

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[4-Bromo-N-(pyridin-2-ylmethylidene)aniline- $\kappa^2 N, N'$ jiodido(triphenylphosphane-*kP*)copper(I)

Aliakbar Dehno Khalaji,^a Bahram Bahramian,^b Khadijeh Jafari,^b Karla Fejfarová^c* and Michal Dušek^c

^aDepartment of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran, ^bCollege of Chemistry, Shahrood University of Technology, Shahrood, Iran, and ^cInstitute of Physics ASCR, v.v.i., Na Slovance 2, 182 21 Praha 8, Czech Republic Correspondence e-mail: fejfarov@fzu.cz

Received 20 June 2012; accepted 25 June 2012

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.007 Å; R factor = 0.038; wR factor = 0.110; data-to-parameter ratio = 18.1.

In the title compound, $[CuI(C_{12}H_9BrN_2)(C_{18}H_{15}P)]$, the Cu^I ion is bonded to one I atom, one triphenylphosphane P atom and two N atoms of the diimine ligand in a distorted tetrahedral geometry. The Schiff base acts as a chelating ligand and coordinates to the Cu¹ atom *via* two N atoms. In the diimine ligand, the dihedral angle between the pyridine and bromophenyl rings is $19.2 (2)^{\circ}$. In the crystal, molecules are connected by $\pi - \pi$ stacking interactions between inversionrelated pyridine rings [centroid-centroid distance = 3.404 (3) Å].

Related literature

For related structures and their applications, see: Dehghanpour et al. (2006, 2008); Saha et al. (2010, 2011a,b); Habibi et al. (2007); Morshedi et al. (2009); Al-Fayez et al. (2007); Kickelbick et al. (2003); Massa et al. (2009); Chen et al. (2012); Roy et al. (2011). For standard bond lengths, see: Allen et al. (1987).

Experimental

Crystal data

$[CuI(C_{12}H_9BrN_2)(C_{18}H_{15}P)]$	b = 34.7124 (16) Å
$M_r = 713.9$	c = 8.3792 (4) Å
Monoclinic, $P2_1/c$	$\beta = 114.321 \ (6)^{\circ}$
a = 10.3141 (5) Å	V = 2733.7 (3) Å ³

 $0.49 \times 0.04 \times 0.03 \text{ mm}$

T = 120 K

Z = 4Mo $K\alpha$ radiation $\mu = 3.47 \text{ mm}^{-1}$

Data collection

Agilent Xcalibur diffractometer	14996 measured reflections
with an Atlas (Gemini ultra Cu)	5893 independent reflections
detector	4325 reflections with $I > 3\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.048$
(CrysAlis PRO; Agilent, 2010)	
$T_{\min} = 0.914, \ T_{\max} = 1.000$	

Refinement

 $R[F^2 > 3\sigma(F^2)] = 0.038$ $wR(F^2) = 0.110$ S = 1.195893 reflections

325 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.70 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.65 \text{ e } \text{\AA}^{-3}$

Fable 1			
Selected	bond	lengths	(Å).

I1-Cu1	2.6386 (7)	Cu1-N1	2.119 (5)
Cu1-P1	2.2065 (15)	Cu1-N2	2.080 (4)

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2006): molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006.

We acknowledge Golestan University and Shahrood University of Technology for partial support of this work, the Institutional Research Plan No. AVOZ10100521 of the Institute of Physics and the Praemium Academiae Project of the Academy of Sciences of the Czech Republic.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2426).

References

- Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Al-Fayez, S., Abdel-Rahman, L. H., Shemsi, A. M., Seddigi, Z. S. & Fettouhi, M. (2007). J. Chem. Crystallogr. 37, 517-521.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany
- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Chen, J.-L., Cao, X.-F., Gu, W., Su, B.-T., Zhang, F., Wen, H.-R. & Hong, R. (2012). Inorg. Chem. Commun. 15, 65-68.
- Dehghanpour, S., Fotouhi, L., Mohammadpour Amini, M., Khavasi, H. R., Jahani, K., Nouroozi, F. & Zamanifar, E. (2008). J. Coord. Chem. 61, 455-463
- Dehghanpour, S., Mahmoudkhani, A. H. & Amirnasr, M. (2006). Struct. Chem. 17 255-262
- Habibi, M. H., Montazerozohori, M., Barati, K., Harrington, R. W. & Clegg, W. (2007). Anal. Sci. 23, x45-x46.
- Kickelbick, G., Amirnasr, M., Khalaji, A. D. & Dehghanpour, S. (2003). Aust. J. Chem. 56, 323-328
- Massa, W., Dehghanpour, S. & Jahani, K. (2009). Inorg. Chim. Acta, 362, 2872-2878.
- Morshedi, M., Amirnasr, M., Slawin, A. M. Z., Woollins, J. D. & Khalaji, A. D. (2009). Polyhedron, 28, 167-171.

- Petříček, V., Dušek, M. & Palatinus, L. (2006). *JANA2006*. Institute of Physics, Praha, Czech Republic.
- Roy, S., Mondal, T. K., Mitra, P., Torres, E. L. & Sinha, S. (2011). *Polyhedron*, **30**, 913–922.
- Saha, G., Datta, P., Sarkar, K. K., Saha, R., Mostafa, G. & Sinha, C. (2011a). *Polyhedron*, **30**, 614–623.
- Saha, G., Sarkar, K. K., Datta, P., Raghavaiah, P. & Sinha, C. (2010). *Polyhedron*, **29**, 2098–2104.
- Saha, G., Sarkar, K. K., Mondal, T. K. & Sinha, C. (2011b). Inorg. Chim. Acta, 387, 240–247.

supporting information

Acta Cryst. (2012). E68, m1001–m1002 [https://doi.org/10.1107/S160053681202884X] [4-Bromo-N-(pyridin-2-ylmethylidene)aniline-κ²N,N']iodido(triphenyl-phosphane-κP)copper(I)

Aliakbar Dehno Khalaji, Bahram Bahramian, Khadijeh Jafari, Karla Fejfarová and Michal Dušek

S1. Comment

The coordination chemistry of copper(I) complexes with bidentate diimine ligands, such as bipyridine and phenanthroline, has received much attention over the last decade due to the many applications of these complexes (Dehghanpour *et al.*, 2006; Saha *et al.*, 2010, 2011*a*, 2011*b*; Habibi *et al.*, 2007). Effort has been devoted to design and synthesis of new Schiff base ligands to control the geometry and properties of copper(I) complexes (Morshedi *et al.*, 2009). Most of the studies have been on tetrahedral copper(I) complexes of the type $[Cu(LL)_2]^+$ and $Cu(LL)P_2]^+$ where LL is a diimine and P is a phosphane (Massa *et al.*, 2009; Dehghanpour *et al.*, 2008; Chen *et al.*, 2012; Roy *et al.*, 2011). Although reports of copper(I) complexes are numerous, limited work has been done on mixed ligand copper(I) complexes of the type [Cu(Schiff base)PX] (*X*= Cl, Br, I) (Dehghanpour *et al.*, 2006; Saha *et al.*, 2010, 2011*a*, 2011*b*; Habibi *et al.*, 2007; Morshedi *et al.*, 2009; Al-Fayez *et al.*, 2007; Kickelbick *et al.*, 2003). This study is a part of our ongoing efforts to synthesize and characterize copper(I) complexes with bidentate Schiff base ligands.

The molecular structure with the atom-numbering scheme is presented in Fig. 1, and the bond lengths (Allen *et al.*, 1987) and angles are generally normal. The copper(I) is coordinated by two nitrogen atoms of the bidentate Schiff-base ligand, one P atom of triphenylphosphane and one I atom. Although a tetrahedral geometry might be expected for a four coordinate copper(I) centre, the geometry around the copper(I) ion is distorted by the restricting bite angle N1—Cu1—N2 [79.3 (2)°] of the chelating Schiff-base ligand.

S2. Experimental

To a stirring solution of 190 mg (1 mmol) CuI in 5 ml of acetonitrile was added dropwise 263 mg (1 mmol) of triphenylphosphane in 5 ml acetonitrile. The mixture was stirred for 30 min and then 261 mg (1 mmol) of ligand, 4-bromophenylpyridine-2-ylmethyleneamine, in 10 ml acetonitrile was added and stirred for an additional 20 min. The volume of the solvent was reduced under vacuum to about 5 ml. The diffusion of diethyl ether vapor into the concentration solution gave dark red crystals. The crystals were filtered off and washed with Et₂O. Yield: 65%. *Anal*. Calc. for $C_{30}H_{24}N_2CuPBrI$: C, 50.48; H, 3.38; N, 3.93%. Found: C, 50.55; H, 3.51; N, 3.78%.

S3. Refinement

All hydrogen atoms were positioned geometrically and treated as riding on their parent atoms. The isotropic atomic displacement parameters of hydrogen atoms were evaluated as $1.2 \times U_{eq}$ of the parent atom.

Figure 1

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

[4-Bromo-N-(pyridin-2-ylmethylidene)aniline- $\kappa^2 N, N'$]iodido(triphenylphosphane- κP)copper(I)

Crystal data

$[CuI(C_{12}H_9BrN_2)(C_{18}H_{15}P)]$	F(000) = 1400
$M_r = 713.9$	$D_{\rm x} = 1.734 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.7107$ Å
Hall symbol: -P 2ybc	Cell parameters from 5306 reflections
a = 10.3141 (5) Å	$\theta = 2.9 - 27.0^{\circ}$
b = 34.7124 (16) Å	$\mu = 3.47 \text{ mm}^{-1}$
c = 8.3792 (4) Å	T = 120 K
$\beta = 114.321 \ (6)^{\circ}$	Needle, red
V = 2733.7 (3) Å ³	$0.49 \times 0.04 \times 0.03 \text{ mm}$
Z = 4	

Data collection

Agilent Xcalibur	$T_{\min} = 0.914, \ T_{\max} = 1.000$
diffractometer with an Atlas (Gemini ultra Cu)	14996 measured reflections
detector	5893 independent reflections
Radiation source: Enhance (Mo) X-ray Source	4325 reflections with $I > 3\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.048$
Detector resolution: 10.4 pixels mm ⁻¹	$\theta_{\rm max} = 27.2^\circ, \ \theta_{\rm min} = 2.9^\circ$
Rotation method data acquisition using ω scans	$h = -12 \rightarrow 13$
Absorption correction: multi-scan	$k = -44 \rightarrow 43$
(CrysAlis PRO; Agilent, 2010)	$l = -10 \rightarrow 10$
Refinement	
Refinement on F^2	96 constraints
$R[F > 3\sigma(F)] = 0.038$	H-atom parameters constrained
wR(F) = 0.110	Weighting scheme based on measured s.u.'s $w =$
<i>S</i> = 1.19	$1/(\sigma^2(I) + 0.0016I^2)$
5893 reflections	$(\Delta/\sigma)_{\rm max} = 0.028$
325 parameters	$\Delta \rho_{\rm max} = 0.70 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.65 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Experimental. CrysAlisPro (Agilent, 2010) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Refinement. The refinement was carried out against all reflections. The conventional *R*-factor is always based on *F*. The goodness of fit as well as the weighted *R*-factor are based on *F* and F^2 for refinement carried out on *F* and F^2 , respectively. The threshold expression is used only for calculating *R*-factors *etc*. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the *SHELX* program.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
I1	0.78044 (3)	0.068800 (9)	0.72718 (4)	0.02639 (13)
Cu1	0.59846 (6)	0.079263 (17)	0.39909 (7)	0.0238 (2)
Br1	1.00314 (6)	0.252746 (15)	0.34867 (7)	0.0330 (2)
P1	0.41099 (13)	0.11517 (4)	0.35881 (16)	0.0221 (4)
N1	0.7265 (4)	0.09533 (11)	0.2668 (5)	0.0210 (14)
N2	0.6081 (4)	0.02740 (12)	0.2802 (5)	0.0239 (15)
C1	0.7562 (5)	0.06704 (13)	0.1899 (6)	0.0246 (18)
C2	0.6948 (5)	0.02930 (14)	0.1929 (6)	0.0249 (17)
C3	0.7260 (5)	-0.00216 (14)	0.1148 (6)	0.0277 (18)
C4	0.6666 (5)	-0.03762 (15)	0.1227 (6)	0.032 (2)
C5	0.5758 (5)	-0.03981 (15)	0.2079 (6)	0.0315 (19)
C6	0.5512 (5)	-0.00660 (14)	0.2856 (6)	0.0275 (18)
C7	0.7877 (5)	0.13217 (14)	0.2721 (6)	0.0229 (17)
C8	0.8508 (5)	0.14430 (14)	0.1607 (6)	0.029 (2)
С9	0.9133 (5)	0.18024 (15)	0.1828 (6)	0.030 (2)
C10	0.9110 (5)	0.20401 (14)	0.3131 (6)	0.0259 (18)
C11	0.8463 (5)	0.19317 (14)	0.4213 (6)	0.0292 (19)
C12	0.7854 (5)	0.15713 (14)	0.4002 (6)	0.0257 (18)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C13	0.4456 (5)	0.16036 (14)	0.4825 (6)	0.0247 (18)
C14	0.5628 (5)	0.16325 (14)	0.6392 (6)	0.0270 (19)
C15	0.5972 (5)	0.19795 (15)	0.7293 (7)	0.033 (2)
C16	0.5145 (6)	0.23034 (15)	0.6643 (7)	0.035 (2)
C17	0.3958 (6)	0.22751 (15)	0.5099 (7)	0.037 (2)
C18	0.3608 (6)	0.19342 (14)	0.4189 (7)	0.033 (2)
C19	0.3142 (5)	0.13315 (13)	0.1366 (6)	0.0246 (18)
C20	0.3927 (5)	0.15205 (14)	0.0564 (6)	0.0274 (19)
C21	0.3251 (5)	0.16944 (14)	-0.1052 (6)	0.029 (2)
C22	0.1783 (5)	0.16791 (14)	-0.1889 (6)	0.031 (2)
C23	0.1010 (5)	0.14853 (14)	-0.1132 (6)	0.0285 (19)
C24	0.1677 (5)	0.13116 (14)	0.0487 (6)	0.0271 (19)
C25	0.2723 (5)	0.09130 (14)	0.4047 (6)	0.0235 (17)
C26	0.2011 (5)	0.10822 (14)	0.4975 (6)	0.0248 (18)
C27	0.0987 (5)	0.08829 (14)	0.5314 (6)	0.0255 (18)
C28	0.0620 (5)	0.05149 (14)	0.4687 (6)	0.0265 (18)
C29	0.1315 (5)	0.03393 (15)	0.3733 (6)	0.030 (2)
C30	0.2352 (5)	0.05376 (14)	0.3424 (6)	0.0263 (19)
H1	0.81789	0.070579	0.131067	0.0295*
Н3	0.787927	0.000399	0.055749	0.0332*
H4	0.687643	-0.060078	0.070836	0.0387*
Н5	0.53086	-0.063714	0.212969	0.0378*
Н6	0.490079	-0.008491	0.346082	0.033*
H8	0.85054	0.127607	0.069147	0.0346*
Н9	0.95784	0.188549	0.108178	0.0365*
H11	0.843766	0.210414	0.509557	0.0351*
H12	0.740691	0.149188	0.475133	0.0308*
H14	0.621452	0.141025	0.686939	0.0324*
H15	0.679671	0.199445	0.838399	0.0399*
H16	0.539722	0.254385	0.726113	0.0422*
H17	0.33634	0.249691	0.46463	0.0447*
H18	0.277444	0.192115	0.310656	0.0391*
H20	0.494659	0.152842	0.114923	0.0329*
H21	0.379189	0.182424	-0.158621	0.0346*
H22	0.129947	0.180362	-0.300197	0.0375*
H23	-0.000701	0.147118	-0.173989	0.0341*
H24	0.112699	0.117791	0.099932	0.0325*
H26	0.223603	0.134233	0.538479	0.0297*
H27	0.05353	0.100187	0.598676	0.0306*
H28	-0.010308	0.037787	0.48966	0.0318*
H29	0.106618	0.008169	0.329775	0.0359*
H30	0.282097	0.041643	0.277593	0.0315*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.03169 (19)	0.02779 (19)	0.02021 (17)	0.00070 (14)	0.01123 (14)	-0.00064 (12)
Cu1	0.0255 (3)	0.0265 (3)	0.0224 (3)	0.0003 (3)	0.0128 (3)	-0.0009 (2)

supporting information

Br1	0.0418 (3)	0.0281 (3)	0.0311 (3)	-0.0068 (2)	0.0171 (3)	-0.0001 (2)
P1	0.0252 (6)	0.0227 (6)	0.0213 (6)	-0.0001(5)	0.0125 (5)	-0.0004(5)
N1	0.022 (2)	0.025 (2)	0.0164 (19)	0.0010 (17)	0.0088 (17)	-0.0026 (15)
N2	0.025 (2)	0.028 (2)	0.0180 (19)	0.0004 (18)	0.0078 (17)	0.0006 (16)
C1	0.024 (2)	0.032 (3)	0.020 (2)	0.006 (2)	0.012 (2)	0.0057 (19)
C2	0.024 (2)	0.032 (3)	0.015 (2)	0.001 (2)	0.004 (2)	0.0013 (19)
C3	0.031 (3)	0.030 (3)	0.022 (2)	0.003 (2)	0.010 (2)	-0.001 (2)
C4	0.045 (3)	0.028 (3)	0.020 (2)	0.005 (2)	0.010 (2)	-0.004 (2)
C5	0.033 (3)	0.026 (3)	0.027 (3)	-0.002 (2)	0.004 (2)	0.001 (2)
C6	0.027 (3)	0.029 (3)	0.021 (2)	-0.003 (2)	0.005 (2)	0.0006 (19)
C7	0.022 (2)	0.028 (3)	0.019 (2)	0.001 (2)	0.009 (2)	0.0023 (19)
C8	0.040 (3)	0.029 (3)	0.022 (3)	0.001 (2)	0.018 (2)	-0.002 (2)
C9	0.035 (3)	0.035 (3)	0.027 (3)	0.000 (2)	0.019 (2)	0.002 (2)
C10	0.028 (3)	0.026 (3)	0.022 (2)	-0.001 (2)	0.008 (2)	0.0009 (19)
C11	0.037 (3)	0.030 (3)	0.023 (2)	-0.002 (2)	0.016 (2)	-0.005 (2)
C12	0.029 (3)	0.030 (3)	0.022 (2)	-0.002 (2)	0.013 (2)	-0.0013 (19)
C13	0.029 (3)	0.026 (3)	0.024 (2)	-0.003 (2)	0.016 (2)	-0.0022 (19)
C14	0.030 (3)	0.028 (3)	0.028 (3)	0.001 (2)	0.017 (2)	-0.002 (2)
C15	0.031 (3)	0.039 (3)	0.031 (3)	-0.005 (2)	0.013 (2)	-0.007 (2)
C16	0.043 (3)	0.023 (3)	0.045 (3)	-0.003 (2)	0.024 (3)	-0.008 (2)
C17	0.043 (3)	0.022 (3)	0.047 (3)	0.000 (2)	0.018 (3)	-0.004 (2)
C18	0.036 (3)	0.028 (3)	0.034 (3)	-0.001 (2)	0.016 (3)	-0.001 (2)
C19	0.035 (3)	0.019 (2)	0.024 (2)	0.002 (2)	0.015 (2)	-0.0018 (18)
C20	0.027 (3)	0.028 (3)	0.030 (3)	-0.002 (2)	0.014 (2)	0.004 (2)
C21	0.038 (3)	0.026 (3)	0.030 (3)	0.004 (2)	0.021 (2)	0.003 (2)
C22	0.043 (3)	0.031 (3)	0.020 (2)	0.010 (2)	0.012 (2)	0.002 (2)
C23	0.029 (3)	0.031 (3)	0.025 (3)	0.001 (2)	0.010 (2)	-0.004 (2)
C24	0.032 (3)	0.028 (3)	0.025 (3)	0.001 (2)	0.015 (2)	-0.002 (2)
C25	0.025 (2)	0.027 (3)	0.019 (2)	-0.002 (2)	0.009 (2)	0.0028 (18)
C26	0.029 (3)	0.024 (3)	0.022 (2)	0.000 (2)	0.011 (2)	0.0003 (18)
C27	0.025 (2)	0.031 (3)	0.024 (2)	0.002 (2)	0.013 (2)	-0.001 (2)
C28	0.023 (2)	0.031 (3)	0.025 (2)	-0.005 (2)	0.009 (2)	0.003 (2)
C29	0.035 (3)	0.023 (3)	0.032 (3)	0.001 (2)	0.013 (2)	-0.003 (2)
C30	0.029 (3)	0.026 (3)	0.026 (3)	0.002 (2)	0.014 (2)	-0.003 (2)

Geometric parameters (Å, °)

Il—Cul	2.6386 (7)	C13—C18	1.408 (7)	
Cu1—P1	2.2065 (15)	C14—C15	1.388 (7)	
Cu1—N1	2.119 (5)	C14—H14	0.96	
Cu1—N2	2.080 (4)	C15—C16	1.380 (7)	
Br1-C10	1.903 (5)	C15—H15	0.96	
P1—C13	1.832 (5)	C16—C17	1.370 (7)	
P1-C19	1.823 (4)	C16—H16	0.96	
P1—C25	1.826 (6)	C17—C18	1.373 (7)	
N1-C1	1.279 (7)	С17—Н17	0.96	
N1—C7	1.419 (6)	C18—H18	0.96	
N2—C2	1.371 (7)	C19—C20	1.409 (8)	

N2—C6	1.327 (6)	C19—C24	1.384 (7)
C1—C2	1.460 (7)	C20—C21	1.381 (6)
C1—H1	0.96	С20—Н20	0.96
C2—C3	1.377 (7)	C21—C22	1.383 (7)
C3—C4	1.388 (7)	C21—H21	0.96
С3—Н3	0.96	C22—C23	1.382 (9)
C4—C5	1.394 (9)	С22—Н22	0.96
C4—H4	0.96	C23—C24	1.381 (6)
C5—C6	1.398 (8)	С23—Н23	0.96
С5—Н5	0.96	C24—H24	0.96
С6—Н6	0.96	C25—C26	1.399 (8)
C7—C8	1.405 (8)	C25—C30	1.397 (7)
C7—C12	1.387 (7)	C26—C27	1.386 (8)
C8-C9	1 381 (7)	C26—H26	0.96
C8—H8	0.96	C_{27} C_{28}	1 374 (7)
C9-C10	1 377 (8)	C27—H27	0.96
С9—Н9	0.96	C_{28} C_{29}	1 413 (8)
	1 381 (8)	C_{28} H_{28}	0.06
C_{11} C_{12}	1.301(0) 1 378(7)	$C_{20} = C_{20}$	1 384 (8)
C11 H11	1.578 (7)	$C_{29} = C_{30}$	1.564 (6)
	0.90	$C_{29} = H_{29}$	0.90
C12 $-C12$ $C14$	0.90	C30—H30	0.90
013-014	1.574 (0)		
II Cul Pl	116.08 (4)	P1 C13 C14	110 5 (4)
$\frac{11}{Cu1} = \frac{11}{11}$	104.61 (8)	$P_1 = C_{13} = C_{14}$	119.5(4) 122.6(3)
$\frac{11}{11} - Cu1 - N1$	104.01(8) 103.06(0)	$C_{14} = C_{13} = C_{18}$	122.0(3) 117.8(4)
$\mathbf{n} = \mathbf{cu} = \mathbf{n} \mathbf{z}$	103.00(9) 117.84(11)	$C_{14}^{12} = C_{13}^{14} = C_{15}^{15}$	117.0(4)
$P_1 = C_{11} = N_1$	117.04 (11)	$C_{13} = C_{14} = C_{13}$	120.7 (4)
$r_1 - c_{u1} - n_2$	120.00(10)	C15 - C14 - H14	119.00
NI = CuI = NZ	(9.51(17))	C13 - C14 - H14	121.0 (4)
$C_{\text{II}} = P_{\text{I}} = C_{\text{I}}$	110.28 (10)	C14 - C15 - C16	121.0 (4)
Cui - Pi - Cig	115.2(2)	C14—C15—H15	119.5162
CuI = PI = C25	115.14 (16)	C16—C15—H15	119.5164
C13—P1—C19	100.5 (2)		118.7(5)
C13 - P1 - C25	104.8 (3)	C15—C16—H16	120.6387
C19—P1—C25	102.9 (2)	C17—C16—H16	120.6398
Cul—Nl—Cl	113.1 (3)	C16—C17—C18	121.0 (5)
Cul—Nl—C7	125.9 (3)	С16—С17—Н17	119.5157
C1—N1—C7	120.8 (5)	С18—С17—Н17	119.5157
Cu1—N2—C2	112.6 (3)	C13—C18—C17	120.8 (4)
Cu1—N2—C6	130.1 (4)	C13—C18—H18	119.5977
C2—N2—C6	117.1 (4)	C17—C18—H18	119.598
N1—C1—C2	119.0 (5)	P1C19C20	117.8 (3)
N1—C1—H1	120.4965	P1-C19-C24	123.0 (4)
C2—C1—H1	120.4972	C20—C19—C24	119.1 (4)
N2—C2—C1	115.8 (5)	C19—C20—C21	120.9 (5)
N2—C2—C3	123.1 (5)	C19—C20—H20	119.5623
C1—C2—C3	121.1 (5)	C21—C20—H20	119.5601
C2—C3—C4	119.1 (6)	C20—C21—C22	119.1 (5)

supporting information

С2—С3—Н3	120.4409	C20—C21—H21	120.4332
С4—С3—Н3	120.442	C22—C21—H21	120.4324
C3—C4—C5	118.4 (5)	C21—C22—C23	120.3 (4)
C3—C4—H4	120.8107	C21—C22—H22	119.8737
C5—C4—H4	120.8119	C23—C22—H22	119.8726
C4—C5—C6	118.9 (5)	C22—C23—C24	121.0 (5)
С4—С5—Н5	120.5658	С22—С23—Н23	119.4855
С6—С5—Н5	120.566	С24—С23—Н23	119.4861
N2—C6—C5	123.4 (6)	C19—C24—C23	119.6 (5)
N2—C6—H6	118.315	С19—С24—Н24	120.2034
С5—С6—Н6	118.317	С23—С24—Н24	120.2026
N1—C7—C8	124.8 (4)	P1-C25-C26	124.2 (4)
N1—C7—C12	116.0 (5)	P1-C25-C30	117.5 (4)
C8—C7—C12	119.2 (5)	C26—C25—C30	118.3 (5)
C7—C8—C9	120.0 (5)	C25—C26—C27	121.5 (4)
С7—С8—Н8	120.0129	С25—С26—Н26	119.2398
С9—С8—Н8	120.0148	С27—С26—Н26	119.2411
C8—C9—C10	119.2 (6)	C26—C27—C28	119.9 (5)
С8—С9—Н9	120.3841	С26—С27—Н27	120.0454
С10—С9—Н9	120.3841	С28—С27—Н27	120.0454
Br1-C10-C9	119.1 (4)	C27—C28—C29	119.6 (5)
Br1-C10-C11	119.0 (4)	С27—С28—Н28	120.2082
C9—C10—C11	121.9 (5)	С29—С28—Н28	120.2108
C10-C11-C12	118.7 (5)	C28—C29—C30	120.2 (5)
C10-C11-H11	120.6268	С28—С29—Н29	119.904
C12—C11—H11	120.6295	С30—С29—Н29	119.9041
C7—C12—C11	120.9 (5)	C25—C30—C29	120.5 (5)
C7—C12—H12	119.5252	С25—С30—Н30	119.7526
C11—C12—H12	119.5264	С29—С30—Н30	119.7517