organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Di­methylamino-1-(2-eth­oxy-2-oxo­ethyl)-3-methyl-3,4,5,6-tetra­hydro­pyrimidin-1-ium tetra­phenylborate

aInstitut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany, and bFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany
*Correspondence e-mail: willi.kantlehner@htw-aalen.de

(Received 24 May 2012; accepted 25 May 2012; online 2 June 2012)

Isolated guanidinium ions and tetra­phenyl­borate ions are present in the crystal structure of the title compound, C11H22N3O2+·C24H20B. In the guanidinium ion, the dihedral angle between the N/C/N and C/C/C planes being 49.9 (1)°. The six-membered ring exhibits a half-chair conformation. The C—N bond lengths in the cation range between 1.3335 (16) and 1.3552 (16) Å, indicating charge delocalization on the CN3 plane. In the crystal, the cations are connected by C—H⋯O hydrogen bonds, generating a chain along the c axis.

Related literature

For the synthesis and nematocidal activity of aryl­vinyl­tetra­hydro­pyrimidines, see: Kraouti et al. (1993[Kraouti, N., Caujolle, R., Labidalle, S., Payard, M., Bories, C., Loiseau, P. M. & Gayral, P. (1993). Eur. J. Med. Chem. 28, 979-982.]). For the synthesis and nematocidal activity of pyran­tel analogs, see: Kraouti et al. (1995[Kraouti, N., Caujolle, R., Labidalle, S., Payard, M., Loiseau, P. M., Bories, C. & Gayral, P. (1995). Eur. J. Med. Chem. 30, 509-513.]). For the synthesis of 1-methyl-2-dimethyl­amino-1,4,5,6-tetra­hydro­pyrimidine and derived cyclic guanidinium salts, see: Tiritiris & Kantlehner (2012[Tiritiris, I. & Kantlehner, W. (2012). Z. Naturforsch. Teil B. In the press.]).

[Scheme 1]

Experimental

Crystal data
  • C11H22N3O2+·C24H20B

  • Mr = 547.53

  • Monoclinic, P 21 /c

  • a = 14.3582 (5) Å

  • b = 10.3377 (3) Å

  • c = 20.6302 (9) Å

  • β = 105.615 (1)°

  • V = 2949.14 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.23 × 0.16 × 0.13 mm

Data collection
  • Bruker–Nonius Kappa CCD diffractometer

  • 13034 measured reflections

  • 6747 independent reflections

  • 5041 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.097

  • S = 1.02

  • 6747 reflections

  • 374 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O1i 0.99 2.44 3.397 (2) 163
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Tetrahydropyrimidine derivatives very often show pharmacologic activity. Prominent members are the cyclic amidines oxantel (Kraouti et al., 1993) and pyrantel (Kraouti et al., 1995), which are showing an anthelmintic effect against intestinal nematode infestations in humans and animals. 1-Methyl-2-dimethylamino-1,4,5,6-tetrahydropyrimidine (Tiritiris & Kantlehner, 2012), a cyclic guanidine derivative synthesized by us recently, could be used as a new candidate for preparing potentially pharmacologically active compounds in this field. By alkylation of the free nitrogen of the guanidine base, various cyclic guanidinium salts have been obtained and characterised (Tiritiris & Kantlehner, 2012). One of them, is the here presented title compound (Fig. 1). In the crystal structure of the salt,

isolated cations and anions are present. No specific interactions between the guanidinium ions and the tetraphenylborate ions have been observed. Prominent bond parameters in the guanidinium ion are: C1–N1 = 1.355 (2) Å, C1–N2 = 1.334 (2) Å and C1–N3 = 1.343 (2) Å. The N–C1–N angles are: 120.0 (1)° (N1–C1–N2), 120.3 (1)° (N2–C1–N3) and 119.8 (1)° (N1–C1–N3), which indicates a nearly ideal trigonal-planar surrounding of the carbon centre by the nitrogen atoms. The positive charge is completely delocalized on the CN3 plane. Bond lengths between carbon and oxygen atoms in the ethoxycarbonylmethyl group are: C9–O1 = 1.206 (2) Å, C9–O2 = 1.333 (2) Å and C10–O2 = 1.467 (2) Å. The six membered ring is non planar (Fig. 1). The carbon atom C6 is not in the ring plane, the angle between the planes N3/C1/N2 and C5/C6/C7 is 49.9 (1)°. Finally, weak C–H···O hydrogen bonds between methylene hydrogen atoms and carbonyl oxygen atoms of neighbouring guanidinium ions have been determined [d(H···O) = 2.44 Å] (Tab. 1). The cations are connected by C–H···O hydrogen bonds, generating a chain (Fig. 2). The anions are packed inbetween these chains using van der Waals interactions, only.

Related literature top

For the synthesis and nematocidal activity of arylvinyltetrahydropyrimidines, see: Kraouti et al. (1993). For the synthesis and nematocidal activity of pyrantel analogs, see: Kraouti et al. (1995). For the synthesis of 1-methyl-2-dimethylamino-1,4,5,6-tetrahydropyrimidine and derived cyclic guanidinium salts, see: Tiritiris & Kantlehner (2012).

Experimental top

The title compound was obtained by reaction of 1-methyl-2-dimethylamino-1,4,5,6-tetrahydropyrimidine with bromoacetic acid ethyl ester in acetonitrile at room temperature. After evaporation of the solvent the crude 2-dimethylamino-3-ethoxycarbonylmethyl-1-methyl-1,4,5,6- tetrahydropyrimidinium-bromide (I) was washed with diethylether and dried in vacuo. 1.05 g (3.4 mmol) of (I) was dissolved in 20 mL acetonitrile and 1.16 g (3.4 mmol) of sodium tetraphenylborate in 10 mL acetonitrile was added. After stirring for one h at room temperature, the precipitated sodium bromide was filtered off. The title compound crystallised from a saturated acetonitrile solution after several days at 273 K, forming colourless single crystals. Yield: 1.43 g (78.8%).

Refinement top

The hydrogen atoms of the methyl groups were allowed to rotate with a fixed angle around the C–N bond to best fit the experimental electron density, with U(H) set to 1.5 Ueq(C) and d(C—H) = 0.98 Å. The remaining H atoms were placed in calculated positions with d(C—H) = 0.99 Å (H atoms in CH2 groups) and (C—H) = 0.95 Å (H atoms in aromatic rings). They were included in the refinement in the riding model approximation, with U(H) set to 1.2 Ueq(C).

Structure description top

Tetrahydropyrimidine derivatives very often show pharmacologic activity. Prominent members are the cyclic amidines oxantel (Kraouti et al., 1993) and pyrantel (Kraouti et al., 1995), which are showing an anthelmintic effect against intestinal nematode infestations in humans and animals. 1-Methyl-2-dimethylamino-1,4,5,6-tetrahydropyrimidine (Tiritiris & Kantlehner, 2012), a cyclic guanidine derivative synthesized by us recently, could be used as a new candidate for preparing potentially pharmacologically active compounds in this field. By alkylation of the free nitrogen of the guanidine base, various cyclic guanidinium salts have been obtained and characterised (Tiritiris & Kantlehner, 2012). One of them, is the here presented title compound (Fig. 1). In the crystal structure of the salt,

isolated cations and anions are present. No specific interactions between the guanidinium ions and the tetraphenylborate ions have been observed. Prominent bond parameters in the guanidinium ion are: C1–N1 = 1.355 (2) Å, C1–N2 = 1.334 (2) Å and C1–N3 = 1.343 (2) Å. The N–C1–N angles are: 120.0 (1)° (N1–C1–N2), 120.3 (1)° (N2–C1–N3) and 119.8 (1)° (N1–C1–N3), which indicates a nearly ideal trigonal-planar surrounding of the carbon centre by the nitrogen atoms. The positive charge is completely delocalized on the CN3 plane. Bond lengths between carbon and oxygen atoms in the ethoxycarbonylmethyl group are: C9–O1 = 1.206 (2) Å, C9–O2 = 1.333 (2) Å and C10–O2 = 1.467 (2) Å. The six membered ring is non planar (Fig. 1). The carbon atom C6 is not in the ring plane, the angle between the planes N3/C1/N2 and C5/C6/C7 is 49.9 (1)°. Finally, weak C–H···O hydrogen bonds between methylene hydrogen atoms and carbonyl oxygen atoms of neighbouring guanidinium ions have been determined [d(H···O) = 2.44 Å] (Tab. 1). The cations are connected by C–H···O hydrogen bonds, generating a chain (Fig. 2). The anions are packed inbetween these chains using van der Waals interactions, only.

For the synthesis and nematocidal activity of arylvinyltetrahydropyrimidines, see: Kraouti et al. (1993). For the synthesis and nematocidal activity of pyrantel analogs, see: Kraouti et al. (1995). For the synthesis of 1-methyl-2-dimethylamino-1,4,5,6-tetrahydropyrimidine and derived cyclic guanidinium salts, see: Tiritiris & Kantlehner (2012).

Computing details top

Data collection: COLLECT (Hooft, 2004); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with atom labels and 50% probability displacement ellipsoids. All H atoms have been omitted for clarity.
[Figure 2] Fig. 2. C—H···O hydrogen bonds between the guanidinium ions in ab-view. The hydrogen bonds are indicated by dashed lines.
2-Dimethylamino-1-(2-ethoxy-2-oxoethyl)-3-methyl-3,4,5,6- tetrahydropyrimidin-1-ium tetraphenylborate top
Crystal data top
C11H22N3O2+·C24H20BF(000) = 1176
Mr = 547.53Dx = 1.233 Mg m3
Monoclinic, P21/cMelting point: 458 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.3582 (5) ÅCell parameters from 7081 reflections
b = 10.3377 (3) Åθ = 0.4–27.5°
c = 20.6302 (9) ŵ = 0.08 mm1
β = 105.615 (1)°T = 100 K
V = 2949.14 (19) Å3Polyhedral, colourless
Z = 40.23 × 0.16 × 0.13 mm
Data collection top
Bruker–Nonius Kappa CCD
diffractometer
5041 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.035
Graphite monochromatorθmax = 27.5°, θmin = 1.5°
φ scans, and ω scansh = 1818
13034 measured reflectionsk = 1313
6747 independent reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.097H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.9044P]
where P = (Fo2 + 2Fc2)/3
6747 reflections(Δ/σ)max < 0.001
374 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C11H22N3O2+·C24H20BV = 2949.14 (19) Å3
Mr = 547.53Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.3582 (5) ŵ = 0.08 mm1
b = 10.3377 (3) ÅT = 100 K
c = 20.6302 (9) Å0.23 × 0.16 × 0.13 mm
β = 105.615 (1)°
Data collection top
Bruker–Nonius Kappa CCD
diffractometer
5041 reflections with I > 2σ(I)
13034 measured reflectionsRint = 0.035
6747 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
6747 reflectionsΔρmin = 0.21 e Å3
374 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.28958 (8)0.25769 (11)0.34347 (6)0.0115 (3)
N10.27143 (7)0.17051 (10)0.38759 (5)0.0139 (2)
C20.17367 (9)0.12719 (13)0.38452 (7)0.0175 (3)
H2A0.12730.17240.34800.026*
H2B0.15930.14620.42730.026*
H2C0.16870.03380.37620.026*
C30.34770 (9)0.12482 (13)0.44516 (7)0.0173 (3)
H3A0.41090.15040.43970.026*
H3B0.34460.03030.44790.026*
H3C0.33880.16310.48660.026*
N20.34721 (7)0.35845 (10)0.36596 (5)0.0130 (2)
C40.35502 (10)0.41502 (13)0.43243 (6)0.0175 (3)
H4A0.31160.36920.45400.026*
H4B0.33690.50660.42730.026*
H4C0.42180.40710.46040.026*
C50.37840 (9)0.44036 (12)0.31723 (6)0.0151 (3)
H5A0.42790.39480.30050.018*
H5B0.40680.52190.33900.018*
C60.29063 (9)0.46922 (12)0.25951 (7)0.0163 (3)
H6A0.24050.51330.27640.020*
H6B0.30870.52660.22640.020*
C70.25227 (10)0.34237 (13)0.22685 (6)0.0177 (3)
H7A0.18600.35550.19750.021*
H7B0.29350.31280.19830.021*
N30.25016 (7)0.24143 (10)0.27716 (5)0.0130 (2)
C80.21616 (9)0.11507 (12)0.24902 (6)0.0146 (3)
H8A0.24000.04780.28370.017*
H8B0.24350.09660.21080.017*
C90.10628 (9)0.10783 (12)0.22489 (6)0.0147 (3)
O10.05354 (6)0.20070 (9)0.21392 (5)0.0202 (2)
O20.07769 (6)0.01524 (9)0.21815 (5)0.0186 (2)
C100.02683 (9)0.03720 (13)0.19344 (7)0.0199 (3)
H10A0.06180.03320.20940.024*
H10B0.04370.11990.21170.024*
C110.05773 (10)0.04170 (14)0.11791 (7)0.0229 (3)
H11A0.04200.04070.09990.034*
H11B0.12760.05660.10240.034*
H11C0.02370.11210.10210.034*
B10.72345 (10)0.26120 (14)0.43053 (7)0.0121 (3)
C120.62846 (8)0.20787 (11)0.37300 (6)0.0118 (2)
C130.57673 (9)0.09718 (12)0.38220 (6)0.0158 (3)
H13A0.59350.05600.42490.019*
C140.50187 (9)0.04537 (13)0.33128 (7)0.0181 (3)
H14A0.46810.02890.34000.022*
C150.47629 (9)0.10144 (13)0.26797 (7)0.0162 (3)
H15A0.42510.06660.23310.019*
C160.52690 (9)0.20960 (12)0.25643 (6)0.0151 (3)
H16A0.51090.24870.21320.018*
C170.60097 (9)0.26084 (12)0.30805 (6)0.0131 (3)
H17A0.63440.33500.29890.016*
C180.73770 (9)0.41831 (12)0.42497 (6)0.0126 (3)
C190.65918 (9)0.50381 (12)0.40846 (6)0.0142 (3)
H19A0.59560.46910.39600.017*
C200.67052 (10)0.63761 (12)0.40953 (6)0.0165 (3)
H20A0.61520.69200.39760.020*
C210.76223 (10)0.69196 (12)0.42790 (6)0.0175 (3)
H21A0.77030.78320.42880.021*
C220.84182 (10)0.61043 (13)0.44488 (7)0.0184 (3)
H22A0.90520.64590.45770.022*
C230.82928 (9)0.47688 (12)0.44329 (6)0.0158 (3)
H23A0.88500.42310.45510.019*
C240.71533 (9)0.24075 (11)0.50776 (6)0.0123 (3)
C250.62668 (9)0.24171 (12)0.52421 (7)0.0152 (3)
H25A0.56870.24740.48880.018*
C260.62008 (10)0.23463 (12)0.59031 (7)0.0193 (3)
H26A0.55840.23430.59900.023*
C270.70307 (11)0.22805 (13)0.64337 (7)0.0215 (3)
H27A0.69890.22250.68850.026*
C280.79239 (10)0.22970 (13)0.62940 (7)0.0201 (3)
H28A0.85000.22690.66520.024*
C290.79771 (10)0.23546 (12)0.56298 (6)0.0158 (3)
H29A0.85970.23580.55470.019*
C300.81220 (8)0.17917 (12)0.41432 (6)0.0126 (3)
C310.84580 (9)0.06116 (12)0.44527 (7)0.0161 (3)
H31A0.82150.03190.48120.019*
C320.91335 (9)0.01510 (13)0.42549 (7)0.0198 (3)
H32A0.93500.09380.44840.024*
C330.94894 (9)0.02374 (13)0.37262 (7)0.0217 (3)
H33A0.99410.02850.35830.026*
C340.91763 (9)0.14018 (14)0.34078 (7)0.0201 (3)
H34A0.94180.16830.30460.024*
C350.85121 (9)0.21571 (13)0.36156 (6)0.0158 (3)
H35A0.83130.29540.33920.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0109 (6)0.0104 (6)0.0133 (6)0.0025 (5)0.0037 (5)0.0003 (5)
N10.0139 (5)0.0132 (5)0.0138 (5)0.0011 (4)0.0025 (4)0.0033 (4)
C20.0178 (6)0.0163 (6)0.0195 (7)0.0016 (5)0.0071 (5)0.0022 (5)
C30.0208 (7)0.0149 (6)0.0146 (6)0.0026 (5)0.0021 (5)0.0031 (5)
N20.0155 (5)0.0122 (5)0.0115 (5)0.0021 (4)0.0040 (4)0.0007 (4)
C40.0224 (7)0.0155 (6)0.0139 (6)0.0024 (5)0.0039 (5)0.0038 (5)
C50.0168 (6)0.0133 (6)0.0164 (6)0.0025 (5)0.0066 (5)0.0002 (5)
C60.0183 (6)0.0143 (6)0.0172 (6)0.0007 (5)0.0065 (5)0.0035 (5)
C70.0229 (7)0.0176 (7)0.0116 (6)0.0019 (5)0.0030 (5)0.0027 (5)
N30.0160 (5)0.0109 (5)0.0115 (5)0.0011 (4)0.0027 (4)0.0005 (4)
C80.0163 (6)0.0119 (6)0.0150 (6)0.0011 (5)0.0034 (5)0.0032 (5)
C90.0189 (6)0.0131 (6)0.0119 (6)0.0019 (5)0.0041 (5)0.0031 (5)
O10.0177 (5)0.0153 (5)0.0266 (5)0.0016 (4)0.0041 (4)0.0034 (4)
O20.0182 (5)0.0145 (5)0.0209 (5)0.0037 (4)0.0015 (4)0.0023 (4)
C100.0180 (7)0.0197 (7)0.0228 (7)0.0063 (5)0.0070 (5)0.0031 (6)
C110.0200 (7)0.0246 (7)0.0226 (7)0.0001 (6)0.0032 (6)0.0010 (6)
B10.0146 (7)0.0124 (7)0.0094 (7)0.0008 (5)0.0033 (5)0.0003 (5)
C120.0124 (6)0.0109 (6)0.0130 (6)0.0014 (5)0.0050 (5)0.0020 (5)
C130.0202 (7)0.0147 (6)0.0126 (6)0.0012 (5)0.0044 (5)0.0008 (5)
C140.0197 (7)0.0151 (6)0.0210 (7)0.0062 (5)0.0083 (5)0.0046 (5)
C150.0127 (6)0.0186 (7)0.0165 (6)0.0001 (5)0.0026 (5)0.0074 (5)
C160.0178 (6)0.0158 (6)0.0115 (6)0.0037 (5)0.0036 (5)0.0006 (5)
C170.0151 (6)0.0107 (6)0.0145 (6)0.0005 (5)0.0055 (5)0.0011 (5)
C180.0180 (6)0.0132 (6)0.0069 (6)0.0009 (5)0.0040 (5)0.0002 (5)
C190.0165 (6)0.0156 (6)0.0103 (6)0.0015 (5)0.0033 (5)0.0014 (5)
C200.0227 (7)0.0149 (6)0.0114 (6)0.0041 (5)0.0036 (5)0.0002 (5)
C210.0308 (7)0.0115 (6)0.0107 (6)0.0032 (5)0.0066 (5)0.0003 (5)
C220.0198 (7)0.0185 (7)0.0174 (7)0.0065 (5)0.0059 (5)0.0013 (5)
C230.0172 (6)0.0145 (6)0.0154 (6)0.0004 (5)0.0038 (5)0.0001 (5)
C240.0182 (6)0.0062 (5)0.0129 (6)0.0008 (5)0.0049 (5)0.0005 (5)
C250.0192 (6)0.0103 (6)0.0172 (6)0.0018 (5)0.0068 (5)0.0009 (5)
C260.0273 (7)0.0120 (6)0.0237 (7)0.0019 (5)0.0157 (6)0.0006 (5)
C270.0407 (8)0.0136 (6)0.0133 (6)0.0003 (6)0.0127 (6)0.0000 (5)
C280.0299 (8)0.0149 (6)0.0129 (6)0.0007 (6)0.0013 (5)0.0009 (5)
C290.0187 (6)0.0133 (6)0.0152 (6)0.0012 (5)0.0044 (5)0.0004 (5)
C300.0116 (6)0.0133 (6)0.0122 (6)0.0039 (5)0.0017 (5)0.0042 (5)
C310.0164 (6)0.0149 (6)0.0167 (7)0.0018 (5)0.0038 (5)0.0013 (5)
C320.0162 (6)0.0143 (6)0.0265 (7)0.0004 (5)0.0017 (5)0.0036 (6)
C330.0123 (6)0.0207 (7)0.0325 (8)0.0017 (5)0.0066 (6)0.0124 (6)
C340.0169 (7)0.0242 (7)0.0219 (7)0.0063 (6)0.0098 (5)0.0071 (6)
C350.0159 (6)0.0154 (6)0.0162 (6)0.0036 (5)0.0044 (5)0.0031 (5)
Geometric parameters (Å, º) top
C1—N21.3335 (16)C12—C131.4047 (17)
C1—N31.3427 (16)C13—C141.3921 (18)
C1—N11.3552 (16)C13—H13A0.9500
N1—C21.4584 (16)C14—C151.3851 (19)
N1—C31.4604 (16)C14—H14A0.9500
C2—H2A0.9800C15—C161.3886 (18)
C2—H2B0.9800C15—H15A0.9500
C2—H2C0.9800C16—C171.3914 (17)
C3—H3A0.9800C16—H16A0.9500
C3—H3B0.9800C17—H17A0.9500
C3—H3C0.9800C18—C191.4005 (18)
N2—C41.4672 (16)C18—C231.4040 (18)
N2—C51.4732 (16)C19—C201.3923 (18)
C4—H4A0.9800C19—H19A0.9500
C4—H4B0.9800C20—C211.3872 (19)
C4—H4C0.9800C20—H20A0.9500
C5—C61.5123 (18)C21—C221.3869 (19)
C5—H5A0.9900C21—H21A0.9500
C5—H5B0.9900C22—C231.3916 (18)
C6—C71.5091 (18)C22—H22A0.9500
C6—H6A0.9900C23—H23A0.9500
C6—H6B0.9900C24—C251.4028 (18)
C7—N31.4779 (16)C24—C291.4052 (18)
C7—H7A0.9900C25—C261.3940 (19)
C7—H7B0.9900C25—H25A0.9500
N3—C81.4592 (15)C26—C271.386 (2)
C8—C91.5231 (18)C26—H26A0.9500
C8—H8A0.9900C27—C281.388 (2)
C8—H8B0.9900C27—H27A0.9500
C9—O11.2058 (16)C28—C291.3939 (19)
C9—O21.3326 (15)C28—H28A0.9500
O2—C101.4669 (16)C29—H29A0.9500
C10—C111.5017 (19)C30—C311.4010 (18)
C10—H10A0.9900C30—C351.4033 (18)
C10—H10B0.9900C31—C321.3934 (19)
C11—H11A0.9800C31—H31A0.9500
C11—H11B0.9800C32—C331.383 (2)
C11—H11C0.9800C32—H32A0.9500
B1—C301.6383 (18)C33—C341.387 (2)
B1—C241.6422 (18)C33—H33A0.9500
B1—C121.6436 (18)C34—C351.3868 (19)
B1—C181.6449 (18)C34—H34A0.9500
C12—C171.4023 (17)C35—H35A0.9500
N2—C1—N3120.28 (11)C24—B1—C18103.73 (10)
N2—C1—N1119.95 (11)C12—B1—C18112.05 (10)
N3—C1—N1119.77 (11)C17—C12—C13115.10 (11)
C1—N1—C2122.14 (10)C17—C12—B1121.63 (11)
C1—N1—C3121.58 (10)C13—C12—B1122.81 (11)
C2—N1—C3115.99 (10)C14—C13—C12122.71 (12)
N1—C2—H2A109.5C14—C13—H13A118.6
N1—C2—H2B109.5C12—C13—H13A118.6
H2A—C2—H2B109.5C15—C14—C13120.37 (12)
N1—C2—H2C109.5C15—C14—H14A119.8
H2A—C2—H2C109.5C13—C14—H14A119.8
H2B—C2—H2C109.5C14—C15—C16118.71 (12)
N1—C3—H3A109.5C14—C15—H15A120.6
N1—C3—H3B109.5C16—C15—H15A120.6
H3A—C3—H3B109.5C15—C16—C17120.19 (12)
N1—C3—H3C109.5C15—C16—H16A119.9
H3A—C3—H3C109.5C17—C16—H16A119.9
H3B—C3—H3C109.5C16—C17—C12122.90 (12)
C1—N2—C4121.38 (11)C16—C17—H17A118.5
C1—N2—C5119.05 (10)C12—C17—H17A118.5
C4—N2—C5116.61 (10)C19—C18—C23115.32 (11)
N2—C4—H4A109.5C19—C18—B1122.21 (11)
N2—C4—H4B109.5C23—C18—B1122.14 (11)
H4A—C4—H4B109.5C20—C19—C18122.69 (12)
N2—C4—H4C109.5C20—C19—H19A118.7
H4A—C4—H4C109.5C18—C19—H19A118.7
H4B—C4—H4C109.5C21—C20—C19120.34 (12)
N2—C5—C6107.98 (10)C21—C20—H20A119.8
N2—C5—H5A110.1C19—C20—H20A119.8
C6—C5—H5A110.1C22—C21—C20118.68 (12)
N2—C5—H5B110.1C22—C21—H21A120.7
C6—C5—H5B110.1C20—C21—H21A120.7
H5A—C5—H5B108.4C21—C22—C23120.29 (12)
C7—C6—C5107.87 (10)C21—C22—H22A119.9
C7—C6—H6A110.1C23—C22—H22A119.9
C5—C6—H6A110.1C22—C23—C18122.68 (12)
C7—C6—H6B110.1C22—C23—H23A118.7
C5—C6—H6B110.1C18—C23—H23A118.7
H6A—C6—H6B108.4C25—C24—C29115.13 (12)
N3—C7—C6111.95 (10)C25—C24—B1122.68 (11)
N3—C7—H7A109.2C29—C24—B1121.83 (11)
C6—C7—H7A109.2C26—C25—C24122.77 (12)
N3—C7—H7B109.2C26—C25—H25A118.6
C6—C7—H7B109.2C24—C25—H25A118.6
H7A—C7—H7B107.9C27—C26—C25120.33 (13)
C1—N3—C8121.44 (10)C27—C26—H26A119.8
C1—N3—C7122.99 (10)C25—C26—H26A119.8
C8—N3—C7114.86 (10)C26—C27—C28118.76 (12)
N3—C8—C9112.35 (10)C26—C27—H27A120.6
N3—C8—H8A109.1C28—C27—H27A120.6
C9—C8—H8A109.1C27—C28—C29120.18 (13)
N3—C8—H8B109.1C27—C28—H28A119.9
C9—C8—H8B109.1C29—C28—H28A119.9
H8A—C8—H8B107.9C28—C29—C24122.80 (13)
O1—C9—O2125.47 (12)C28—C29—H29A118.6
O1—C9—C8124.41 (11)C24—C29—H29A118.6
O2—C9—C8110.12 (10)C31—C30—C35115.31 (12)
C9—O2—C10116.21 (10)C31—C30—B1123.30 (11)
O2—C10—C11110.74 (11)C35—C30—B1120.91 (11)
O2—C10—H10A109.5C32—C31—C30122.73 (13)
C11—C10—H10A109.5C32—C31—H31A118.6
O2—C10—H10B109.5C30—C31—H31A118.6
C11—C10—H10B109.5C33—C32—C31120.05 (13)
H10A—C10—H10B108.1C33—C32—H32A120.0
C10—C11—H11A109.5C31—C32—H32A120.0
C10—C11—H11B109.5C32—C33—C34118.95 (13)
H11A—C11—H11B109.5C32—C33—H33A120.5
C10—C11—H11C109.5C34—C33—H33A120.5
H11A—C11—H11C109.5C35—C34—C33120.29 (13)
H11B—C11—H11C109.5C35—C34—H34A119.9
C30—B1—C24113.19 (10)C33—C34—H34A119.9
C30—B1—C12102.64 (10)C34—C35—C30122.65 (12)
C24—B1—C12113.30 (10)C34—C35—H35A118.7
C30—B1—C18112.26 (10)C30—C35—H35A118.7
N2—C1—N1—C2131.82 (12)C12—B1—C18—C1937.60 (16)
N3—C1—N1—C248.86 (17)C30—B1—C18—C2334.35 (16)
N2—C1—N1—C341.71 (17)C24—B1—C18—C2388.19 (13)
N3—C1—N1—C3137.61 (12)C12—B1—C18—C23149.24 (11)
N3—C1—N2—C4151.00 (12)C23—C18—C19—C200.44 (18)
N1—C1—N2—C429.68 (17)B1—C18—C19—C20174.04 (12)
N3—C1—N2—C58.90 (17)C18—C19—C20—C210.5 (2)
N1—C1—N2—C5170.42 (11)C19—C20—C21—C220.17 (19)
C1—N2—C5—C646.02 (15)C20—C21—C22—C230.09 (19)
C4—N2—C5—C6114.81 (12)C21—C22—C23—C180.1 (2)
N2—C5—C6—C761.58 (13)C19—C18—C23—C220.17 (18)
C5—C6—C7—N343.84 (15)B1—C18—C23—C22173.77 (12)
N2—C1—N3—C8158.29 (11)C30—B1—C24—C25146.70 (11)
N1—C1—N3—C821.04 (17)C12—B1—C24—C2530.36 (16)
N2—C1—N3—C711.55 (18)C18—B1—C24—C2591.38 (13)
N1—C1—N3—C7169.12 (11)C30—B1—C24—C2940.54 (16)
C6—C7—N3—C18.01 (17)C12—B1—C24—C29156.87 (11)
C6—C7—N3—C8178.46 (11)C18—B1—C24—C2981.39 (13)
C1—N3—C8—C9108.96 (13)C29—C24—C25—C261.56 (18)
C7—N3—C8—C980.43 (13)B1—C24—C25—C26174.78 (11)
N3—C8—C9—O117.68 (18)C24—C25—C26—C270.92 (19)
N3—C8—C9—O2162.04 (10)C25—C26—C27—C280.51 (19)
O1—C9—O2—C101.81 (19)C26—C27—C28—C291.2 (2)
C8—C9—O2—C10178.48 (10)C27—C28—C29—C240.5 (2)
C9—O2—C10—C1188.51 (14)C25—C24—C29—C280.87 (18)
C30—B1—C12—C1784.93 (13)B1—C24—C29—C28174.15 (11)
C24—B1—C12—C17152.66 (11)C24—B1—C30—C3130.10 (16)
C18—B1—C12—C1735.71 (16)C12—B1—C30—C3192.38 (13)
C30—B1—C12—C1386.92 (14)C18—B1—C30—C31147.12 (11)
C24—B1—C12—C1335.48 (16)C24—B1—C30—C35158.21 (11)
C18—B1—C12—C13152.44 (11)C12—B1—C30—C3579.31 (13)
C17—C12—C13—C141.62 (18)C18—B1—C30—C3541.18 (15)
B1—C12—C13—C14173.97 (12)C35—C30—C31—C320.13 (18)
C12—C13—C14—C151.1 (2)B1—C30—C31—C32172.25 (12)
C13—C14—C15—C160.21 (19)C30—C31—C32—C331.0 (2)
C14—C15—C16—C170.78 (19)C31—C32—C33—C341.1 (2)
C15—C16—C17—C120.13 (19)C32—C33—C34—C350.39 (19)
C13—C12—C17—C161.04 (18)C33—C34—C35—C300.5 (2)
B1—C12—C17—C16173.48 (11)C31—C30—C35—C340.65 (18)
C30—B1—C18—C19152.49 (11)B1—C30—C35—C34171.68 (12)
C24—B1—C18—C1984.97 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O1i0.992.443.397 (2)163
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H22N3O2+·C24H20B
Mr547.53
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.3582 (5), 10.3377 (3), 20.6302 (9)
β (°) 105.615 (1)
V3)2949.14 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.23 × 0.16 × 0.13
Data collection
DiffractometerBruker–Nonius Kappa CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
13034, 6747, 5041
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.097, 1.02
No. of reflections6747
No. of parameters374
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.21

Computer programs: COLLECT (Hooft, 2004), HKL SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O1i0.992.443.397 (2)163
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

The authors thank Dr Falk Lissner (Institut für Anorganische Chemie, Universität Stuttgart) for the data collection.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHooft, R. W. W. (2004). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKraouti, N., Caujolle, R., Labidalle, S., Payard, M., Bories, C., Loiseau, P. M. & Gayral, P. (1993). Eur. J. Med. Chem. 28, 979–982.  CrossRef CAS Web of Science Google Scholar
First citationKraouti, N., Caujolle, R., Labidalle, S., Payard, M., Loiseau, P. M., Bories, C. & Gayral, P. (1995). Eur. J. Med. Chem. 30, 509–513.  CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiritiris, I. & Kantlehner, W. (2012). Z. Naturforsch. Teil B. In the press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds