organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitro­phenol–2,4,6-tri­amino-1,3,5-triazine–water (2/1/1)

aDepartment of Physics, Vel Tech Multi Tech Dr. Rangarajan Dr. Sakunthala Enginering College, Avadi, Chennai 600 062, India, bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, cInstitute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-950 Wrocław, 2, PO Box 937, Poland, dPG and Research Department of Physics, Pachiayappa's College, Chennai 600 030, India, and eDepartment of Physics, Presidency College, Chennai 600 005, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com, anbu24663@yahoo.co.in

(Received 17 June 2012; accepted 26 June 2012; online 30 June 2012)

In the title adduct, 2C6H5NO3·C3H6N6·H2O, the melamine and the two independent nitrophenol molecules are essentially planar, with maximum deviations of 0.0294 (10), 0.0706 (12) and 0.0742 (12) Å, respectively. In the crystal, N—H⋯N, O—H⋯N, N—H⋯O and O—H⋯O hydrogen bonds link the components into a three-dimensional network. In addition, weak ππ inter­actions [centroid–centroid distances = 3.728 (3) and 3.749 (3) Å] are observed.

Related literature

For applications of melamine, see: Cook et al. (2005[Cook, H. A., Klampfl, C. W. & Buchberger, W. (2005). Electrophoresis, 26, 1576-1583.]); Rima et al. (2008[Rima, J., Abourida, M., Xu, T., Cho, I. K. & Kyriacos, S. (2008). J. Food Compost. Anal. 22, 689-693.]). For a related structure, see: Cousson et al. (2005[Cousson, A., Nicolaï, B. & Fillaux, F. (2005). Acta Cryst. E61, o222-o224.]).

[Scheme 1]

Experimental

Crystal data
  • 2C6H5NO3·C3H6N6·H2O

  • Mr = 422.37

  • Triclinic, [P \overline 1]

  • a = 7.123 (5) Å

  • b = 10.577 (4) Å

  • c = 13.680 (5) Å

  • α = 68.256 (5)°

  • β = 88.772 (6)°

  • γ = 76.604 (5)°

  • V = 928.9 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.964, Tmax = 0.976

  • 21610 measured reflections

  • 5696 independent reflections

  • 4164 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.122

  • S = 1.03

  • 5696 reflections

  • 311 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O7i 0.90 (2) 1.76 (2) 2.6600 (18) 172 (2)
O4—H4⋯N5 0.91 (2) 1.87 (2) 2.7217 (16) 157 (2)
O7—H7A⋯N4 0.88 (2) 1.94 (2) 2.8020 (18) 166 (2)
O7—H7B⋯O2iv 0.84 (2) 2.22 (2) 3.0424 (18) 164 (2)
N6—H6A⋯O6ii 0.860 (18) 2.363 (19) 3.0276 (16) 134 (2)
N6—H6B⋯N3iii 0.845 (18) 2.235 (19) 3.080 (2) 178 (2)
N7—H7C⋯O6v 0.867 (17) 2.250 (17) 3.056 (2) 155 (2)
N7—H7D⋯O1v 0.894 (19) 2.049 (19) 2.8996 (17) 159 (2)
N8—H8A⋯O3 0.830 (17) 2.367 (18) 3.158 (2) 159 (2)
N8—H8B⋯O7iv 0.867 (19) 2.517 (18) 3.1890 (19) 135 (2)
Symmetry codes: (i) -x, -y, -z+1; (ii) -x, -y, -z; (iii) -x+1, -y+1, -z; (iv) -x, -y+1, -z+1; (v) x+1, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Melamines are used in the production of melamine foam in polymeric cleaning (Rima et al., 2008) and as a chemical intermediate in plastics manufacturing (Cook et al., 2005). Here, we report the crystal structure of a the title compound. The asymmetric unit contains one melamine molecule, two independent nitrophenol molecules and one solvent water molecule.

The geometric parameters of the melamine molecule (I) (Fig. 1) are comparable with those determined by Cousson et al. (2005). The melamine and nitrophenol molecules are essentially planar, with a maximum deviation of -0.0294 (10) Å for atom N4 in the least square plane (N6/C13/C14/N7/N4/C15/N8/N5), -0.0706 (12) Å for atom O2 in the least square plane (O1/C1-C6/N1/O2/O3) and 0.0742 (12) Å for atom O5 in the least square plane (O4/C10/C11/C12/C7/C8/C9/N2/O5/O6).

In the crystal, O—H···N, N—H···O and O—H···O hydrogen bonds (Table 1 & Fig. 2) and ππ interactions [Cg1···Cg1 (1-x,-y,1-z) distance of 3.749 (3)Å; Cg1···Cg2 (x,-1+y,z) distance of 3.728 (3)Å and Cg2···Cg1 (x,1+y,z) distance of 3.728 (3)Å; Cg1 and Cg2 are the centroids of the rings (C1-C6) and (C7-C12), respectively] connect the components of the structure into a three-dimensional network.

Related literature top

For applications of melamine, see: Cook et al. (2005); Rima et al. (2008). For a related structure, see: Cousson et al. (2005).

Experimental top

Melamine (1.2612g, 0.01 mmol) was dissolved in 200 ml of hot solution of distilled water. p-Nitrophenol (1.3911g, 0.01 mmol) was dissolved in 100 ml of distilled water separately. To the hot solution of melamine, p-nitrophenol solution was added gently, and stirred well for nearly five hours to get the homogenous solution and the mixture is allowed to evaporate. Within a few days tiny, transparent, yellowish crystals were formed. Recrystallization was carried out by using distilled water to get the pure crystal suitable for X-ray diffraction.

Refinement top

The H atoms for aromatic C-H groups were positioned geometrically with C–H = 0.93 %A and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) and all other H atoms were located in a difference Fourier map and allowed to refine freely [N—H = 0.830 (17)-0.894 (19)Å and O—H = 0.84 (2)–0.91 (2)Å].

Structure description top

Melamines are used in the production of melamine foam in polymeric cleaning (Rima et al., 2008) and as a chemical intermediate in plastics manufacturing (Cook et al., 2005). Here, we report the crystal structure of a the title compound. The asymmetric unit contains one melamine molecule, two independent nitrophenol molecules and one solvent water molecule.

The geometric parameters of the melamine molecule (I) (Fig. 1) are comparable with those determined by Cousson et al. (2005). The melamine and nitrophenol molecules are essentially planar, with a maximum deviation of -0.0294 (10) Å for atom N4 in the least square plane (N6/C13/C14/N7/N4/C15/N8/N5), -0.0706 (12) Å for atom O2 in the least square plane (O1/C1-C6/N1/O2/O3) and 0.0742 (12) Å for atom O5 in the least square plane (O4/C10/C11/C12/C7/C8/C9/N2/O5/O6).

In the crystal, O—H···N, N—H···O and O—H···O hydrogen bonds (Table 1 & Fig. 2) and ππ interactions [Cg1···Cg1 (1-x,-y,1-z) distance of 3.749 (3)Å; Cg1···Cg2 (x,-1+y,z) distance of 3.728 (3)Å and Cg2···Cg1 (x,1+y,z) distance of 3.728 (3)Å; Cg1 and Cg2 are the centroids of the rings (C1-C6) and (C7-C12), respectively] connect the components of the structure into a three-dimensional network.

For applications of melamine, see: Cook et al. (2005); Rima et al. (2008). For a related structure, see: Cousson et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of (I), viewed along the a axis. Intermolecular Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
4-Nitrophenol–2,4,6-triamino-1,3,5-triazine–water (2/1/1) top
Crystal data top
2C6H5NO3·C3H6N6·H2OZ = 2
Mr = 422.37F(000) = 440
Triclinic, P1Dx = 1.510 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.123 (5) ÅCell parameters from 21610 reflections
b = 10.577 (4) Åθ = 2.1–30.7°
c = 13.680 (5) ŵ = 0.12 mm1
α = 68.256 (5)°T = 295 K
β = 88.772 (6)°Block, yellow
γ = 76.604 (5)°0.30 × 0.20 × 0.20 mm
V = 928.9 (8) Å3
Data collection top
Bruker Kappa APEXII
diffractometer
5696 independent reflections
Radiation source: fine-focus sealed tube4164 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω and φ scansθmax = 30.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 810
Tmin = 0.964, Tmax = 0.976k = 1515
21610 measured reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0598P)2 + 0.1276P]
where P = (Fo2 + 2Fc2)/3
5696 reflections(Δ/σ)max < 0.001
311 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
2C6H5NO3·C3H6N6·H2Oγ = 76.604 (5)°
Mr = 422.37V = 928.9 (8) Å3
Triclinic, P1Z = 2
a = 7.123 (5) ÅMo Kα radiation
b = 10.577 (4) ŵ = 0.12 mm1
c = 13.680 (5) ÅT = 295 K
α = 68.256 (5)°0.30 × 0.20 × 0.20 mm
β = 88.772 (6)°
Data collection top
Bruker Kappa APEXII
diffractometer
5696 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4164 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.976Rint = 0.030
21610 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.20 e Å3
5696 reflectionsΔρmin = 0.25 e Å3
311 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.33225 (16)0.07164 (12)0.40065 (10)0.0341 (2)
C20.24544 (16)0.05332 (12)0.48003 (9)0.0348 (2)
H20.17020.05490.53540.042*
C30.27246 (18)0.17603 (13)0.47577 (9)0.0370 (3)
H30.21360.26170.52810.044*
C40.38715 (18)0.17217 (13)0.39367 (10)0.0378 (3)
C50.47281 (18)0.04548 (15)0.31426 (10)0.0423 (3)
H50.54860.04370.25900.051*
C60.44573 (17)0.07743 (14)0.31718 (10)0.0406 (3)
H60.50240.16300.26420.049*
C70.16167 (17)0.02771 (12)0.09893 (9)0.0345 (2)
C80.20456 (18)0.11701 (13)0.05818 (10)0.0394 (3)
H80.28010.16790.00490.047*
C90.13380 (19)0.18491 (12)0.11231 (10)0.0387 (3)
H90.16180.28240.08600.046*
C100.02072 (16)0.10786 (12)0.20608 (9)0.0331 (2)
C110.01838 (17)0.03791 (12)0.24690 (10)0.0357 (2)
H110.09210.08920.31050.043*
C120.05206 (17)0.10608 (12)0.19311 (10)0.0361 (3)
H120.02630.20350.21970.043*
C130.26472 (17)0.45692 (12)0.11080 (9)0.0339 (2)
C140.36186 (16)0.58004 (11)0.19500 (9)0.0305 (2)
C150.10688 (16)0.48525 (11)0.24878 (9)0.0322 (2)
N10.30636 (15)0.20134 (11)0.40532 (10)0.0443 (3)
N20.22950 (16)0.10017 (13)0.04030 (9)0.0447 (3)
N30.38541 (14)0.53546 (10)0.11487 (7)0.0338 (2)
N40.22586 (14)0.55802 (10)0.26462 (7)0.0329 (2)
N50.12224 (14)0.42855 (10)0.17511 (8)0.0359 (2)
N60.2906 (2)0.40378 (15)0.03568 (10)0.0538 (3)
N70.48129 (18)0.65529 (12)0.20504 (10)0.0444 (3)
N80.03642 (18)0.46571 (13)0.31286 (10)0.0465 (3)
O10.42179 (18)0.28988 (12)0.38794 (9)0.0562 (3)
O20.21683 (16)0.19698 (11)0.48256 (9)0.0566 (3)
O30.37293 (19)0.31089 (11)0.33173 (12)0.0782 (4)
O40.05318 (15)0.16839 (10)0.26239 (8)0.0464 (2)
O50.31476 (16)0.03215 (14)0.04647 (9)0.0633 (3)
O60.19394 (18)0.22987 (12)0.08023 (9)0.0632 (3)
O70.23235 (17)0.53850 (11)0.47450 (9)0.0526 (3)
H10.357 (3)0.370 (3)0.4389 (18)0.093 (7)*
H40.054 (3)0.257 (2)0.2186 (15)0.071 (5)*
H6A0.216 (3)0.353 (2)0.0306 (14)0.063 (5)*
H6B0.378 (3)0.4227 (19)0.0065 (14)0.060 (5)*
H7A0.243 (3)0.555 (2)0.4067 (17)0.075 (6)*
H7B0.252 (3)0.607 (2)0.4863 (17)0.084 (6)*
H7C0.576 (2)0.6648 (17)0.1643 (13)0.054 (5)*
H7D0.478 (2)0.6781 (18)0.2619 (15)0.061 (5)*
H8A0.119 (2)0.4277 (18)0.3014 (14)0.058 (5)*
H8B0.048 (2)0.4994 (19)0.3622 (15)0.062 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0295 (5)0.0342 (6)0.0400 (6)0.0099 (4)0.0057 (4)0.0143 (5)
C20.0353 (5)0.0380 (6)0.0333 (6)0.0102 (5)0.0008 (4)0.0151 (5)
C30.0442 (6)0.0343 (6)0.0329 (6)0.0094 (5)0.0004 (5)0.0129 (5)
C40.0430 (6)0.0430 (7)0.0358 (6)0.0153 (5)0.0064 (5)0.0214 (5)
C50.0385 (6)0.0548 (8)0.0365 (6)0.0139 (6)0.0014 (5)0.0188 (6)
C60.0329 (6)0.0422 (7)0.0389 (6)0.0057 (5)0.0015 (5)0.0083 (5)
C70.0374 (6)0.0389 (6)0.0356 (6)0.0163 (5)0.0085 (5)0.0195 (5)
C80.0446 (6)0.0391 (6)0.0321 (6)0.0115 (5)0.0014 (5)0.0098 (5)
C90.0485 (7)0.0279 (5)0.0376 (6)0.0099 (5)0.0000 (5)0.0093 (5)
C100.0371 (6)0.0324 (5)0.0344 (6)0.0131 (4)0.0055 (4)0.0151 (5)
C110.0384 (6)0.0312 (6)0.0350 (6)0.0080 (5)0.0002 (5)0.0096 (5)
C120.0418 (6)0.0271 (5)0.0409 (6)0.0099 (4)0.0070 (5)0.0135 (5)
C130.0448 (6)0.0315 (5)0.0297 (5)0.0136 (5)0.0005 (5)0.0134 (5)
C140.0394 (6)0.0249 (5)0.0281 (5)0.0092 (4)0.0024 (4)0.0100 (4)
C150.0380 (6)0.0265 (5)0.0317 (5)0.0073 (4)0.0008 (4)0.0105 (4)
N10.0362 (5)0.0353 (5)0.0616 (7)0.0111 (4)0.0050 (5)0.0169 (5)
N20.0466 (6)0.0588 (7)0.0475 (6)0.0282 (5)0.0158 (5)0.0326 (6)
N30.0446 (5)0.0344 (5)0.0288 (5)0.0170 (4)0.0032 (4)0.0148 (4)
N40.0412 (5)0.0300 (5)0.0322 (5)0.0104 (4)0.0028 (4)0.0160 (4)
N50.0440 (5)0.0357 (5)0.0360 (5)0.0178 (4)0.0036 (4)0.0175 (4)
N60.0714 (8)0.0706 (8)0.0509 (7)0.0428 (7)0.0212 (6)0.0438 (7)
N70.0581 (7)0.0516 (7)0.0411 (6)0.0309 (6)0.0084 (5)0.0269 (5)
N80.0490 (6)0.0521 (7)0.0498 (7)0.0222 (5)0.0158 (5)0.0265 (6)
O10.0798 (7)0.0498 (6)0.0523 (6)0.0234 (6)0.0038 (6)0.0293 (5)
O20.0633 (6)0.0503 (6)0.0687 (7)0.0224 (5)0.0021 (5)0.0310 (5)
O30.0767 (8)0.0327 (5)0.1046 (10)0.0105 (5)0.0261 (7)0.0024 (6)
O40.0633 (6)0.0399 (5)0.0426 (5)0.0224 (4)0.0035 (4)0.0166 (4)
O50.0642 (7)0.0895 (9)0.0527 (6)0.0272 (6)0.0010 (5)0.0398 (6)
O60.0876 (8)0.0572 (6)0.0702 (7)0.0425 (6)0.0180 (6)0.0382 (6)
O70.0817 (7)0.0497 (6)0.0421 (6)0.0346 (5)0.0143 (5)0.0242 (5)
Geometric parameters (Å, º) top
C1—C21.3766 (17)C13—N61.3333 (16)
C1—C61.3877 (18)C13—N31.3414 (14)
C1—N11.4501 (16)C13—N51.3421 (16)
C2—C31.3774 (17)C14—N71.3326 (15)
C2—H20.9300C14—N31.3381 (14)
C3—C41.3857 (17)C14—N41.3418 (16)
C3—H30.9300C15—N81.3335 (17)
C4—O11.3538 (15)C15—N41.3384 (15)
C4—C51.3852 (19)C15—N51.3416 (15)
C5—C61.3726 (19)N1—O31.2176 (16)
C5—H50.9300N1—O21.2266 (16)
C6—H60.9300N2—O51.2212 (17)
C7—C81.3804 (18)N2—O61.2386 (17)
C7—C121.3815 (18)N6—H6A0.860 (18)
C7—N21.4518 (15)N6—H6B0.845 (18)
C8—C91.3770 (17)N7—H7C0.867 (17)
C8—H80.9300N7—H7D0.894 (19)
C9—C101.3871 (18)N8—H8A0.830 (17)
C9—H90.9300N8—H8B0.867 (19)
C10—O41.3488 (14)O1—H10.90 (2)
C10—C111.3915 (17)O4—H40.91 (2)
C11—C121.3747 (17)O7—H7A0.88 (2)
C11—H110.9300O7—H7B0.84 (2)
C12—H120.9300
C2—C1—C6122.08 (11)C11—C12—C7119.00 (11)
C2—C1—N1118.88 (11)C11—C12—H12120.5
C6—C1—N1119.04 (11)C7—C12—H12120.5
C1—C2—C3118.59 (11)N6—C13—N3116.17 (11)
C1—C2—H2120.7N6—C13—N5118.22 (11)
C3—C2—H2120.7N3—C13—N5125.61 (10)
C2—C3—C4120.13 (11)N7—C14—N3117.08 (11)
C2—C3—H3119.9N7—C14—N4117.29 (10)
C4—C3—H3119.9N3—C14—N4125.61 (10)
O1—C4—C5117.44 (12)N8—C15—N4117.07 (11)
O1—C4—C3122.07 (12)N8—C15—N5117.58 (11)
C5—C4—C3120.48 (11)N4—C15—N5125.34 (10)
C6—C5—C4119.93 (12)O3—N1—O2122.26 (12)
C6—C5—H5120.0O3—N1—C1118.70 (12)
C4—C5—H5120.0O2—N1—C1119.04 (11)
C5—C6—C1118.78 (12)O5—N2—O6122.77 (11)
C5—C6—H6120.6O5—N2—C7119.29 (12)
C1—C6—H6120.6O6—N2—C7117.92 (12)
C8—C7—C12121.83 (10)C14—N3—C13114.25 (10)
C8—C7—N2119.31 (12)C15—N4—C14114.57 (10)
C12—C7—N2118.84 (11)C15—N5—C13114.40 (9)
C9—C8—C7118.99 (11)C13—N6—H6A118.8 (12)
C9—C8—H8120.5C13—N6—H6B119.2 (12)
C7—C8—H8120.5H6A—N6—H6B122.0 (17)
C8—C9—C10119.96 (11)C14—N7—H7C118.7 (11)
C8—C9—H9120.0C14—N7—H7D118.9 (11)
C10—C9—H9120.0H7C—N7—H7D121.0 (15)
O4—C10—C9122.67 (11)C15—N8—H8A119.2 (12)
O4—C10—C11117.05 (11)C15—N8—H8B119.5 (11)
C9—C10—C11120.27 (10)H8A—N8—H8B121.1 (16)
C12—C11—C10119.93 (12)C4—O1—H1114.2 (14)
C12—C11—H11120.0C10—O4—H4107.8 (12)
C10—C11—H11120.0H7A—O7—H7B108.7 (19)
C6—C1—C2—C30.14 (18)C2—C1—N1—O3175.39 (13)
N1—C1—C2—C3179.25 (11)C6—C1—N1—O35.47 (18)
C1—C2—C3—C40.89 (18)C2—C1—N1—O23.93 (17)
C2—C3—C4—O1178.18 (11)C6—C1—N1—O2175.21 (11)
C2—C3—C4—C51.15 (18)C8—C7—N2—O53.71 (17)
O1—C4—C5—C6178.73 (12)C12—C7—N2—O5174.89 (11)
C3—C4—C5—C60.63 (19)C8—C7—N2—O6177.86 (11)
C4—C5—C6—C10.12 (18)C12—C7—N2—O63.55 (17)
C2—C1—C6—C50.37 (18)N7—C14—N3—C13178.15 (11)
N1—C1—C6—C5178.74 (11)N4—C14—N3—C133.37 (16)
C12—C7—C8—C90.89 (18)N6—C13—N3—C14176.36 (11)
N2—C7—C8—C9177.66 (11)N5—C13—N3—C143.84 (17)
C7—C8—C9—C100.24 (19)N8—C15—N4—C14177.10 (11)
C8—C9—C10—O4179.76 (12)N5—C15—N4—C144.13 (17)
C8—C9—C10—C111.32 (18)N7—C14—N4—C15178.19 (11)
O4—C10—C11—C12179.73 (11)N3—C14—N4—C150.29 (16)
C9—C10—C11—C121.29 (18)N8—C15—N5—C13177.51 (11)
C10—C11—C12—C70.18 (18)N4—C15—N5—C133.73 (17)
C8—C7—C12—C110.92 (18)N6—C13—N5—C15179.61 (12)
N2—C7—C12—C11177.64 (10)N3—C13—N5—C150.59 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O7i0.90 (2)1.76 (2)2.6600 (18)172 (2)
O4—H4···N50.91 (2)1.87 (2)2.7217 (16)157 (2)
N6—H6A···O6ii0.860 (18)2.363 (19)3.0276 (16)134 (2)
N6—H6B···N3iii0.845 (18)2.235 (19)3.080 (2)178 (2)
O7—H7A···N40.88 (2)1.94 (2)2.8020 (18)166 (2)
O7—H7B···O2iv0.84 (2)2.22 (2)3.0424 (18)164 (2)
N7—H7C···O6v0.867 (17)2.250 (17)3.056 (2)155 (2)
N7—H7D···O1v0.894 (19)2.049 (19)2.8996 (17)159 (2)
N8—H8A···O30.830 (17)2.367 (18)3.158 (2)159 (2)
N8—H8B···O7iv0.867 (19)2.517 (18)3.1890 (19)135 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z; (iii) x+1, y+1, z; (iv) x, y+1, z+1; (v) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula2C6H5NO3·C3H6N6·H2O
Mr422.37
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.123 (5), 10.577 (4), 13.680 (5)
α, β, γ (°)68.256 (5), 88.772 (6), 76.604 (5)
V3)928.9 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.964, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
21610, 5696, 4164
Rint0.030
(sin θ/λ)max1)0.718
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.122, 1.03
No. of reflections5696
No. of parameters311
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.25

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O7i0.90 (2)1.76 (2)2.6600 (18)172 (2)
O4—H4···N50.91 (2)1.87 (2)2.7217 (16)157 (2)
N6—H6A···O6ii0.860 (18)2.363 (19)3.0276 (16)134 (2)
N6—H6B···N3iii0.845 (18)2.235 (19)3.080 (2)178 (2)
O7—H7A···N40.88 (2)1.94 (2)2.8020 (18)166 (2)
O7—H7B···O2iv0.84 (2)2.22 (2)3.0424 (18)164 (2)
N7—H7C···O6v0.867 (17)2.250 (17)3.056 (2)155 (2)
N7—H7D···O1v0.894 (19)2.049 (19)2.8996 (17)159 (2)
N8—H8A···O30.830 (17)2.367 (18)3.158 (2)159 (2)
N8—H8B···O7iv0.867 (19)2.517 (18)3.1890 (19)135 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z; (iii) x+1, y+1, z; (iv) x, y+1, z+1; (v) x+1, y+1, z.
 

Acknowledgements

The authors thank SAIF, IIT Madras, for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCook, H. A., Klampfl, C. W. & Buchberger, W. (2005). Electrophoresis, 26, 1576–1583.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCousson, A., Nicolaï, B. & Fillaux, F. (2005). Acta Cryst. E61, o222–o224.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRima, J., Abourida, M., Xu, T., Cho, I. K. & Kyriacos, S. (2008). J. Food Compost. Anal. 22, 689–693.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds