1W··· O2 2.8071 (11), O1W···O4 2.8840 (12) Å).

The structure consists of six coordinate Co(III) in a slightly distorted octahedral geometry with both methanol and water occupying the axial positions and a tetradentate Schiff base (N2O2) which is in the equatorial plane. In addition there are two molecules of solvate methanol in the lattice (Fig. 1). From Table 1 it can be seen that the equatorial metal ligand bond lengths are very similar and vary from 1.8839 (8)Å to 1.8910 (10)Å while the axial bond lengths to the water and acetate moieties are slightly longer at 1.9454 (8)Å and 1.8995 (8)Å respectively. The only slightly distorted nature of the coordination sphere about the Co is emphasized by the fact that the cis angles vary from 78.40 (4)° to 94.18 (4)° while the trans angles range from 173.73 (3)° to 178.40 (4)°.

There is extensive O—H···O intra- and intermolecular hydrogen bonding between the coordinated water and acetate moieties and the methanol solvate molecules (Fig. 2). In addition there are weak C—H···O intermolecular interactions. These link the structure into a three-dimensional array.

For reports on O2 binding of related cobalt complexes, see: Huie et al. (1979); Lindblom et al. (1971). For related dimeric structures formed through hydrogen bonding, see: Huie et al. (1979); Assey et al. (2010b); For structurally related complexes with included hydrogen-bonded solvent molecules, see: Assey et al. (2010a,b); Ayikoe et al. (2010); Bao et al. (2009); Ayikoé et al. (2011). For the use of cobalt(III)–salen complexes as catalysts, see: Morandi et al. (2011); Haak et al. (2010) and for the potential applications of cobalt–Schiff base complexes for magnetic and/or conducting devices, see: Nabei et al. (2009); Lin et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular Structure of the title compound (dimer) along with hydrogen bonding interactions between the coordinated water molecule of one molecule and adjoining oxygen atoms of an adjacent molecule (generated by symmetry codes 1 - x, 1 - y, 1 - z). Hydrogen bonding and weak C—H···O intermolecular interactions are shown by dashed lines.
[Figure 2] Fig. 2. The molecular packing for C22H31CoN2O9 viewed along the a axis. O—H···O hydrogen bonding and weak C—H···O intermolecular interactions are shown by dashed lines.
Acetato(aqua){6,6'-dimethoxy-2,2'-[ethane-1,2- diylbis(nitrilomethanylylidene)]diphenolato}cobalt(III) methanol disolvate top
Crystal data top
[Co(C18H18N2O4)(C2H3O2)(H2O)]·2CH4OF(000) = 1104
Mr = 526.42Dx = 1.506 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8159 reflections
a = 9.6306 (3) Åθ = 4.6–32.6°
b = 13.4129 (5) ŵ = 0.80 mm1
c = 17.9746 (7) ÅT = 115 K
β = 90.716 (3)°Block, black
V = 2321.67 (15) Å30.49 × 0.45 × 0.38 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Mo) detector
7669 independent reflections
Radiation source: Enhance (Mo) X-ray Source5549 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.5081 pixels mm-1θmax = 32.7°, θmin = 4.6°
ω scansh = 1410
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1919
Tmin = 0.916, Tmax = 1.000l = 2624
16513 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0609P)2]
where P = (Fo2 + 2Fc2)/3
7669 reflections(Δ/σ)max = 0.003
322 parametersΔρmax = 0.86 e Å3
3 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Co(C18H18N2O4)(C2H3O2)(H2O)]·2CH4OV = 2321.67 (15) Å3
Mr = 526.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6306 (3) ŵ = 0.80 mm1
b = 13.4129 (5) ÅT = 115 K
c = 17.9746 (7) Å0.49 × 0.45 × 0.38 mm
β = 90.716 (3)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Mo) detector
7669 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
5549 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 1.000Rint = 0.027
16513 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0403 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.86 e Å3
7669 reflectionsΔρmin = 0.45 e Å3
322 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.466441 (15)0.494930 (12)0.628307 (8)0.01070 (3)
O10.51899 (8)0.38488 (6)0.56942 (4)0.01284 (17)
O20.61286 (8)0.56561 (6)0.58402 (4)0.01292 (17)
O30.66160 (8)0.25427 (7)0.49906 (5)0.01703 (19)
O40.81315 (8)0.63147 (7)0.50542 (5)0.0193 (2)
O110.57142 (8)0.45215 (7)0.71259 (4)0.01444 (18)
O120.74146 (9)0.41453 (8)0.78855 (5)0.0254 (2)
O1S0.97081 (11)0.51409 (8)0.82748 (6)0.0316 (3)
H1S0.90210.48050.81280.038*
O2S1.00189 (11)0.71051 (10)0.78342 (6)0.0372 (3)
H2S0.97670.65300.79590.045*
O1W0.34122 (8)0.53835 (7)0.54896 (4)0.01342 (17)
H1W10.3795 (14)0.5775 (9)0.5223 (8)0.033 (4)*
H1W20.3269 (17)0.4892 (8)0.5248 (9)0.035 (5)*
N10.31519 (9)0.42594 (8)0.66977 (5)0.0138 (2)
N20.40860 (9)0.60406 (8)0.68688 (5)0.0133 (2)
C10.49094 (12)0.29163 (9)0.58520 (6)0.0132 (2)
C20.56595 (12)0.21670 (9)0.54734 (6)0.0149 (2)
C30.73547 (13)0.18472 (10)0.45519 (7)0.0221 (3)
H3A0.78860.13980.48780.033*
H3B0.79920.22050.42250.033*
H3C0.66970.14580.42490.033*
C40.54031 (13)0.11683 (9)0.55913 (7)0.0186 (3)
H4A0.59140.06800.53270.022*
C50.43877 (13)0.08716 (10)0.61010 (7)0.0209 (3)
H5A0.42200.01840.61880.025*
C60.36441 (12)0.15766 (10)0.64706 (7)0.0192 (3)
H6A0.29530.13720.68110.023*
C70.38811 (12)0.26038 (9)0.63580 (6)0.0151 (2)
C80.30021 (12)0.33125 (10)0.67197 (6)0.0162 (3)
H8A0.22480.30580.69980.019*
C90.21663 (12)0.49324 (10)0.70532 (7)0.0180 (3)
H9A0.16270.45730.74340.022*
H9B0.15120.52150.66800.022*
C100.30322 (12)0.57550 (10)0.74114 (7)0.0172 (3)
H10A0.24390.63340.75330.021*
H10B0.34810.55110.78750.021*
C110.45679 (12)0.69332 (9)0.68597 (6)0.0148 (2)
H11A0.41600.74080.71830.018*
C120.56841 (12)0.72658 (9)0.63936 (6)0.0145 (2)
C130.60648 (12)0.82845 (9)0.64321 (7)0.0178 (3)
H13A0.55850.87220.67560.021*
C140.71224 (13)0.86428 (10)0.60043 (7)0.0209 (3)
H14A0.73670.93280.60290.025*
C150.78416 (13)0.80023 (10)0.55325 (7)0.0197 (3)
H15A0.85760.82540.52390.024*
C160.74939 (12)0.70131 (10)0.54911 (6)0.0153 (3)
C170.93798 (13)0.66034 (12)0.46918 (8)0.0283 (3)
H17A0.91780.71450.43410.042*
H17B0.97580.60310.44220.042*
H17C1.00600.68320.50640.042*
C180.63880 (11)0.66078 (9)0.59181 (6)0.0127 (2)
C11A0.69919 (12)0.43003 (10)0.72351 (7)0.0168 (3)
C12A0.79963 (13)0.42151 (12)0.66052 (7)0.0244 (3)
H12A0.84000.48710.65030.037*
H12B0.75070.39730.61600.037*
H12C0.87370.37460.67420.037*
C1S0.96778 (15)0.52329 (12)0.90478 (8)0.0308 (4)
H1S31.03500.57400.92090.046*
H1S10.99170.45920.92770.046*
H1S20.87450.54320.92000.046*
C2S0.97663 (17)0.72400 (13)0.70700 (9)0.0356 (4)
H2S10.99260.79400.69390.053*
H2S20.88020.70610.69510.053*
H2S31.03950.68140.67860.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.01352 (6)0.00968 (7)0.00896 (6)0.00053 (6)0.00239 (5)0.00046 (6)
O10.0197 (4)0.0074 (4)0.0115 (3)0.0009 (3)0.0038 (3)0.0000 (3)
O20.0161 (3)0.0090 (4)0.0138 (4)0.0018 (3)0.0036 (3)0.0012 (3)
O30.0225 (4)0.0118 (4)0.0169 (4)0.0007 (3)0.0048 (3)0.0034 (3)
O40.0208 (4)0.0178 (4)0.0195 (4)0.0061 (3)0.0090 (3)0.0042 (4)
O110.0165 (3)0.0155 (4)0.0114 (4)0.0009 (3)0.0014 (3)0.0005 (3)
O120.0227 (4)0.0368 (6)0.0167 (4)0.0030 (4)0.0017 (3)0.0068 (4)
O1S0.0299 (5)0.0407 (7)0.0243 (5)0.0068 (4)0.0029 (4)0.0023 (5)
O2S0.0404 (6)0.0390 (7)0.0321 (6)0.0006 (5)0.0006 (5)0.0016 (5)
O1W0.0178 (4)0.0106 (4)0.0118 (4)0.0020 (3)0.0015 (3)0.0002 (3)
N10.0145 (4)0.0156 (5)0.0114 (4)0.0009 (4)0.0023 (3)0.0013 (4)
N20.0159 (4)0.0134 (5)0.0107 (4)0.0016 (4)0.0018 (3)0.0014 (4)
C10.0180 (5)0.0107 (5)0.0109 (5)0.0016 (4)0.0023 (4)0.0003 (4)
C20.0183 (5)0.0125 (5)0.0138 (5)0.0004 (4)0.0019 (4)0.0004 (5)
C30.0238 (6)0.0196 (6)0.0231 (6)0.0053 (5)0.0041 (5)0.0066 (5)
C40.0255 (6)0.0103 (6)0.0200 (6)0.0009 (5)0.0032 (5)0.0017 (5)
C50.0288 (6)0.0103 (6)0.0236 (6)0.0034 (5)0.0043 (5)0.0035 (5)
C60.0220 (5)0.0167 (6)0.0188 (6)0.0055 (5)0.0002 (5)0.0048 (5)
C70.0184 (5)0.0128 (5)0.0141 (5)0.0023 (4)0.0003 (4)0.0005 (5)
C80.0168 (5)0.0196 (6)0.0122 (5)0.0048 (5)0.0029 (4)0.0020 (5)
C90.0148 (5)0.0204 (6)0.0189 (5)0.0003 (5)0.0049 (4)0.0020 (5)
C100.0187 (5)0.0191 (6)0.0138 (5)0.0005 (5)0.0052 (4)0.0030 (5)
C110.0168 (5)0.0153 (6)0.0124 (5)0.0025 (4)0.0000 (4)0.0031 (5)
C120.0172 (5)0.0127 (5)0.0135 (5)0.0011 (4)0.0010 (4)0.0019 (4)
C130.0238 (5)0.0117 (5)0.0177 (5)0.0014 (5)0.0027 (4)0.0035 (5)
C140.0289 (6)0.0115 (6)0.0223 (6)0.0042 (5)0.0031 (5)0.0000 (5)
C150.0233 (5)0.0177 (6)0.0181 (6)0.0070 (5)0.0010 (5)0.0008 (5)
C160.0183 (5)0.0157 (6)0.0119 (5)0.0016 (4)0.0007 (4)0.0017 (5)
C170.0224 (6)0.0340 (8)0.0287 (7)0.0086 (6)0.0114 (5)0.0055 (6)
C180.0153 (5)0.0110 (5)0.0118 (5)0.0013 (4)0.0014 (4)0.0006 (4)
C11A0.0192 (5)0.0145 (6)0.0167 (5)0.0020 (5)0.0010 (4)0.0014 (5)
C12A0.0183 (5)0.0338 (8)0.0211 (6)0.0070 (5)0.0044 (5)0.0040 (6)
C1S0.0294 (7)0.0370 (9)0.0260 (7)0.0033 (6)0.0021 (6)0.0010 (7)
C2S0.0403 (8)0.0391 (9)0.0275 (7)0.0132 (7)0.0039 (6)0.0047 (7)
Geometric parameters (Å, º) top
Co—O21.8839 (8)C6—C71.4115 (18)
Co—N11.8870 (10)C6—H6A0.9500
Co—O11.8892 (8)C7—C81.4342 (17)
Co—N21.8910 (10)C8—H8A0.9500
Co—O111.8995 (8)C9—C101.5211 (18)
Co—O1W1.9454 (8)C9—H9A0.9900
O1—C11.3113 (14)C9—H9B0.9900
O2—C181.3079 (14)C10—H10A0.9900
O3—C21.3696 (14)C10—H10B0.9900
O3—C31.4185 (15)C11—C121.4419 (16)
O4—C161.3723 (15)C11—H11A0.9500
O4—C171.4279 (15)C12—C181.4083 (16)
O11—C11A1.2786 (14)C12—C131.4162 (17)
O12—C11A1.2505 (15)C13—C141.3708 (18)
O1S—C1S1.3956 (18)C13—H13A0.9500
O1S—H1S0.8400C14—C151.3970 (19)
O2S—C2S1.4038 (18)C14—H14A0.9500
O2S—H2S0.8400C15—C161.3702 (18)
O1W—H1W10.803 (11)C15—H15A0.9500
O1W—H1W20.801 (11)C16—C181.4281 (16)
N1—C81.2789 (17)C17—H17A0.9800
N1—C91.4625 (16)C17—H17B0.9800
N2—C111.2842 (16)C17—H17C0.9800
N2—C101.4672 (15)C11A—C12A1.5027 (17)
C1—C71.4164 (16)C12A—H12A0.9800
C1—C21.4168 (17)C12A—H12B0.9800
C2—C41.3790 (17)C12A—H12C0.9800
C3—H3A0.9800C1S—H1S30.9800
C3—H3B0.9800C1S—H1S10.9800
C3—H3C0.9800C1S—H1S20.9800
C4—C51.4058 (18)C2S—H2S10.9800
C4—H4A0.9500C2S—H2S20.9800
C5—C61.3640 (19)C2S—H2S30.9800
C5—H5A0.9500
O2—Co—N1177.81 (4)N1—C9—H9A110.5
O2—Co—O187.09 (3)C10—C9—H9A110.5
N1—Co—O192.96 (4)N1—C9—H9B110.5
O2—Co—N294.18 (4)C10—C9—H9B110.5
N1—Co—N285.73 (4)H9A—C9—H9B108.7
O1—Co—N2178.40 (4)N2—C10—C9106.75 (9)
O2—Co—O1195.47 (3)N2—C10—H10A110.4
N1—Co—O1186.71 (4)C9—C10—H10A110.4
O1—Co—O1193.85 (4)N2—C10—H10B110.4
N2—Co—O1186.98 (4)C9—C10—H10B110.4
O2—Co—O1W90.00 (3)H10A—C10—H10B108.6
N1—Co—O1W87.81 (4)N2—C11—C12124.61 (11)
O1—Co—O1W89.49 (4)N2—C11—H11A117.7
N2—Co—O1W89.55 (4)C12—C11—H11A117.7
O11—Co—O1W173.73 (3)C18—C12—C13120.53 (11)
C1—O1—Co124.52 (7)C18—C12—C11121.78 (11)
C18—O2—Co126.08 (7)C13—C12—C11117.68 (11)
C2—O3—C3117.14 (10)C14—C13—C12120.30 (12)
C16—O4—C17117.47 (10)C14—C13—H13A119.8
C11A—O11—Co133.96 (8)C12—C13—H13A119.8
C1S—O1S—H1S109.5C13—C14—C15120.16 (12)
C2S—O2S—H2S109.5C13—C14—H14A119.9
Co—O1W—H1W1110.4 (11)C15—C14—H14A119.9
Co—O1W—H1W2104.6 (11)C16—C15—C14120.38 (12)
H1W1—O1W—H1W2107.0 (14)C16—C15—H15A119.8
C8—N1—C9121.69 (10)C14—C15—H15A119.8
C8—N1—Co125.95 (8)C15—C16—O4125.54 (11)
C9—N1—Co112.23 (8)C15—C16—C18121.52 (11)
C11—N2—C10120.33 (10)O4—C16—C18112.94 (11)
C11—N2—Co127.27 (8)O4—C17—H17A109.5
C10—N2—Co112.27 (8)O4—C17—H17B109.5
O1—C1—C7124.67 (11)H17A—C17—H17B109.5
O1—C1—C2117.72 (10)O4—C17—H17C109.5
C7—C1—C2117.59 (11)H17A—C17—H17C109.5
O3—C2—C4125.31 (11)H17B—C17—H17C109.5
O3—C2—C1113.22 (10)O2—C18—C12125.72 (10)
C4—C2—C1121.46 (11)O2—C18—C16117.18 (10)
O3—C3—H3A109.5C12—C18—C16117.10 (11)
O3—C3—H3B109.5O12—C11A—O11118.92 (11)
H3A—C3—H3B109.5O12—C11A—C12A119.12 (11)
O3—C3—H3C109.5O11—C11A—C12A121.96 (11)
H3A—C3—H3C109.5C11A—C12A—H12A109.5
H3B—C3—H3C109.5C11A—C12A—H12B109.5
C2—C4—C5120.17 (12)H12A—C12A—H12B109.5
C2—C4—H4A119.9C11A—C12A—H12C109.5
C5—C4—H4A119.9H12A—C12A—H12C109.5
C6—C5—C4119.66 (12)H12B—C12A—H12C109.5
C6—C5—H5A120.2O1S—C1S—H1S3109.5
C4—C5—H5A120.2O1S—C1S—H1S1109.5
C5—C6—C7121.33 (11)H1S3—C1S—H1S1109.5
C5—C6—H6A119.3O1S—C1S—H1S2109.5
C7—C6—H6A119.3H1S3—C1S—H1S2109.5
C6—C7—C1119.78 (11)H1S1—C1S—H1S2109.5
C6—C7—C8118.98 (11)O2S—C2S—H2S1109.5
C1—C7—C8121.08 (11)O2S—C2S—H2S2109.5
N1—C8—C7125.23 (11)H2S1—C2S—H2S2109.5
N1—C8—H8A117.4O2S—C2S—H2S3109.5
C7—C8—H8A117.4H2S1—C2S—H2S3109.5
N1—C9—C10106.10 (9)H2S2—C2S—H2S3109.5
O2—Co—O1—C1156.99 (9)C5—C6—C7—C10.00 (18)
N1—Co—O1—C125.20 (9)C5—C6—C7—C8175.51 (11)
O11—Co—O1—C161.70 (9)O1—C1—C7—C6178.37 (11)
O1W—Co—O1—C1112.98 (9)C2—C1—C7—C60.33 (16)
O1—Co—O2—C18172.53 (9)O1—C1—C7—C82.96 (17)
N2—Co—O2—C186.52 (9)C2—C1—C7—C8175.08 (10)
O11—Co—O2—C1893.88 (9)C9—N1—C8—C7176.95 (11)
O1W—Co—O2—C1883.04 (9)Co—N1—C8—C77.49 (17)
O2—Co—O11—C11A31.86 (12)C6—C7—C8—N1175.92 (11)
N1—Co—O11—C11A148.33 (12)C1—C7—C8—N18.64 (18)
O1—Co—O11—C11A55.58 (12)C8—N1—C9—C10139.65 (11)
N2—Co—O11—C11A125.78 (12)Co—N1—C9—C1036.47 (11)
O1—Co—N1—C820.37 (10)C11—N2—C10—C9150.81 (11)
N2—Co—N1—C8160.54 (10)Co—N2—C10—C933.08 (11)
O11—Co—N1—C873.33 (10)N1—C9—C10—N243.52 (12)
O1W—Co—N1—C8109.74 (10)C10—N2—C11—C12174.50 (10)
O1—Co—N1—C9163.71 (8)Co—N2—C11—C120.97 (17)
N2—Co—N1—C915.38 (8)N2—C11—C12—C182.50 (18)
O11—Co—N1—C9102.60 (8)N2—C11—C12—C13177.98 (11)
O1W—Co—N1—C974.34 (8)C18—C12—C13—C140.19 (18)
O2—Co—N2—C114.50 (10)C11—C12—C13—C14179.72 (11)
N1—Co—N2—C11173.30 (10)C12—C13—C14—C150.64 (19)
O11—Co—N2—C1199.77 (10)C13—C14—C15—C160.24 (19)
O1W—Co—N2—C1185.47 (10)C14—C15—C16—O4179.43 (11)
O2—Co—N2—C10171.28 (7)C14—C15—C16—C180.62 (18)
N1—Co—N2—C1010.92 (8)C17—O4—C16—C159.33 (17)
O11—Co—N2—C1076.01 (8)C17—O4—C16—C18170.72 (10)
O1W—Co—N2—C1098.75 (8)Co—O2—C18—C125.24 (16)
Co—O1—C1—C717.82 (15)Co—O2—C18—C16175.66 (7)
Co—O1—C1—C2164.14 (8)C13—C12—C18—O2179.73 (11)
C3—O3—C2—C43.12 (16)C11—C12—C18—O20.22 (18)
C3—O3—C2—C1176.12 (10)C13—C12—C18—C160.62 (16)
O1—C1—C2—O31.04 (15)C11—C12—C18—C16178.88 (10)
C7—C1—C2—O3179.22 (10)C15—C16—C18—O2179.78 (11)
O1—C1—C2—C4178.23 (10)O4—C16—C18—O20.17 (14)
C7—C1—C2—C40.05 (16)C15—C16—C18—C121.04 (17)
O3—C2—C4—C5179.75 (11)O4—C16—C18—C12179.01 (10)
C1—C2—C4—C50.56 (18)Co—O11—C11A—O12172.02 (9)
C2—C4—C5—C60.90 (18)Co—O11—C11A—C12A8.37 (19)
C4—C5—C6—C70.62 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1S···O120.841.832.6671 (14)174
O2S—H2S···O1S0.841.952.7682 (17)165
O1W—H1W1···O1i0.80 (1)1.99 (1)2.7334 (11)153 (1)
O1W—H1W1···O3i0.80 (1)2.32 (1)2.9124 (13)131 (1)
O1W—H1W2···O2i0.80 (1)2.18 (2)2.8071 (11)136 (1)
O1W—H1W2···O4i0.80 (1)2.17 (1)2.8840 (12)148 (2)
C9—H9A···O1Sii0.992.523.2610 (16)132
C13—H13A···O11iii0.952.613.5380 (15)165
C12A—H12B···O10.982.383.1807 (15)139
C8—H8A···O2Siv0.952.553.4335 (16)155
C10—H10A···O2Sii0.992.613.5119 (17)151
C12A—H12C···O2Sv0.982.623.5541 (19)161
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y1/2, z+3/2; (v) x+2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Co(C18H18N2O4)(C2H3O2)(H2O)]·2CH4O
Mr526.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)115
a, b, c (Å)9.6306 (3), 13.4129 (5), 17.9746 (7)
β (°) 90.716 (3)
V3)2321.67 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.49 × 0.45 × 0.38
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Ruby (Gemini Mo) detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.916, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
16513, 7669, 5549
Rint0.027
(sin θ/λ)max1)0.761
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.00
No. of reflections7669
No. of parameters322
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.86, 0.45

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co—O21.8839 (8)Co—N21.8910 (10)
Co—N11.8870 (10)Co—O111.8995 (8)
Co—O11.8892 (8)Co—O1W1.9454 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1S—H1S···O120.841.832.6671 (14)173.7
O2S—H2S···O1S0.841.952.7682 (17)164.8
O1W—H1W1···O1i0.803 (11)1.992 (13)2.7334 (11)153.2 (13)
O1W—H1W1···O3i0.803 (11)2.322 (12)2.9124 (13)130.9 (13)
O1W—H1W2···O2i0.801 (11)2.175 (15)2.8071 (11)136.0 (14)
O1W—H1W2···O4i0.801 (11)2.171 (12)2.8840 (12)148.4 (16)
C9—H9A···O1Sii0.992.523.2610 (16)131.5
C13—H13A···O11iii0.952.613.5380 (15)165.1
C12A—H12B···O10.982.383.1807 (15)138.6
C8—H8A···O2Siv0.952.553.4335 (16)154.5
C10—H10A···O2Sii0.992.613.5119 (17)151.0
C12A—H12C···O2Sv0.982.623.5541 (19)160.5
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y1/2, z+3/2; (v) x+2, y1/2, z+3/2.
 

Acknowledgements

RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

References

First citationAssey, G. E., Butcher, A. M., Butcher, R. J. & Gultneh, Y. (2010a). Acta Cryst. E66, m1384–m1385.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAssey, G., Butcher, R. J. & Gultneh, Y. (2010b). Acta Cryst. E66, m851–m852.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAyikoe, K., Butcher, R. J. & Gultneh, Y. (2010). Acta Cryst. E66, m1487–m1488.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAyikoé, K., Butcher, R. J. & Gultneh, Y. (2011). Acta Cryst. E67, m328.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBao, Y., Li, H.-F., Yan, P.-F., Li, G.-M. & Hou, G.-F. (2009). Acta Cryst. E65, m770.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHaak, R. M., Martínez Belmonte, M., Escudero-Adán, E. C., Benet-Buchholz, J. & Kleij, A. W. (2010). Dalton Trans. 39, 593–602.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuie, B. T., Leyden, R. M. & Schaefer, W. P. (1979). Inorg. Chem. 18, 125–129.  CSD CrossRef CAS Web of Science Google Scholar
First citationLin, Y., Li, G.-M., Chen, P., Yan, P.-F. & Hou, G.-F. (2011). Acta Cryst. E67, m1162.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLindblom, L. A., Schaefer, W. P. & Marsh, R. E. (1971). Acta Cryst. B27, 1461–1467.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMorandi, B., Mariampillai, B. & Carreira, E. M. (2011). Angew. Chem. Int. Ed. 50, 1101–1104.  Web of Science CSD CrossRef CAS Google Scholar
First citationNabei, A., Kuroda-Sowa, T., Okubo, T., Maekawa, M. & Munakata, M. (2009). Acta Cryst. E65, m188–m189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds