metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido-1κCl,3κCl-hexa­kis­[1,1,2,2,3,3(η5)-cyclo­penta­dien­yl]di-μ2-oxido-1:2κ2O:O;2:3κ2O:O-trizirconium(IV)

aDepartment of Chemistry, St. John Fisher College, Rochester, NY 14618, USA, and bDepartment of Chemistry, University of Rochester, Rochester, NY 14627, USA
*Correspondence e-mail: bkraft@sjfc.edu

(Received 25 May 2012; accepted 31 May 2012; online 13 June 2012)

The title compound, [Zr3(C5H5)6Cl2O2], exists as discrete mol­ecules possessing a series of three Cp2Zr units (Cp is cyclo­penta­dien­yl) bridged by oxide ligands and end-capped by chloride ligands. The Cp planes in the central and terminal zirconocene units form dihedral angles of 53.3 (2) and 53.5 (2)°, respectively. The two Zr—O—Zr bridge angles are nearly linear and form a planar Zr3O2 core. The mol­ecule bears C2 symmetry with the central Zr atom lying on a crystallographic twofold axis.

Related literature

For closely related Zr mol­ecules with only one oxo bridge, see: Reid et al. (1965[Reid, A. F., Shannon, J. S., Swan, J. M. & Wailes, P. C. (1965). Aust. J. Chem. 18, 173-181.]); Clarke & Drew (1974[Clarke, J. F. & Drew, G. B. (1974). Acta Cryst. B30, 2267-2269.]); Kuz'mina et al. (1988[Kuz'mina, L. G., Struchkov, Yu. T., Minacheva, M. Kh. & Brainina, E. M. (1988). Russ. J. Coord. Chem. 14, 1257-1261.]); Nieger et al. (1999[Nieger, M., Niecke, E. & Loew, A. (1999). Private communication (refcode CPZROX02). CCDC, Cambridge, England.]); Spletstoser et al. (2007[Spletstoser, J. T., White, J. M., Tunoori, A. R. & Georg, G. I. (2007). J. Am. Chem. Soc. 129, 3408-3419.]). For cyclic trimeric oxozirconocenes, see: Arnold et al. (2011[Arnold, T., Braunschweig, H. & Gruss, K. (2011). Acta Cryst. E67, m391.]); Boutonnet et al. (1995[Boutonnet, F., Zablocka, M., Igau, A., Jaud, J., Majoral, J., Schamberger, J., Erker, G., Werner, S. & Krüger, C. (1995). J. Chem. Soc. Chem. Commun. pp. 823-824.]); Mikhailova et al. (1993[Mikhailova, O. A., Minacheva, M. H., Burlakov, V. V., Shur, V. B., Pisarevsky, A. P., Yanovsky, A. I. & Struchkov, Yu. T. (1993). Acta Cryst. C49, 1345-1347.]). For similar structures with terminal Zr–Cl bonds, see: Corey et al. (1995[Corey, J. Y., Zhu, X.-H., Brammer, L. & Rath, N. P. (1995). Acta Cryst. C51, 565-567.]); Reddy & Petersen (1989[Reddy, K. P. & Petersen, J. L. (1989). Organometallics, 8, 2107-2113.]). For the Hf analog, but with methyl-substituted cyclo­penta­dienyl rings, see: Wisniewska et al. (2008[Wisniewska, A., Baranowska, K. & Pikies, J. (2008). Acta Cryst. E64, m361.]).

[Scheme 1]

Experimental

Crystal data
  • [Zr3(C5H5)6Cl2O2]

  • Mr = 767.10

  • Orthorhombic, P b c n

  • a = 7.8809 (4) Å

  • b = 18.0518 (10) Å

  • c = 20.1883 (11) Å

  • V = 2872.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 223 K

  • 0.20 × 0.18 × 0.04 mm

Data collection
  • Bruker SMART APEXII CCD Platform diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008b[Sheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.]) Tmin = 0.784, Tmax = 0.951

  • 34715 measured reflections

  • 4032 independent reflections

  • 2569 reflections with I > 2σ(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.100

  • S = 1.01

  • 4032 reflections

  • 168 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zr1—O1 1.921 (3)
Zr1—Cl1 2.4857 (12)
Zr2—O1 1.980 (3)
Zr2—O1i 1.980 (2)
O1—Zr1—Cl1 97.23 (8)
O1—Zr2—O1i 102.43 (15)
Zr1—O1—Zr2 171.43 (15)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The geometry around each Zr in the title compound is pseudotetrahedral with the center of each Cp ligand taken as a single coordination site. The dihedral angle between the Cp rings in the central zirconocene unit is 53.3 (2)° and that between the Cp rings in the terminal zirconocene units is 53.5 (2)°, similar to those in related structures (Mikhailova et al., 1993, Spletstoser et al., 2007). As with many cyclic trimeric oxozirconocenes (Arnold et al., 2011; Boutonnet et al., 1995; Mikhailova et al., 1993), the three Zr atoms and bridging O atoms are also planar in this open structure with the µ2-O ligands deviating above and below the plane each by 0.144 (3) Å. The nearly linear Zr–O–Zr angles (171.43 (15)°) indicate double-bonding character with each neighboring Zr atom. The O–Zr–O angle is 102.43 (15)°, which is wider than that found in cyclic trinuclear oxozirconocenes (Arnold et al., 2011; Mikhailova et al., 1993) and wider than that in the methyl-substituted cyclopentadienyl hafnium analog (Wisniewska et al., 2008). The Zr–O distances of 1.921 (3) and 1.980 (2) Å are comparable with those of other µ2-oxo Zr complexes (Kuz'mina et al., 1988, Spletstoser et al., 2007). The Zr–Cl distances of 2.4857 (12) Å are typical (Corey et al., 1995; Reddy & Petersen, 1989).

Related literature top

For closely related Zr molecules with only one oxo bridge, see: Reid et al. (1965); Clarke & Drew (1974); Kuz'mina et al. (1988); Nieger et al. (1999); Spletstoser et al. (2007). For cyclic trimeric oxozirconocenes, see: Arnold et al. (2011); Boutonnet et al. (1995); Mikhailova et al. (1993). For similar structures with terminal Zr–Cl bonds, see: Corey et al. (1995); Reddy & Petersen (1989). For the Hf analog, but with methyl-substituted cyclopentadienyl rings, see: Wisniewska et al. (2008).

Experimental top

The title compound was isolated as pale yellow needles upon hydrolysis of Cp2Zr(Cl)(L) [L = 4-methyl-2,6-bis(2,6-diisopropylphenylimino)phenoxy] by adventitious water in THF/pentane.

Structure description top

The geometry around each Zr in the title compound is pseudotetrahedral with the center of each Cp ligand taken as a single coordination site. The dihedral angle between the Cp rings in the central zirconocene unit is 53.3 (2)° and that between the Cp rings in the terminal zirconocene units is 53.5 (2)°, similar to those in related structures (Mikhailova et al., 1993, Spletstoser et al., 2007). As with many cyclic trimeric oxozirconocenes (Arnold et al., 2011; Boutonnet et al., 1995; Mikhailova et al., 1993), the three Zr atoms and bridging O atoms are also planar in this open structure with the µ2-O ligands deviating above and below the plane each by 0.144 (3) Å. The nearly linear Zr–O–Zr angles (171.43 (15)°) indicate double-bonding character with each neighboring Zr atom. The O–Zr–O angle is 102.43 (15)°, which is wider than that found in cyclic trinuclear oxozirconocenes (Arnold et al., 2011; Mikhailova et al., 1993) and wider than that in the methyl-substituted cyclopentadienyl hafnium analog (Wisniewska et al., 2008). The Zr–O distances of 1.921 (3) and 1.980 (2) Å are comparable with those of other µ2-oxo Zr complexes (Kuz'mina et al., 1988, Spletstoser et al., 2007). The Zr–Cl distances of 2.4857 (12) Å are typical (Corey et al., 1995; Reddy & Petersen, 1989).

For closely related Zr molecules with only one oxo bridge, see: Reid et al. (1965); Clarke & Drew (1974); Kuz'mina et al. (1988); Nieger et al. (1999); Spletstoser et al. (2007). For cyclic trimeric oxozirconocenes, see: Arnold et al. (2011); Boutonnet et al. (1995); Mikhailova et al. (1993). For similar structures with terminal Zr–Cl bonds, see: Corey et al. (1995); Reddy & Petersen (1989). For the Hf analog, but with methyl-substituted cyclopentadienyl rings, see: Wisniewska et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a); molecular graphics: SHELXTL (Sheldrick, 2008a); software used to prepare material for publication: SHELXTL (Sheldrick, 2008a).

Figures top
[Figure 1] Fig. 1. A displacement ellipsoid (50% probability) drawing. Symmetry equivalent atoms generated by a crystallographic twofold axis that includes atom Zr2.
Dichlorido-1κCl,3κCl-hexakis[1,1,2,2,3,3(η5)-cyclopentadienyl]di-µ2-oxido-1:2κ2O:O;2:3κ2O:O-trizirconium(IV) top
Crystal data top
[Zr3(C5H5)6Cl2O2]F(000) = 1520
Mr = 767.10Dx = 1.774 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 4069 reflections
a = 7.8809 (4) Åθ = 2.5–27.2°
b = 18.0518 (10) ŵ = 1.28 mm1
c = 20.1883 (11) ÅT = 223 K
V = 2872.1 (3) Å3Needle, pale yellow
Z = 40.20 × 0.18 × 0.04 mm
Data collection top
Bruker SMART APEXII CCD Platform
diffractometer
4032 independent reflections
Radiation source: fine-focus sealed tube2569 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
area detector, ω scans per φθmax = 29.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
h = 1010
Tmin = 0.784, Tmax = 0.951k = 2525
34715 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0427P)2 + 1.0879P]
where P = (Fo2 + 2Fc2)/3
4032 reflections(Δ/σ)max = 0.001
168 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Zr3(C5H5)6Cl2O2]V = 2872.1 (3) Å3
Mr = 767.10Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 7.8809 (4) ŵ = 1.28 mm1
b = 18.0518 (10) ÅT = 223 K
c = 20.1883 (11) Å0.20 × 0.18 × 0.04 mm
Data collection top
Bruker SMART APEXII CCD Platform
diffractometer
4032 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
2569 reflections with I > 2σ(I)
Tmin = 0.784, Tmax = 0.951Rint = 0.099
34715 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.01Δρmax = 0.52 e Å3
4032 reflectionsΔρmin = 0.48 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr10.65131 (4)0.40000 (2)0.110865 (18)0.03829 (12)
Zr20.50000.26636 (3)0.25000.03404 (13)
Cl10.35698 (14)0.43025 (7)0.07584 (6)0.0618 (3)
O10.5931 (3)0.33507 (14)0.18272 (12)0.0423 (6)
C10.6980 (11)0.5393 (3)0.1109 (3)0.086 (2)
H10.65150.56710.07600.103*
C20.8558 (11)0.5081 (4)0.1121 (4)0.104 (3)
H20.93730.51150.07830.125*
C30.8755 (7)0.4714 (3)0.1705 (4)0.0807 (18)
H30.97150.44400.18330.097*
C40.7291 (7)0.4814 (2)0.2081 (2)0.0576 (12)
H40.70950.46340.25110.069*
C50.6183 (6)0.5226 (2)0.1703 (2)0.0596 (12)
H50.50800.53680.18260.071*
C60.6391 (7)0.3283 (5)0.0034 (3)0.092 (2)
H60.53460.32660.01910.110*
C70.7644 (11)0.3813 (3)0.0040 (3)0.089 (2)
H70.76130.42290.03200.107*
C80.8942 (7)0.3612 (5)0.0376 (4)0.094 (2)
H80.99850.38580.04250.113*
C90.8456 (10)0.3002 (5)0.0700 (3)0.096 (2)
H90.90950.27600.10280.115*
C100.6963 (11)0.2792 (3)0.0493 (3)0.089 (2)
H100.63760.23690.06390.107*
C110.3707 (7)0.1773 (3)0.1673 (3)0.0814 (17)
H110.44660.15090.14020.098*
C120.3137 (8)0.1554 (3)0.2279 (4)0.0832 (18)
H120.34190.11050.24860.100*
C130.2116 (7)0.2073 (3)0.2536 (3)0.0727 (14)
H130.15670.20540.29500.087*
C140.2019 (6)0.2661 (3)0.2063 (3)0.0775 (17)
H140.14170.31070.21060.093*
C150.2988 (7)0.2439 (3)0.1529 (3)0.0649 (13)
H150.31290.27050.11320.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.0372 (2)0.0449 (2)0.03279 (19)0.01004 (17)0.00453 (16)0.00460 (16)
Zr20.0321 (2)0.0297 (2)0.0403 (3)0.0000.0004 (2)0.000
Cl10.0478 (6)0.0725 (7)0.0651 (7)0.0033 (6)0.0076 (6)0.0129 (6)
O10.0402 (15)0.0460 (14)0.0407 (15)0.0082 (12)0.0036 (12)0.0024 (12)
C10.154 (7)0.049 (3)0.054 (3)0.038 (4)0.011 (4)0.009 (2)
C20.119 (6)0.098 (5)0.095 (5)0.073 (5)0.052 (5)0.041 (4)
C30.052 (3)0.078 (4)0.112 (5)0.009 (3)0.018 (3)0.044 (4)
C40.079 (3)0.055 (3)0.039 (2)0.019 (2)0.009 (2)0.011 (2)
C50.067 (3)0.049 (2)0.062 (3)0.005 (2)0.005 (3)0.013 (2)
C60.060 (4)0.143 (6)0.071 (4)0.008 (4)0.010 (3)0.064 (4)
C70.146 (7)0.076 (4)0.044 (3)0.009 (4)0.041 (4)0.003 (3)
C80.051 (3)0.136 (6)0.096 (5)0.027 (4)0.036 (3)0.057 (5)
C90.091 (5)0.126 (6)0.071 (4)0.047 (5)0.009 (4)0.022 (4)
C100.119 (6)0.058 (3)0.089 (5)0.018 (4)0.053 (4)0.032 (3)
C110.079 (4)0.066 (3)0.100 (5)0.016 (3)0.020 (3)0.029 (3)
C120.069 (4)0.057 (3)0.124 (6)0.026 (3)0.021 (4)0.017 (3)
C130.045 (3)0.094 (4)0.079 (4)0.024 (3)0.002 (3)0.006 (3)
C140.039 (2)0.071 (3)0.122 (5)0.004 (3)0.025 (3)0.019 (4)
C150.061 (3)0.067 (3)0.066 (3)0.026 (3)0.021 (3)0.004 (3)
Geometric parameters (Å, º) top
Zr1—O11.921 (3)C2—C31.361 (9)
Zr1—Cl12.4857 (12)C2—H20.9400
Zr1—C32.496 (5)C3—C41.392 (7)
Zr1—C92.504 (6)C3—H30.9400
Zr1—C72.508 (5)C4—C51.377 (6)
Zr1—C82.518 (5)C4—H40.9400
Zr1—C42.526 (4)C5—H50.9400
Zr1—C62.529 (5)C6—C101.360 (9)
Zr1—C52.530 (4)C6—C71.383 (9)
Zr1—C22.531 (5)C6—H60.9400
Zr1—C102.534 (5)C7—C81.374 (9)
Zr1—C12.541 (5)C7—H70.9400
Zr2—O11.980 (3)C8—C91.337 (9)
Zr2—O1i1.980 (2)C8—H80.9400
Zr2—C142.509 (5)C9—C101.304 (9)
Zr2—C14i2.509 (5)C9—H90.9400
Zr2—C132.512 (5)C10—H100.9400
Zr2—C13i2.512 (5)C11—C121.361 (8)
Zr2—C12i2.523 (5)C11—C151.362 (7)
Zr2—C122.523 (5)C11—H110.9400
Zr2—C11i2.532 (5)C12—C131.340 (8)
Zr2—C112.532 (5)C12—H120.9400
Zr2—C152.554 (5)C13—C141.430 (7)
Zr2—C15i2.554 (5)C13—H130.9400
C1—C21.365 (9)C14—C151.380 (7)
C1—C51.386 (7)C14—H140.9400
C1—H10.9400C15—H150.9400
O1—Zr1—Cl197.23 (8)O1i—Zr2—C15113.33 (16)
O1—Zr1—C396.9 (2)C14—Zr2—C1531.61 (17)
Cl1—Zr1—C3133.18 (14)C14i—Zr2—C15148.31 (18)
O1—Zr1—C987.5 (2)C13—Zr2—C1552.66 (18)
Cl1—Zr1—C9129.42 (19)C13i—Zr2—C15118.17 (19)
C3—Zr1—C995.6 (2)C12i—Zr2—C15111.8 (2)
O1—Zr1—C7134.54 (16)C12—Zr2—C1551.47 (18)
Cl1—Zr1—C795.6 (2)C11i—Zr2—C15130.9 (2)
C3—Zr1—C7105.3 (3)C11—Zr2—C1531.07 (16)
C9—Zr1—C751.8 (2)O1—Zr2—C15i113.33 (16)
O1—Zr1—C8117.1 (2)O1i—Zr2—C15i78.61 (14)
Cl1—Zr1—C8127.13 (19)C14—Zr2—C15i148.31 (18)
C3—Zr1—C883.6 (2)C14i—Zr2—C15i31.61 (17)
C9—Zr1—C830.9 (2)C13—Zr2—C15i118.17 (19)
C7—Zr1—C831.7 (2)C13i—Zr2—C15i52.66 (18)
O1—Zr1—C479.99 (13)C12i—Zr2—C15i51.47 (18)
Cl1—Zr1—C4108.64 (13)C12—Zr2—C15i111.8 (2)
C3—Zr1—C432.18 (17)C11i—Zr2—C15i31.07 (16)
C9—Zr1—C4121.7 (2)C11—Zr2—C15i130.9 (2)
C7—Zr1—C4135.3 (2)C15—Zr2—C15i161.8 (2)
C8—Zr1—C4115.67 (19)Zr1—O1—Zr2171.43 (15)
O1—Zr1—C6109.1 (2)C2—C1—C5107.9 (6)
Cl1—Zr1—C680.37 (14)C2—C1—Zr174.0 (3)
C3—Zr1—C6134.8 (2)C5—C1—Zr173.7 (3)
C9—Zr1—C651.1 (2)C2—C1—H1126.1
C7—Zr1—C631.9 (2)C5—C1—H1126.1
C8—Zr1—C651.88 (19)Zr1—C1—H1118.2
C4—Zr1—C6166.7 (2)C3—C2—C1108.7 (5)
O1—Zr1—C598.69 (14)C3—C2—Zr172.9 (3)
Cl1—Zr1—C581.19 (12)C1—C2—Zr174.8 (3)
C3—Zr1—C552.61 (17)C3—C2—H2125.7
C9—Zr1—C5148.0 (2)C1—C2—H2125.7
C7—Zr1—C5126.34 (18)Zr1—C2—H2118.5
C8—Zr1—C5126.85 (19)C2—C3—C4108.3 (6)
C4—Zr1—C531.62 (15)C2—C3—Zr175.7 (3)
C6—Zr1—C5148.3 (2)C4—C3—Zr175.1 (3)
O1—Zr1—C2128.0 (2)C2—C3—H3125.9
Cl1—Zr1—C2115.3 (2)C4—C3—H3125.9
C3—Zr1—C231.4 (2)Zr1—C3—H3115.5
C9—Zr1—C299.7 (3)C5—C4—C3107.1 (5)
C7—Zr1—C283.5 (2)C5—C4—Zr174.3 (2)
C8—Zr1—C274.7 (2)C3—C4—Zr172.7 (3)
C4—Zr1—C252.37 (18)C5—C4—H4126.5
C6—Zr1—C2115.3 (2)C3—C4—H4126.5
C5—Zr1—C252.14 (19)Zr1—C4—H4118.5
O1—Zr1—C1083.03 (16)C4—C5—C1108.0 (5)
Cl1—Zr1—C10100.4 (2)C4—C5—Zr174.1 (2)
C3—Zr1—C10125.5 (2)C1—C5—Zr174.6 (3)
C9—Zr1—C1030.0 (2)C4—C5—H5126.0
C7—Zr1—C1051.76 (19)C1—C5—H5126.0
C8—Zr1—C1050.7 (2)Zr1—C5—H5117.4
C4—Zr1—C10147.9 (2)C10—C6—C7106.7 (6)
C6—Zr1—C1031.2 (2)C10—C6—Zr174.6 (3)
C5—Zr1—C10177.53 (19)C7—C6—Zr173.2 (3)
C2—Zr1—C10125.4 (2)C10—C6—H6126.7
O1—Zr1—C1129.66 (15)C7—C6—H6126.7
Cl1—Zr1—C185.3 (2)Zr1—C6—H6117.6
C3—Zr1—C152.2 (2)C8—C7—C6106.4 (6)
C9—Zr1—C1128.6 (3)C8—C7—Zr174.6 (3)
C7—Zr1—C194.7 (2)C6—C7—Zr174.9 (3)
C8—Zr1—C199.5 (3)C8—C7—H7126.8
C4—Zr1—C152.37 (16)C6—C7—H7126.8
C6—Zr1—C1120.8 (2)Zr1—C7—H7116.1
C5—Zr1—C131.73 (17)C9—C8—C7107.7 (6)
C2—Zr1—C131.2 (2)C9—C8—Zr174.0 (3)
C10—Zr1—C1146.2 (2)C7—C8—Zr173.7 (3)
O1—Zr2—O1i102.43 (15)C9—C8—H8126.2
O1—Zr2—C1496.13 (17)C7—C8—H8126.2
O1i—Zr2—C1484.03 (16)Zr1—C8—H8118.1
O1—Zr2—C14i84.03 (16)C10—C9—C8109.9 (7)
O1i—Zr2—C14i96.13 (17)C10—C9—Zr176.3 (3)
C14—Zr2—C14i179.7 (3)C8—C9—Zr175.2 (4)
O1—Zr2—C13128.40 (15)C10—C9—H9125.0
O1i—Zr2—C1384.87 (16)C8—C9—H9125.0
C14—Zr2—C1333.10 (17)Zr1—C9—H9115.5
C14i—Zr2—C13146.71 (19)C9—C10—C6109.2 (6)
O1—Zr2—C13i84.87 (16)C9—C10—Zr173.7 (3)
O1i—Zr2—C13i128.40 (15)C6—C10—Zr174.2 (3)
C14—Zr2—C13i146.71 (19)C9—C10—H10125.4
C14i—Zr2—C13i33.10 (17)C6—C10—H10125.4
C13—Zr2—C13i129.8 (3)Zr1—C10—H10118.5
O1—Zr2—C12i113.78 (19)C12—C11—C15108.1 (6)
O1i—Zr2—C12i126.25 (17)C12—C11—Zr274.0 (3)
C14—Zr2—C12i127.2 (2)C15—C11—Zr275.3 (3)
C14i—Zr2—C12i52.50 (18)C12—C11—H11125.9
C13—Zr2—C12i100.6 (2)C15—C11—H11125.9
C13i—Zr2—C12i30.87 (17)Zr2—C11—H11116.8
O1—Zr2—C12126.24 (17)C13—C12—C11110.2 (5)
O1i—Zr2—C12113.78 (19)C13—C12—Zr274.1 (3)
C14—Zr2—C1252.50 (18)C11—C12—Zr274.8 (3)
C14i—Zr2—C12127.2 (2)C13—C12—H12124.9
C13—Zr2—C1230.87 (17)C11—C12—H12124.9
C13i—Zr2—C12100.6 (2)Zr2—C12—H12118.0
C12i—Zr2—C1274.9 (3)C12—C13—C14106.9 (5)
O1—Zr2—C11i134.52 (16)C12—C13—Zr275.0 (3)
O1i—Zr2—C11i95.43 (17)C14—C13—Zr273.4 (3)
C14—Zr2—C11i127.4 (2)C12—C13—H13126.6
C14i—Zr2—C11i52.42 (18)C14—C13—H13126.6
C13—Zr2—C11i94.3 (2)Zr2—C13—H13117.2
C13i—Zr2—C11i52.1 (2)C15—C14—C13106.2 (5)
C12i—Zr2—C11i31.23 (18)C15—C14—Zr276.0 (3)
C12—Zr2—C11i81.2 (2)C13—C14—Zr273.5 (3)
O1—Zr2—C1195.43 (17)C15—C14—H14126.9
O1i—Zr2—C11134.52 (16)C13—C14—H14126.9
C14—Zr2—C1152.42 (18)Zr2—C14—H14116.0
C14i—Zr2—C11127.4 (2)C11—C15—C14108.6 (5)
C13—Zr2—C1152.1 (2)C11—C15—Zr273.6 (3)
C13i—Zr2—C1194.3 (2)C14—C15—Zr272.4 (3)
C12i—Zr2—C1181.2 (2)C11—C15—H15125.7
C12—Zr2—C1131.23 (18)C14—C15—H15125.7
C11i—Zr2—C11101.1 (3)Zr2—C15—H15120.1
O1—Zr2—C1578.61 (14)
Cl1—Zr1—O1—Zr221.7 (10)Cl1—Zr1—C8—C9106.6 (5)
C3—Zr1—O1—Zr2156.9 (10)C3—Zr1—C8—C9112.2 (5)
C9—Zr1—O1—Zr2107.7 (10)C7—Zr1—C8—C9114.4 (6)
C7—Zr1—O1—Zr283.6 (11)C4—Zr1—C8—C9109.4 (4)
C8—Zr1—O1—Zr2116.8 (10)C6—Zr1—C8—C976.0 (4)
C4—Zr1—O1—Zr2129.4 (10)C5—Zr1—C8—C9144.3 (4)
C6—Zr1—O1—Zr260.6 (10)C2—Zr1—C8—C9143.0 (6)
C5—Zr1—O1—Zr2103.8 (10)C10—Zr1—C8—C935.7 (4)
C2—Zr1—O1—Zr2151.9 (10)C1—Zr1—C8—C9162.1 (5)
C10—Zr1—O1—Zr278.0 (10)O1—Zr1—C8—C7132.2 (5)
C1—Zr1—O1—Zr2111.5 (10)Cl1—Zr1—C8—C77.8 (6)
O1i—Zr2—O1—Zr194.5 (10)C3—Zr1—C8—C7133.4 (5)
C14—Zr2—O1—Zr19.3 (10)C9—Zr1—C8—C7114.4 (6)
C14i—Zr2—O1—Zr1170.5 (10)C4—Zr1—C8—C7136.2 (4)
C13—Zr2—O1—Zr11.2 (11)C6—Zr1—C8—C738.4 (4)
C13i—Zr2—O1—Zr1137.3 (10)C5—Zr1—C8—C7101.3 (4)
C12i—Zr2—O1—Zr1126.1 (10)C2—Zr1—C8—C7102.6 (5)
C12—Zr2—O1—Zr137.8 (11)C10—Zr1—C8—C778.7 (4)
C11i—Zr2—O1—Zr1154.8 (10)C1—Zr1—C8—C783.5 (5)
C11—Zr2—O1—Zr143.4 (10)C7—C8—C9—C102.5 (7)
C15—Zr2—O1—Zr117.2 (10)Zr1—C8—C9—C1069.1 (4)
C15i—Zr2—O1—Zr1177.3 (10)C7—C8—C9—Zr166.6 (4)
O1—Zr1—C1—C2100.0 (5)O1—Zr1—C9—C1080.4 (5)
Cl1—Zr1—C1—C2164.5 (4)Cl1—Zr1—C9—C1016.8 (6)
C3—Zr1—C1—C236.5 (4)C3—Zr1—C9—C10177.1 (5)
C9—Zr1—C1—C226.0 (5)C7—Zr1—C9—C1077.8 (5)
C7—Zr1—C1—C269.2 (5)C8—Zr1—C9—C10115.3 (7)
C8—Zr1—C1—C237.6 (5)C4—Zr1—C9—C10157.0 (4)
C4—Zr1—C1—C277.6 (4)C6—Zr1—C9—C1036.7 (4)
C6—Zr1—C1—C288.7 (4)C5—Zr1—C9—C10177.2 (4)
C5—Zr1—C1—C2114.6 (6)C2—Zr1—C9—C10151.5 (5)
C10—Zr1—C1—C262.9 (6)C1—Zr1—C9—C10138.1 (5)
O1—Zr1—C1—C514.6 (5)O1—Zr1—C9—C8164.2 (5)
Cl1—Zr1—C1—C580.9 (4)Cl1—Zr1—C9—C898.5 (5)
C3—Zr1—C1—C578.1 (4)C3—Zr1—C9—C867.6 (5)
C9—Zr1—C1—C5140.6 (4)C7—Zr1—C9—C837.6 (4)
C7—Zr1—C1—C5176.1 (4)C4—Zr1—C9—C887.6 (5)
C8—Zr1—C1—C5152.2 (4)C6—Zr1—C9—C878.6 (5)
C4—Zr1—C1—C537.1 (3)C5—Zr1—C9—C861.8 (6)
C6—Zr1—C1—C5156.7 (3)C2—Zr1—C9—C836.1 (5)
C2—Zr1—C1—C5114.6 (6)C10—Zr1—C9—C8115.3 (7)
C10—Zr1—C1—C5177.5 (5)C1—Zr1—C9—C822.8 (6)
C5—C1—C2—C30.9 (6)C8—C9—C10—C62.0 (7)
Zr1—C1—C2—C365.5 (4)Zr1—C9—C10—C666.3 (4)
C5—C1—C2—Zr166.5 (4)C8—C9—C10—Zr168.3 (4)
O1—Zr1—C2—C39.6 (6)C7—C6—C10—C90.7 (6)
Cl1—Zr1—C2—C3132.7 (4)Zr1—C6—C10—C966.0 (4)
C9—Zr1—C2—C384.8 (4)C7—C6—C10—Zr166.7 (4)
C7—Zr1—C2—C3134.2 (5)O1—Zr1—C10—C997.0 (5)
C8—Zr1—C2—C3103.1 (5)Cl1—Zr1—C10—C9166.9 (5)
C4—Zr1—C2—C338.0 (3)C3—Zr1—C10—C93.5 (6)
C6—Zr1—C2—C3136.2 (4)C7—Zr1—C10—C977.9 (5)
C5—Zr1—C2—C378.3 (4)C8—Zr1—C10—C936.8 (4)
C10—Zr1—C2—C3101.8 (4)C4—Zr1—C10—C938.6 (6)
C1—Zr1—C2—C3115.5 (6)C6—Zr1—C10—C9116.0 (6)
O1—Zr1—C2—C1105.9 (5)C5—Zr1—C10—C937 (6)
Cl1—Zr1—C2—C117.1 (5)C2—Zr1—C10—C935.3 (7)
C3—Zr1—C2—C1115.5 (6)C1—Zr1—C10—C969.8 (8)
C9—Zr1—C2—C1159.7 (4)O1—Zr1—C10—C6147.0 (5)
C7—Zr1—C2—C1110.3 (5)Cl1—Zr1—C10—C650.8 (4)
C8—Zr1—C2—C1141.4 (5)C3—Zr1—C10—C6119.5 (5)
C4—Zr1—C2—C177.6 (4)C9—Zr1—C10—C6116.0 (6)
C6—Zr1—C2—C1108.2 (4)C7—Zr1—C10—C638.2 (4)
C5—Zr1—C2—C137.3 (3)C8—Zr1—C10—C679.2 (4)
C10—Zr1—C2—C1142.6 (4)C4—Zr1—C10—C6154.6 (4)
C1—C2—C3—C41.9 (6)C5—Zr1—C10—C679 (6)
Zr1—C2—C3—C468.7 (3)C2—Zr1—C10—C680.7 (6)
C1—C2—C3—Zr166.8 (4)C1—Zr1—C10—C646.2 (8)
O1—Zr1—C3—C2172.4 (4)O1—Zr2—C11—C12171.3 (4)
Cl1—Zr1—C3—C265.7 (5)O1i—Zr2—C11—C1257.9 (5)
C9—Zr1—C3—C299.5 (5)C14—Zr2—C11—C1277.7 (4)
C7—Zr1—C3—C247.7 (5)C14i—Zr2—C11—C12102.1 (4)
C8—Zr1—C3—C271.0 (5)C13—Zr2—C11—C1235.5 (4)
C4—Zr1—C3—C2113.7 (5)C13i—Zr2—C11—C12103.4 (4)
C6—Zr1—C3—C261.9 (6)C12i—Zr2—C11—C1275.4 (5)
C5—Zr1—C3—C276.7 (4)C11i—Zr2—C11—C1251.3 (4)
C10—Zr1—C3—C2101.3 (5)C15—Zr2—C11—C12114.1 (6)
C1—Zr1—C3—C236.3 (4)C15i—Zr2—C11—C1261.2 (5)
O1—Zr1—C3—C458.6 (4)O1—Zr2—C11—C1557.2 (4)
Cl1—Zr1—C3—C448.1 (5)O1i—Zr2—C11—C1556.2 (5)
C9—Zr1—C3—C4146.7 (4)C14—Zr2—C11—C1536.4 (3)
C7—Zr1—C3—C4161.4 (4)C14i—Zr2—C11—C15143.8 (3)
C8—Zr1—C3—C4175.2 (4)C13—Zr2—C11—C1578.6 (4)
C6—Zr1—C3—C4175.6 (4)C13i—Zr2—C11—C15142.4 (4)
C5—Zr1—C3—C437.1 (3)C12i—Zr2—C11—C15170.4 (5)
C2—Zr1—C3—C4113.7 (5)C12—Zr2—C11—C15114.1 (6)
C10—Zr1—C3—C4145.0 (3)C11i—Zr2—C11—C15165.4 (5)
C1—Zr1—C3—C477.4 (4)C15i—Zr2—C11—C15175.32 (16)
C2—C3—C4—C52.1 (6)C15—C11—C12—C132.0 (6)
Zr1—C3—C4—C567.0 (3)Zr2—C11—C12—C1366.3 (4)
C2—C3—C4—Zr169.1 (4)C15—C11—C12—Zr268.2 (4)
O1—Zr1—C4—C5125.4 (3)O1—Zr2—C12—C13105.9 (4)
Cl1—Zr1—C4—C531.1 (3)O1i—Zr2—C12—C1322.0 (4)
C3—Zr1—C4—C5114.0 (5)C14—Zr2—C12—C1339.3 (4)
C9—Zr1—C4—C5153.9 (3)C14i—Zr2—C12—C13140.8 (3)
C7—Zr1—C4—C588.1 (4)C13i—Zr2—C12—C13162.6 (3)
C8—Zr1—C4—C5119.2 (4)C12i—Zr2—C12—C13145.4 (5)
C6—Zr1—C4—C5100.3 (10)C11i—Zr2—C12—C13114.1 (4)
C2—Zr1—C4—C577.0 (4)C11—Zr2—C12—C13116.7 (6)
C10—Zr1—C4—C5175.4 (3)C15—Zr2—C12—C1379.7 (4)
C1—Zr1—C4—C537.2 (3)C15i—Zr2—C12—C13108.8 (4)
O1—Zr1—C4—C3120.6 (4)O1—Zr2—C12—C1110.8 (5)
Cl1—Zr1—C4—C3145.1 (4)O1i—Zr2—C12—C11138.7 (4)
C9—Zr1—C4—C339.9 (5)C14—Zr2—C12—C1177.4 (4)
C7—Zr1—C4—C325.9 (5)C14i—Zr2—C12—C11102.5 (4)
C8—Zr1—C4—C35.2 (5)C13—Zr2—C12—C11116.7 (6)
C6—Zr1—C4—C313.7 (11)C13i—Zr2—C12—C1180.7 (4)
C5—Zr1—C4—C3114.0 (5)C12i—Zr2—C12—C1197.9 (5)
C2—Zr1—C4—C337.0 (4)C11i—Zr2—C12—C11129.2 (4)
C10—Zr1—C4—C361.4 (5)C15—Zr2—C12—C1137.0 (4)
C1—Zr1—C4—C376.8 (4)C15i—Zr2—C12—C11134.5 (4)
C3—C4—C5—C11.6 (5)C11—C12—C13—C140.3 (6)
Zr1—C4—C5—C167.4 (3)Zr2—C12—C13—C1467.0 (3)
C3—C4—C5—Zr165.9 (3)C11—C12—C13—Zr266.7 (4)
C2—C1—C5—C40.4 (6)O1—Zr2—C13—C1298.3 (4)
Zr1—C1—C5—C467.1 (3)O1i—Zr2—C13—C12159.9 (4)
C2—C1—C5—Zr166.7 (4)C14—Zr2—C13—C12113.2 (5)
O1—Zr1—C5—C454.3 (3)C14i—Zr2—C13—C1266.5 (5)
Cl1—Zr1—C5—C4150.3 (3)C13i—Zr2—C13—C1222.4 (3)
C3—Zr1—C5—C437.8 (3)C12i—Zr2—C13—C1233.9 (5)
C9—Zr1—C5—C444.9 (5)C11i—Zr2—C13—C1264.8 (4)
C7—Zr1—C5—C4119.2 (4)C11—Zr2—C13—C1236.0 (3)
C8—Zr1—C5—C479.4 (4)C15—Zr2—C13—C1275.5 (4)
C6—Zr1—C5—C4154.6 (4)C15i—Zr2—C13—C1285.7 (4)
C2—Zr1—C5—C477.7 (4)O1—Zr2—C13—C1414.9 (4)
C10—Zr1—C5—C480 (6)O1i—Zr2—C13—C1486.9 (3)
C1—Zr1—C5—C4114.4 (5)C14i—Zr2—C13—C14179.7 (3)
O1—Zr1—C5—C1168.7 (4)C13i—Zr2—C13—C14135.6 (4)
Cl1—Zr1—C5—C195.3 (4)C12i—Zr2—C13—C14147.1 (4)
C3—Zr1—C5—C176.6 (4)C12—Zr2—C13—C14113.2 (5)
C9—Zr1—C5—C169.4 (6)C11i—Zr2—C13—C14178.0 (4)
C7—Zr1—C5—C14.8 (5)C11—Zr2—C13—C1477.2 (4)
C8—Zr1—C5—C135.0 (5)C15—Zr2—C13—C1437.7 (3)
C4—Zr1—C5—C1114.4 (5)C15i—Zr2—C13—C14161.1 (3)
C6—Zr1—C5—C140.2 (6)C12—C13—C14—C151.5 (6)
C2—Zr1—C5—C136.7 (4)Zr2—C13—C14—C1569.6 (3)
C10—Zr1—C5—C134 (6)C12—C13—C14—Zr268.1 (4)
O1—Zr1—C6—C1034.9 (5)O1—Zr2—C14—C1556.4 (3)
Cl1—Zr1—C6—C10129.3 (5)O1i—Zr2—C14—C15158.3 (3)
C3—Zr1—C6—C1086.6 (6)C14i—Zr2—C14—C1572.5 (5)
C9—Zr1—C6—C1035.2 (4)C13—Zr2—C14—C15111.9 (5)
C7—Zr1—C6—C10113.2 (6)C13i—Zr2—C14—C1533.6 (6)
C8—Zr1—C6—C1075.0 (4)C12i—Zr2—C14—C1569.8 (5)
C4—Zr1—C6—C1096.8 (12)C12—Zr2—C14—C1575.4 (3)
C5—Zr1—C6—C10175.4 (4)C11i—Zr2—C14—C15109.4 (4)
C2—Zr1—C6—C10117.1 (5)C11—Zr2—C14—C1535.7 (3)
C1—Zr1—C6—C10152.1 (5)C15i—Zr2—C14—C15144.9 (5)
O1—Zr1—C6—C7148.1 (5)O1—Zr2—C14—C13168.3 (3)
Cl1—Zr1—C6—C7117.5 (5)O1i—Zr2—C14—C1389.8 (4)
C3—Zr1—C6—C726.6 (7)C14i—Zr2—C14—C1339.4 (4)
C9—Zr1—C6—C778.0 (4)C13i—Zr2—C14—C1378.4 (7)
C8—Zr1—C6—C738.2 (4)C12i—Zr2—C14—C1342.1 (5)
C4—Zr1—C6—C716.4 (13)C12—Zr2—C14—C1336.5 (3)
C5—Zr1—C6—C762.2 (6)C11i—Zr2—C14—C132.5 (5)
C2—Zr1—C6—C73.9 (6)C11—Zr2—C14—C1376.2 (4)
C10—Zr1—C6—C7113.2 (6)C15—Zr2—C14—C13111.9 (5)
C1—Zr1—C6—C738.9 (5)C15i—Zr2—C14—C1332.9 (5)
C10—C6—C7—C80.8 (6)C12—C11—C15—C142.9 (6)
Zr1—C6—C7—C868.5 (4)Zr2—C11—C15—C1464.4 (3)
C10—C6—C7—Zr167.7 (4)C12—C11—C15—Zr267.4 (4)
O1—Zr1—C7—C867.8 (6)C13—C14—C15—C112.7 (5)
Cl1—Zr1—C7—C8173.8 (5)Zr2—C14—C15—C1165.2 (4)
C3—Zr1—C7—C848.5 (5)C13—C14—C15—Zr267.9 (3)
C9—Zr1—C7—C836.5 (4)O1—Zr2—C15—C11121.4 (4)
C4—Zr1—C7—C862.5 (5)O1i—Zr2—C15—C11139.8 (4)
C6—Zr1—C7—C8112.2 (6)C14—Zr2—C15—C11116.2 (5)
C5—Zr1—C7—C8103.1 (4)C14i—Zr2—C15—C1163.3 (5)
C2—Zr1—C7—C871.3 (5)C13—Zr2—C15—C1176.6 (4)
C10—Zr1—C7—C875.0 (4)C13i—Zr2—C15—C1143.6 (5)
C1—Zr1—C7—C8100.5 (5)C12i—Zr2—C15—C1110.2 (5)
O1—Zr1—C7—C644.4 (6)C12—Zr2—C15—C1137.2 (4)
Cl1—Zr1—C7—C661.5 (5)C11i—Zr2—C15—C1119.1 (6)
C3—Zr1—C7—C6160.8 (5)C15i—Zr2—C15—C1111.4 (4)
C9—Zr1—C7—C675.7 (4)O1—Zr2—C15—C14122.3 (3)
C8—Zr1—C7—C6112.2 (6)O1i—Zr2—C15—C1423.6 (4)
C4—Zr1—C7—C6174.7 (4)C14i—Zr2—C15—C14179.5 (5)
C5—Zr1—C7—C6144.7 (4)C13—Zr2—C15—C1439.6 (3)
C2—Zr1—C7—C6176.4 (5)C13i—Zr2—C15—C14159.9 (4)
C10—Zr1—C7—C637.3 (4)C12i—Zr2—C15—C14126.4 (4)
C1—Zr1—C7—C6147.2 (5)C12—Zr2—C15—C1479.0 (4)
C6—C7—C8—C92.0 (6)C11i—Zr2—C15—C1497.1 (4)
Zr1—C7—C8—C966.7 (4)C11—Zr2—C15—C14116.2 (5)
C6—C7—C8—Zr168.7 (4)C15i—Zr2—C15—C14104.9 (3)
O1—Zr1—C8—C917.8 (5)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Zr3(C5H5)6Cl2O2]
Mr767.10
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)223
a, b, c (Å)7.8809 (4), 18.0518 (10), 20.1883 (11)
V3)2872.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.20 × 0.18 × 0.04
Data collection
DiffractometerBruker SMART APEXII CCD Platform
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008b)
Tmin, Tmax0.784, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
34715, 4032, 2569
Rint0.099
(sin θ/λ)max1)0.694
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.100, 1.01
No. of reflections4032
No. of parameters168
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.48

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2009), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008a), SHELXTL (Sheldrick, 2008a).

Selected geometric parameters (Å, º) top
Zr1—O11.921 (3)Zr2—O11.980 (3)
Zr1—Cl12.4857 (12)Zr2—O1i1.980 (2)
O1—Zr1—Cl197.23 (8)Zr1—O1—Zr2171.43 (15)
O1—Zr2—O1i102.43 (15)
Symmetry code: (i) x+1, y, z+1/2.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArnold, T., Braunschweig, H. & Gruss, K. (2011). Acta Cryst. E67, m391.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBoutonnet, F., Zablocka, M., Igau, A., Jaud, J., Majoral, J., Schamberger, J., Erker, G., Werner, S. & Krüger, C. (1995). J. Chem. Soc. Chem. Commun. pp. 823–824.  CrossRef Web of Science Google Scholar
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClarke, J. F. & Drew, G. B. (1974). Acta Cryst. B30, 2267–2269.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationCorey, J. Y., Zhu, X.-H., Brammer, L. & Rath, N. P. (1995). Acta Cryst. C51, 565–567.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKuz'mina, L. G., Struchkov, Yu. T., Minacheva, M. Kh. & Brainina, E. M. (1988). Russ. J. Coord. Chem. 14, 1257–1261.  CAS Google Scholar
First citationMikhailova, O. A., Minacheva, M. H., Burlakov, V. V., Shur, V. B., Pisarevsky, A. P., Yanovsky, A. I. & Struchkov, Yu. T. (1993). Acta Cryst. C49, 1345–1347.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNieger, M., Niecke, E. & Loew, A. (1999). Private communication (refcode CPZROX02). CCDC, Cambridge, England.  Google Scholar
First citationReddy, K. P. & Petersen, J. L. (1989). Organometallics, 8, 2107–2113.  CSD CrossRef CAS Web of Science Google Scholar
First citationReid, A. F., Shannon, J. S., Swan, J. M. & Wailes, P. C. (1965). Aust. J. Chem. 18, 173–181.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008a). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSpletstoser, J. T., White, J. M., Tunoori, A. R. & Georg, G. I. (2007). J. Am. Chem. Soc. 129, 3408–3419.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWisniewska, A., Baranowska, K. & Pikies, J. (2008). Acta Cryst. E64, m361.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds