organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-tert-Butyl-5-hy­dr­oxy­methyl-1,3-dioxan-5-yl)methanol

aCentro de Graduados e Investigación del Instituto Tecnológico de Tijuana, Apdo. Postal 1166, 22500, Tijuana, B.C., Mexico, and bCentro de Ciencias de la Materia Condensada, Universidad Nacional Autónoma de, México. Km. 107 Carretera Tijuana-Ensenada, Ensenada, BC, CP 22800, Mexico
*Correspondence e-mail: madrigal@tectijuana.mx

(Received 26 May 2012; accepted 4 June 2012; online 13 June 2012)

In the title compound, C10H20O4, the dioxane ring adopts a chair conformation. The tert-butyl group occupies an equatorial position, and is staggered with respect to the O atoms of the dioxane ring. In the crystal, mol­ecules are connected by O—H⋯O hydrogen-bonds into zigzag chains of R44(8) and R22(12) ring motifs that run parallel to the a axis.

Related literature

For background information on the synthesis and properties of 1,3-dioxanes, see: Anderson (1967[Anderson, J. E. (1967). J. Chem. Soc. B pp. 712-716.]); Bailey et al. (1978[Bailey, W. F., Connon, H., Eliel, E. L. & Wiberg, K. B. (1978). J. Am. Chem. Soc. 100, 2202-2209.]); Juaristi et al. (1987[Juaristi, E., Martinez, R., Mendez, R., Toscano, R. A., Soriano-Garcia, M., Eliel, E. L., Petsom, A. & Glass, R. S. (1987). J. Org. Chem. 52, 3806-3811.], 1989[Juaristi, E., Gordillo, B., Martinez, R. & Toscano, R. A. (1989). J. Org. Chem. 54, 5963-5967.]); Vázquez-Hernández et al. (2004[Vázquez-Hernández, M., Rosquete-Pina, G. A. & Juaristi, E. (2004). J. Org. Chem. 69, 9063-9072.]). For the crystal structure of a similar compound, see: Zhang et al. (2010[Zhang, M., Yuan, X.-Y. & Ng, S. W. (2010). Acta Cryst. E66, o2917.]).

[Scheme 1]

Experimental

Crystal data
  • C10H20O4

  • Mr = 204.26

  • Triclinic, [P \overline 1]

  • a = 5.8337 (10) Å

  • b = 6.1408 (9) Å

  • c = 17.941 (3) Å

  • α = 81.468 (12)°

  • β = 87.335 (14)°

  • γ = 62.606 (13)°

  • V = 564.16 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.73 × 0.63 × 0.20 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: empirical (using intensity measurements) (XEMP in SHELXTL; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.335, Tmax = 0.466

  • 3581 measured reflections

  • 3283 independent reflections

  • 2593 reflections with I > 2σ(I)

  • Rint = 0.013

  • 3 standard reflections every 97 reflections intensity decay: 5.8%

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.193

  • S = 1.42

  • 3283 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O4i 0.82 1.94 2.7346 (14) 162
O4—H4A⋯O3ii 0.82 1.91 2.6878 (15) 159
Symmetry codes: (i) -x, -y+1, -z; (ii) x+1, y, z.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The synthesis and conformational studies of several 1,3-dioxanes have been reported in the literature (Vázquez-Hernández et al., 2004; Juaristi et al., 1987, 1989; Bailey et al., 1978). The preparation and some spectroscopic information for the title compound was reported by Anderson et al. (1967).

In our development work, while searching rigid molecules to incorporate fluorophore groups, we synthesized 5,5-dihydroxymethyl-2-tert-butyl-1,3-dioxane as a reaction intermediate. In the molecule of C10H20O4 (Scheme 1, Fig. 1), the tert-butyl group occupies an equatorial position, and is staggered with respect to the O atoms of the dioxane ring. The hydroxyl groups act as both hydrogen bond donor and acceptor to neighboring molecules. The hydrogen-bonds (table 1) form zigzag chains of R44(8) and R22(12) ring motifs that run parallel to the a axis (Fig. 2).

Related literature top

For background information on the synthesis and properties of 1,3-dioxanes, see: Anderson (1967); Bailey et al. (1978); Juaristi et al. (1987, 1989); Vázquez-Hernández et al. (2004). For the crystal structure of a similar compound, see: Zhang et al. (2010).

Experimental top

The synthesis of the title compound included reagents and solvents of reagent grade, which were used without further purification. In a 25 ml round bottom flask provided with a magnetic stirrer, was placed 1.2 g (8.8 mmol) of pentaerythritol, 5 ml of water, 0.01 ml of HCl as catalyst and 0.46 ml (7.35 mmol) of pivalaldehyde. 3 ml of dimethylformamide was then added to complete dissolution of the solid, and the reaction mixture was stirred for 24 h. The precipitate thus formed was filtered and washed with a solution of NaHCO3 (10ml, 3 times) and H2O (10 ml, 3 times). The yield was 41%; melting point: 170–172 °C.

IR(ATR): 3002, 2944, 2969, 2818, 1958, 1479, 1458, 1361, 1166, 1143, 1107, 1038, 1025, 976, 931 cm-1.

1H-NMR (DMSO-d6): δ 4.5 (t, J=5.2 Hz, 1H, OH), 4.45 (t, J=5.2 Hz, 1H, OH), 3.9 (s, 1H, CH), 3.77 (d, J=11.8 Hz, 2H, OCHH), 3.5 (d, J=11.8 Hz, 2H, OCHH), 3.53 (d, J=5.2 Hz, 2H, CH2OH), 3.16 (d, J=5.2 Hz, 2H, CH2OH), 0.8 (s, 9H, C(CH3)3.

13C-NMR (DMSO-d6): 106.5 (OCO), 68.9 (OCH2), 68.1 (CH2OH), 59.7 (CH2OH), 39.0 (C), 34.7 (C(CH3)3, 24.6 (C(CH3)3.

For crystallization, 30 mg of 5,5-dihydroxymethyl-2-tert-butyl-1,3-dioxane compound was placed in a glass vial and 2 ml of dimethyl sulfoxide was added. The solution was allowed to stand at room temperature for seven days and the crystals that formed were separated by filtration.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.96 Å for -CH3, C—H = 0.97 Å for -CH2- groups and O—H = 0.82 Å. Uiso(H) values were set to 1.2 Ueq(CH2) or 1.5 Ueq(CH3, OH).

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
The molecular structure of (I) showing displacement ellipsoids at the 30% probability. H atoms are shown as spheres of arbitrary radius.

Packing of (I) showing the H-bonds. The molecules are connected into zig-zag ribbons along the [100] direction. H-bonds are indicated by broken lines.
(2-tert-Butyl-5-hydroxymethyl-1,3-dioxan-5-yl)methanol top
Crystal data top
C10H20O4Z = 2
Mr = 204.26F(000) = 224
Triclinic, P1Dx = 1.202 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8337 (10) ÅCell parameters from 52 reflections
b = 6.1408 (9) Åθ = 5.6–12.5°
c = 17.941 (3) ŵ = 0.09 mm1
α = 81.468 (12)°T = 298 K
β = 87.335 (14)°Prismatic, colorless
γ = 62.606 (13)°0.73 × 0.63 × 0.20 mm
V = 564.16 (15) Å3
Data collection top
Siemens P4
diffractometer
2593 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.013
Graphite monochromatorθmax = 30.0°, θmin = 2.3°
2θ/ω scansh = 08
Absorption correction: empirical (using intensity measurements)
(XEMP in SHELXTL; Sheldrick, 2008)
k = 78
Tmin = 0.335, Tmax = 0.466l = 2525
3581 measured reflections3 standard reflections every 97 reflections
3283 independent reflections intensity decay: 5.8%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.193H-atom parameters constrained
S = 1.42 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
3283 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C10H20O4γ = 62.606 (13)°
Mr = 204.26V = 564.16 (15) Å3
Triclinic, P1Z = 2
a = 5.8337 (10) ÅMo Kα radiation
b = 6.1408 (9) ŵ = 0.09 mm1
c = 17.941 (3) ÅT = 298 K
α = 81.468 (12)°0.73 × 0.63 × 0.20 mm
β = 87.335 (14)°
Data collection top
Siemens P4
diffractometer
2593 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
(XEMP in SHELXTL; Sheldrick, 2008)
Rint = 0.013
Tmin = 0.335, Tmax = 0.4663 standard reflections every 97 reflections
3581 measured reflections intensity decay: 5.8%
3283 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.193H-atom parameters constrained
S = 1.42Δρmax = 0.35 e Å3
3283 reflectionsΔρmin = 0.29 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.19141 (17)0.04289 (16)0.28059 (4)0.0416 (2)
O20.01630 (17)0.14442 (16)0.22771 (4)0.0413 (2)
O30.31024 (19)0.4084 (2)0.08767 (6)0.0652 (4)
H3A0.27240.47740.05000.098*
O40.2736 (2)0.3620 (2)0.05181 (5)0.0572 (3)
H4A0.41380.33930.06750.086*
C10.1581 (2)0.1720 (2)0.28510 (6)0.0374 (3)
H1A0.32540.31440.27930.045*
C20.2949 (2)0.0938 (2)0.21038 (6)0.0422 (3)
H2A0.46520.04140.20510.051*
H2B0.31250.24370.20950.051*
C30.1194 (2)0.12605 (19)0.14454 (6)0.0336 (2)
C40.0755 (3)0.1038 (2)0.15426 (6)0.0439 (3)
H4B0.04950.08290.11650.053*
H4C0.23630.24770.14660.053*
C50.0515 (2)0.2160 (2)0.36206 (6)0.0417 (3)
C60.2078 (3)0.0058 (3)0.37302 (8)0.0546 (3)
H6A0.32920.02780.33470.082*
H6B0.18520.15230.36940.082*
H6C0.27170.02340.42180.082*
C70.2463 (3)0.2507 (3)0.42305 (8)0.0663 (4)
H7A0.26720.10330.41960.099*
H7B0.40960.38870.41580.099*
H7C0.18390.28160.47190.099*
C80.0168 (4)0.4500 (3)0.36665 (10)0.0688 (5)
H8A0.10580.42630.32850.103*
H8B0.04520.48240.41540.103*
H8C0.17960.58810.35890.103*
C100.2505 (3)0.1391 (3)0.06975 (7)0.0467 (3)
H10A0.42120.00140.07200.056*
H10B0.15170.12730.02990.056*
C90.1367 (2)0.3603 (2)0.14803 (7)0.0433 (3)
H9A0.21770.34270.19540.052*
H9B0.10200.50090.14680.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0540 (5)0.0534 (5)0.0310 (4)0.0366 (4)0.0015 (3)0.0038 (3)
O20.0566 (5)0.0497 (5)0.0326 (4)0.0369 (4)0.0046 (3)0.0080 (3)
O30.0482 (5)0.0904 (8)0.0554 (6)0.0377 (5)0.0154 (4)0.0201 (5)
O40.0621 (6)0.0766 (7)0.0491 (5)0.0501 (5)0.0003 (4)0.0073 (4)
C10.0408 (5)0.0386 (5)0.0343 (5)0.0200 (4)0.0022 (4)0.0036 (4)
C20.0432 (6)0.0585 (7)0.0354 (5)0.0339 (5)0.0020 (4)0.0003 (5)
C30.0378 (5)0.0412 (5)0.0294 (5)0.0245 (4)0.0032 (4)0.0053 (4)
C40.0638 (7)0.0475 (6)0.0339 (5)0.0357 (6)0.0066 (5)0.0119 (4)
C50.0498 (6)0.0455 (6)0.0339 (5)0.0264 (5)0.0042 (4)0.0027 (4)
C60.0543 (7)0.0636 (8)0.0489 (7)0.0281 (6)0.0139 (6)0.0168 (6)
C70.0694 (9)0.0933 (12)0.0373 (6)0.0425 (9)0.0085 (6)0.0083 (7)
C80.1062 (13)0.0573 (8)0.0570 (8)0.0518 (9)0.0223 (8)0.0066 (6)
C100.0540 (7)0.0600 (7)0.0355 (5)0.0345 (6)0.0090 (5)0.0076 (5)
C90.0411 (6)0.0465 (6)0.0426 (6)0.0218 (5)0.0004 (5)0.0012 (4)
Geometric parameters (Å, º) top
O1—C11.4100 (13)C4—H4C0.9700
O1—C21.4266 (13)C5—C61.529 (2)
O2—C11.4181 (14)C5—C81.5307 (19)
O2—C41.4301 (13)C5—C71.5356 (19)
O3—C91.4204 (15)C6—H6A0.9600
O3—H3A0.8200C6—H6B0.9600
O4—C101.4248 (16)C6—H6C0.9600
O4—H4A0.8200C7—H7A0.9600
C1—C51.5267 (15)C7—H7B0.9600
C1—H1A0.9800C7—H7C0.9600
C2—C31.5297 (15)C8—H8A0.9600
C2—H2A0.9700C8—H8B0.9600
C2—H2B0.9700C8—H8C0.9600
C3—C101.5235 (15)C10—H10A0.9700
C3—C91.5314 (16)C10—H10B0.9700
C3—C41.5309 (15)C9—H9A0.9700
C4—H4B0.9700C9—H9B0.9700
C1—O1—C2112.27 (8)C6—C5—C7109.52 (12)
C1—O2—C4111.54 (9)C8—C5—C7110.10 (12)
C9—O3—H3A109.5C5—C6—H6A109.5
C10—O4—H4A109.5C5—C6—H6B109.5
O1—C1—O2110.58 (8)H6A—C6—H6B109.5
O1—C1—C5109.07 (9)C5—C6—H6C109.5
O2—C1—C5109.32 (9)H6A—C6—H6C109.5
O1—C1—H1A109.3H6B—C6—H6C109.5
O2—C1—H1A109.3C5—C7—H7A109.5
C5—C1—H1A109.3C5—C7—H7B109.5
O1—C2—C3110.78 (8)H7A—C7—H7B109.5
O1—C2—H2A109.5C5—C7—H7C109.5
C3—C2—H2A109.5H7A—C7—H7C109.5
O1—C2—H2B109.5H7B—C7—H7C109.5
C3—C2—H2B109.5C5—C8—H8A109.5
H2A—C2—H2B108.1C5—C8—H8B109.5
C10—C3—C2110.54 (9)H8A—C8—H8B109.5
C10—C3—C9111.37 (9)C5—C8—H8C109.5
C2—C3—C9108.81 (9)H8A—C8—H8C109.5
C10—C3—C4108.60 (9)H8B—C8—H8C109.5
C2—C3—C4106.80 (9)O4—C10—C3112.63 (10)
C9—C3—C4110.62 (9)O4—C10—H10A109.1
O2—C4—C3111.25 (9)C3—C10—H10A109.1
O2—C4—H4B109.4O4—C10—H10B109.1
C3—C4—H4B109.4C3—C10—H10B109.1
O2—C4—H4C109.4H10A—C10—H10B107.8
C3—C4—H4C109.4O3—C9—C3112.71 (10)
H4B—C4—H4C108.0O3—C9—H9A109.0
C1—C5—C6110.31 (10)C3—C9—H9A109.0
C1—C5—C8108.76 (10)O3—C9—H9B109.0
C6—C5—C8109.86 (12)C3—C9—H9B109.0
C1—C5—C7108.27 (10)H9A—C9—H9B107.8
C2—O1—C1—O260.72 (11)O1—C1—C5—C659.66 (13)
C2—O1—C1—C5179.03 (9)O2—C1—C5—C661.36 (12)
C4—O2—C1—O160.20 (11)O1—C1—C5—C8179.79 (11)
C4—O2—C1—C5179.71 (8)O2—C1—C5—C859.20 (14)
C1—O1—C2—C358.43 (12)O1—C1—C5—C760.16 (13)
O1—C2—C3—C10170.96 (9)O2—C1—C5—C7178.82 (10)
O1—C2—C3—C966.45 (12)C2—C3—C10—O469.64 (13)
O1—C2—C3—C452.99 (12)C9—C3—C10—O451.45 (13)
C1—O2—C4—C358.05 (13)C4—C3—C10—O4173.51 (10)
C10—C3—C4—O2172.44 (9)C10—C3—C9—O356.51 (12)
C2—C3—C4—O253.21 (13)C2—C3—C9—O3178.60 (9)
C9—C3—C4—O265.05 (12)C4—C3—C9—O364.38 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O4i0.821.942.7346 (14)162
O4—H4A···O3ii0.821.912.6878 (15)159
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H20O4
Mr204.26
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.8337 (10), 6.1408 (9), 17.941 (3)
α, β, γ (°)81.468 (12), 87.335 (14), 62.606 (13)
V3)564.16 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.73 × 0.63 × 0.20
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(XEMP in SHELXTL; Sheldrick, 2008)
Tmin, Tmax0.335, 0.466
No. of measured, independent and
observed [I > 2σ(I)] reflections
3581, 3283, 2593
Rint0.013
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.193, 1.42
No. of reflections3283
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.29

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O4i0.821.942.7346 (14)162.4
O4—H4A···O3ii0.821.912.6878 (15)159.3
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z.
 

Acknowledgements

Support for this work from the Dirección General de Educación Superior Tecnológica (DGEST) Grant 2574.09P, is gratefully acknowledged.

References

First citationAnderson, J. E. (1967). J. Chem. Soc. B pp. 712–716.
First citationBailey, W. F., Connon, H., Eliel, E. L. & Wiberg, K. B. (1978). J. Am. Chem. Soc. 100, 2202–2209.  CrossRef CAS Web of Science
First citationJuaristi, E., Gordillo, B., Martinez, R. & Toscano, R. A. (1989). J. Org. Chem. 54, 5963–5967.  CSD CrossRef CAS Web of Science
First citationJuaristi, E., Martinez, R., Mendez, R., Toscano, R. A., Soriano-Garcia, M., Eliel, E. L., Petsom, A. & Glass, R. S. (1987). J. Org. Chem. 52, 3806–3811.  CSD CrossRef CAS Web of Science
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSiemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
First citationVázquez-Hernández, M., Rosquete-Pina, G. A. & Juaristi, E. (2004). J. Org. Chem. 69, 9063–9072.  Web of Science PubMed
First citationZhang, M., Yuan, X.-Y. & Ng, S. W. (2010). Acta Cryst. E66, o2917.  Web of Science CSD CrossRef IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds