organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(4-Chloro­benz­yl)sulfan­yl]-4-(2-methyl­prop­yl)-6-(phenyl­sulfan­yl)pyrimidine-5-carbo­nitrile

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 31 May 2012; accepted 6 June 2012; online 13 June 2012)

In the title compound, C22H20ClN3S2, the S-bound benzene rings are inclined [dihedral angles = 78.13 (10) and 36.70 (9)°] with respect to the pyrimidine ring. The methyl­propyl group occupies a position normal to the pyrimidine ring [N—C—C—C torsion angle = 92.3 (2)°]. In the crystal, supra­molecular layers are formed in the bc plane, being consolidated by C—H⋯π and ππ inter­actions, the latter between the pyrimidine and S-bound benzene rings [inter-centroid distance = 3.7683 (12) Å].

Related literature

For the chemotherapeutic activity of pyrimidine derivatives, see: Al-Abdullah et al. (2011[Al-Abdullah, E. S., Al-Obaid, A. M., Al-Deeb, O. A., Habib, E. E. & El-Emam, A. A. (2011). Eur. J. Med. Chem. 46, 4642-4647.]); Brunelle et al. (2007[Brunelle, M. N., Lucifora, J., Neyts, J., Villet, S., Holy, A., Trepo, C. & Zoulim, F. (2007). Antimicrob. Agents Chemother. 51, 2240-2243.]); Ding et al. (2006[Ding, Y., Girardet, J.-L., Smith, K. L., Larson, G., Prigaro, B., Wu, J. Z. & Yao, N. (2006). Bioorg. Chem. 34, 26-38.]); Al-Safarjalani et al. (2005[Al-Safarjalani, O. N., Zhou, X., Rais, R. H., Shi, J., Schinazi, R. F., Naguib, F. N. M. & El Kouni, M. H. (2005). Cancer Chemother. Pharmacol. 55, 541-551.]). For a related pyrimidine structure, see: El-Emam et al. (2011[El-Emam, A. A., Al-Deeb, O. A., Al-Turkistani, A. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o3126.]).

[Scheme 1]

Experimental

Crystal data
  • C22H20ClN3S2

  • Mr = 425.98

  • Monoclinic, P 21 /c

  • a = 13.7771 (2) Å

  • b = 8.4961 (1) Å

  • c = 18.5878 (2) Å

  • β = 97.559 (1)°

  • V = 2156.82 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.47 mm−1

  • T = 294 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.611, Tmax = 1.000

  • 15819 measured reflections

  • 4512 independent reflections

  • 4113 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.117

  • S = 1.04

  • 4512 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C17–C22 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cg1i 0.98 2.92 3.789 (2) 148
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The chemotherapeutic efficacy of pyrimidine derivatives is related to their ability to inhibit vital enzymes responsible for DNA biosynthesis. Thus, several non-nucleoside pyrimidine derivatives exhibit anti-cancer (Al-Safarjalani et al., 2005), anti-viral (Brunelle et al., 2007; Ding et al., 2006) and anti-bacterial activities (Al-Abdullah et al., 2011). In continuation of our interest in the chemical, pharmacological and structural properties of pyrimidine derivatives (El-Emam et al., 2011), we synthesized the title compound as a potential chemotherapeutic agent.

With respect to the pyrimidine ring in the title molecule (Fig. 1), the S1- and S2-bound benzene rings form dihedral angles of 78.13 (10) and 36.70 (9)°, respectively, indicating orthogonal and splayed orientations, respectively; the dihedral angle between the benzene rings = 69.72 (11)°. The methylpropyl group occupies a position normal to the pyrimidine ring with the N2—C4—C5—C6 torsion angle being 92.3 (2)°.

In the crystal packing, supramolecular layers, consolidated by C—H···π, Table 1, and ππ interactions between the pyrimidine and the S1-bound benzene rings [ring centroid(N1,N2,C1–C4)···centroid(C10–C15) distance = 3.7683 (12) Å, angle of inclination = 5.52 (10)° for symmetry operation: 1 - x, -1/2 + y, 3/2 - z], are formed in the bc plane, Fig. 2.

Related literature top

For the chemotherapeutic activity of pyrimidine derivatives, see: Al-Abdullah et al. (2011); Brunelle et al. (2007); Ding et al. (2006); Al-Safarjalani et al. (2005). For a related pyrimidine structure, see: El-Emam et al. (2011).

Experimental top

To a solution of 2-(4-chlorobenzylsulfanyl)-6-chloro-4-(2-methylpropyl)pyrimidine-5-carbonitrile (705 mg, 2 mmol) in dry pyridine (3 ml), thiophenol (220 mg, 2 mmol) was added and the mixture was heated under reflux for 6 h. On cooling, the solvent was distilled off in vacuo and water (5 ml) was added to the residue. The separated precipitate was filtered, washed with cold water, dried and crystallized from ethanol to yield 724 mg (85%) of the title compound as colourless crystals. M.pt: 394–396 K. Crystals for the X-ray analysis were obtained by slow evaporation of a solution of the title compound in CHCl3:EtOH (1:1, 5 ml) held at room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.93 to 0.98 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Structure description top

The chemotherapeutic efficacy of pyrimidine derivatives is related to their ability to inhibit vital enzymes responsible for DNA biosynthesis. Thus, several non-nucleoside pyrimidine derivatives exhibit anti-cancer (Al-Safarjalani et al., 2005), anti-viral (Brunelle et al., 2007; Ding et al., 2006) and anti-bacterial activities (Al-Abdullah et al., 2011). In continuation of our interest in the chemical, pharmacological and structural properties of pyrimidine derivatives (El-Emam et al., 2011), we synthesized the title compound as a potential chemotherapeutic agent.

With respect to the pyrimidine ring in the title molecule (Fig. 1), the S1- and S2-bound benzene rings form dihedral angles of 78.13 (10) and 36.70 (9)°, respectively, indicating orthogonal and splayed orientations, respectively; the dihedral angle between the benzene rings = 69.72 (11)°. The methylpropyl group occupies a position normal to the pyrimidine ring with the N2—C4—C5—C6 torsion angle being 92.3 (2)°.

In the crystal packing, supramolecular layers, consolidated by C—H···π, Table 1, and ππ interactions between the pyrimidine and the S1-bound benzene rings [ring centroid(N1,N2,C1–C4)···centroid(C10–C15) distance = 3.7683 (12) Å, angle of inclination = 5.52 (10)° for symmetry operation: 1 - x, -1/2 + y, 3/2 - z], are formed in the bc plane, Fig. 2.

For the chemotherapeutic activity of pyrimidine derivatives, see: Al-Abdullah et al. (2011); Brunelle et al. (2007); Ding et al. (2006); Al-Safarjalani et al. (2005). For a related pyrimidine structure, see: El-Emam et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view in projection down the b axis of the unit-cell contents for the title compound. The C—H···π and ππ interactions are shown as brown and purple dashed lines, respectively.
2-[(4-Chlorobenzyl)sulfanyl]-4-(2-methylpropyl)-6-(phenylsulfanyl)pyrimidine- 5-carbonitrile top
Crystal data top
C22H20ClN3S2F(000) = 888
Mr = 425.98Dx = 1.312 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 8707 reflections
a = 13.7771 (2) Åθ = 3.8–76.4°
b = 8.4961 (1) ŵ = 3.47 mm1
c = 18.5878 (2) ÅT = 294 K
β = 97.559 (1)°Prism, colourless
V = 2156.82 (5) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
4512 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4113 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 10.4041 pixels mm-1θmax = 76.6°, θmin = 4.8°
ω scanh = 1617
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1010
Tmin = 0.611, Tmax = 1.000l = 2322
15819 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.7026P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4512 reflectionsΔρmax = 0.41 e Å3
254 parametersΔρmin = 0.46 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0033 (3)
Crystal data top
C22H20ClN3S2V = 2156.82 (5) Å3
Mr = 425.98Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.7771 (2) ŵ = 3.47 mm1
b = 8.4961 (1) ÅT = 294 K
c = 18.5878 (2) Å0.35 × 0.30 × 0.25 mm
β = 97.559 (1)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
4512 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
4113 reflections with I > 2σ(I)
Tmin = 0.611, Tmax = 1.000Rint = 0.018
15819 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.04Δρmax = 0.41 e Å3
4512 reflectionsΔρmin = 0.46 e Å3
254 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.54678 (4)0.70944 (6)0.73269 (3)0.06701 (18)
S20.49600 (3)0.22299 (6)0.55116 (3)0.06114 (16)
Cl10.03279 (4)0.03665 (9)0.36870 (4)0.0973 (2)
N10.53172 (10)0.46391 (16)0.64164 (8)0.0477 (3)
N20.66645 (10)0.30012 (16)0.61951 (8)0.0505 (3)
N30.80681 (16)0.6954 (3)0.78507 (12)0.0912 (7)
C10.57237 (12)0.34328 (19)0.61056 (9)0.0466 (3)
C20.59250 (12)0.55031 (19)0.68709 (9)0.0474 (4)
C30.69249 (12)0.5177 (2)0.70000 (9)0.0483 (4)
C40.72740 (11)0.3888 (2)0.66431 (9)0.0466 (4)
C50.83447 (12)0.3509 (2)0.67331 (10)0.0541 (4)
H5A0.84310.23920.66520.065*
H5B0.86310.37490.72260.065*
C60.88789 (13)0.4457 (2)0.61966 (11)0.0578 (4)
H60.86520.55490.61980.069*
C70.86479 (17)0.3820 (3)0.54342 (12)0.0774 (6)
H7A0.89690.44520.51090.116*
H7B0.79530.38500.52890.116*
H7C0.88740.27530.54210.116*
C80.99730 (16)0.4440 (4)0.64422 (16)0.0962 (9)
H8A1.03000.50500.61120.144*
H8B1.02080.33750.64500.144*
H8C1.01040.48820.69200.144*
C90.75677 (14)0.6152 (3)0.74776 (11)0.0616 (5)
C100.42250 (13)0.7160 (2)0.69300 (10)0.0532 (4)
C110.39312 (19)0.8248 (3)0.63982 (13)0.0737 (6)
H110.43850.89180.62290.088*
C120.2950 (2)0.8330 (3)0.61170 (15)0.0912 (8)
H120.27440.90690.57600.109*
C130.22799 (19)0.7338 (3)0.63589 (14)0.0811 (7)
H130.16230.74040.61660.097*
C140.25756 (15)0.6249 (3)0.68832 (13)0.0698 (5)
H140.21220.55640.70420.084*
C150.35460 (14)0.6169 (2)0.71770 (11)0.0592 (4)
H150.37440.54450.75420.071*
C160.37985 (15)0.3241 (3)0.55162 (13)0.0707 (6)
H16A0.36530.33190.60110.085*
H16B0.38520.43010.53310.085*
C170.29733 (13)0.2398 (2)0.50618 (10)0.0530 (4)
C180.20723 (15)0.2336 (3)0.53091 (11)0.0636 (5)
H180.20080.27330.57670.076*
C190.12653 (15)0.1699 (3)0.48935 (12)0.0672 (5)
H190.06630.16730.50680.081*
C200.13592 (14)0.1106 (2)0.42242 (11)0.0604 (5)
C210.22472 (16)0.1110 (3)0.39687 (11)0.0685 (5)
H210.23090.06790.35170.082*
C220.30503 (15)0.1760 (3)0.43874 (11)0.0636 (5)
H220.36530.17690.42130.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0521 (3)0.0639 (3)0.0867 (4)0.0022 (2)0.0151 (2)0.0328 (2)
S20.0492 (3)0.0598 (3)0.0739 (3)0.00163 (18)0.0062 (2)0.0236 (2)
Cl10.0661 (3)0.0886 (4)0.1270 (6)0.0010 (3)0.0249 (3)0.0215 (4)
N10.0413 (7)0.0467 (7)0.0565 (8)0.0006 (5)0.0117 (6)0.0069 (6)
N20.0446 (7)0.0483 (7)0.0603 (8)0.0020 (6)0.0134 (6)0.0042 (6)
N30.0757 (13)0.1114 (17)0.0859 (13)0.0333 (12)0.0085 (10)0.0302 (12)
C10.0442 (8)0.0445 (8)0.0527 (8)0.0004 (6)0.0123 (6)0.0034 (7)
C20.0440 (8)0.0463 (8)0.0545 (9)0.0042 (6)0.0163 (7)0.0049 (7)
C30.0430 (8)0.0529 (9)0.0506 (8)0.0079 (7)0.0123 (6)0.0027 (7)
C40.0413 (8)0.0495 (8)0.0510 (8)0.0007 (6)0.0133 (6)0.0049 (7)
C50.0421 (8)0.0611 (10)0.0600 (10)0.0032 (7)0.0099 (7)0.0072 (8)
C60.0439 (9)0.0626 (10)0.0695 (11)0.0016 (8)0.0172 (8)0.0068 (9)
C70.0677 (13)0.1020 (18)0.0650 (12)0.0075 (12)0.0184 (10)0.0083 (12)
C80.0482 (11)0.144 (3)0.0971 (18)0.0158 (14)0.0143 (11)0.0087 (18)
C90.0500 (9)0.0742 (12)0.0629 (11)0.0112 (9)0.0153 (8)0.0114 (10)
C100.0537 (9)0.0465 (9)0.0624 (10)0.0039 (7)0.0183 (8)0.0125 (7)
C110.0877 (15)0.0614 (12)0.0753 (13)0.0019 (11)0.0226 (12)0.0039 (10)
C120.110 (2)0.0811 (16)0.0783 (15)0.0204 (15)0.0029 (14)0.0126 (13)
C130.0647 (13)0.0928 (17)0.0828 (15)0.0155 (12)0.0022 (11)0.0145 (13)
C140.0537 (11)0.0739 (13)0.0844 (14)0.0014 (9)0.0186 (10)0.0115 (11)
C150.0572 (10)0.0526 (10)0.0701 (11)0.0050 (8)0.0168 (9)0.0003 (8)
C160.0530 (10)0.0725 (13)0.0839 (14)0.0089 (9)0.0012 (9)0.0261 (11)
C170.0493 (9)0.0534 (9)0.0558 (9)0.0030 (7)0.0048 (7)0.0034 (8)
C180.0588 (11)0.0810 (13)0.0525 (10)0.0087 (10)0.0126 (8)0.0025 (9)
C190.0480 (10)0.0773 (13)0.0777 (13)0.0024 (9)0.0139 (9)0.0035 (11)
C200.0525 (10)0.0521 (10)0.0736 (12)0.0029 (8)0.0033 (8)0.0005 (9)
C210.0693 (12)0.0758 (13)0.0603 (11)0.0030 (10)0.0081 (9)0.0163 (10)
C220.0552 (10)0.0750 (12)0.0633 (11)0.0053 (9)0.0177 (8)0.0113 (10)
Geometric parameters (Å, º) top
S1—C21.7559 (16)C8—H8C0.9600
S1—C101.774 (2)C10—C111.375 (3)
S2—C11.7508 (17)C10—C151.382 (3)
S2—C161.817 (2)C11—C121.386 (4)
Cl1—C201.743 (2)C11—H110.9300
N1—C21.330 (2)C12—C131.369 (4)
N1—C11.335 (2)C12—H120.9300
N2—C41.335 (2)C13—C141.366 (4)
N2—C11.336 (2)C13—H130.9300
N3—C91.138 (3)C14—C151.378 (3)
C2—C31.395 (2)C14—H140.9300
C3—C41.398 (2)C15—H150.9300
C3—C91.432 (2)C16—C171.505 (3)
C4—C51.498 (2)C16—H16A0.9700
C5—C61.542 (2)C16—H16B0.9700
C5—H5A0.9700C17—C181.380 (3)
C5—H5B0.9700C17—C221.382 (3)
C6—C71.511 (3)C18—C191.378 (3)
C6—C81.516 (3)C18—H180.9300
C6—H60.9800C19—C201.364 (3)
C7—H7A0.9600C19—H190.9300
C7—H7B0.9600C20—C211.369 (3)
C7—H7C0.9600C21—C221.381 (3)
C8—H8A0.9600C21—H210.9300
C8—H8B0.9600C22—H220.9300
C2—S1—C10102.20 (8)C11—C10—S1119.80 (16)
C1—S2—C16100.23 (9)C15—C10—S1120.09 (15)
C2—N1—C1115.71 (14)C10—C11—C12119.1 (2)
C4—N2—C1116.30 (14)C10—C11—H11120.5
N1—C1—N2127.73 (15)C12—C11—H11120.5
N1—C1—S2118.00 (12)C13—C12—C11120.8 (2)
N2—C1—S2114.27 (12)C13—C12—H12119.6
N1—C2—C3121.65 (15)C11—C12—H12119.6
N1—C2—S1119.73 (12)C14—C13—C12120.0 (2)
C3—C2—S1118.62 (13)C14—C13—H13120.0
C2—C3—C4117.89 (15)C12—C13—H13120.0
C2—C3—C9120.51 (16)C13—C14—C15120.0 (2)
C4—C3—C9121.59 (16)C13—C14—H14120.0
N2—C4—C3120.71 (15)C15—C14—H14120.0
N2—C4—C5118.54 (15)C14—C15—C10120.1 (2)
C3—C4—C5120.72 (16)C14—C15—H15119.9
C4—C5—C6111.24 (15)C10—C15—H15119.9
C4—C5—H5A109.4C17—C16—S2111.90 (14)
C6—C5—H5A109.4C17—C16—H16A109.2
C4—C5—H5B109.4S2—C16—H16A109.2
C6—C5—H5B109.4C17—C16—H16B109.2
H5A—C5—H5B108.0S2—C16—H16B109.2
C7—C6—C8110.93 (18)H16A—C16—H16B107.9
C7—C6—C5111.11 (17)C18—C17—C22117.82 (18)
C8—C6—C5109.91 (18)C18—C17—C16118.50 (17)
C7—C6—H6108.3C22—C17—C16123.56 (18)
C8—C6—H6108.3C19—C18—C17121.52 (18)
C5—C6—H6108.3C19—C18—H18119.2
C6—C7—H7A109.5C17—C18—H18119.2
C6—C7—H7B109.5C20—C19—C18119.33 (19)
H7A—C7—H7B109.5C20—C19—H19120.3
C6—C7—H7C109.5C18—C19—H19120.3
H7A—C7—H7C109.5C19—C20—C21120.78 (19)
H7B—C7—H7C109.5C19—C20—Cl1119.19 (16)
C6—C8—H8A109.5C21—C20—Cl1120.02 (16)
C6—C8—H8B109.5C20—C21—C22119.44 (19)
H8A—C8—H8B109.5C20—C21—H21120.3
C6—C8—H8C109.5C22—C21—H21120.3
H8A—C8—H8C109.5C21—C22—C17121.07 (18)
H8B—C8—H8C109.5C21—C22—H22119.5
N3—C9—C3178.5 (3)C17—C22—H22119.5
C11—C10—C15120.0 (2)
C2—N1—C1—N20.4 (3)C2—S1—C10—C11100.58 (16)
C2—N1—C1—S2179.05 (12)C2—S1—C10—C1582.29 (16)
C4—N2—C1—N10.7 (3)C15—C10—C11—C120.0 (3)
C4—N2—C1—S2179.89 (12)S1—C10—C11—C12177.11 (19)
C16—S2—C1—N12.66 (17)C10—C11—C12—C130.5 (4)
C16—S2—C1—N2177.85 (15)C11—C12—C13—C140.0 (4)
C1—N1—C2—C31.2 (2)C12—C13—C14—C151.1 (4)
C1—N1—C2—S1178.59 (12)C13—C14—C15—C101.6 (3)
C10—S1—C2—N15.74 (16)C11—C10—C15—C141.0 (3)
C10—S1—C2—C3174.49 (14)S1—C10—C15—C14178.16 (15)
N1—C2—C3—C40.9 (2)C1—S2—C16—C17177.46 (16)
S1—C2—C3—C4178.83 (12)S2—C16—C17—C18141.33 (18)
N1—C2—C3—C9178.32 (17)S2—C16—C17—C2242.7 (3)
S1—C2—C3—C91.9 (2)C22—C17—C18—C191.7 (3)
C1—N2—C4—C30.9 (2)C16—C17—C18—C19174.6 (2)
C1—N2—C4—C5176.83 (15)C17—C18—C19—C200.4 (3)
C2—C3—C4—N20.2 (2)C18—C19—C20—C211.3 (3)
C9—C3—C4—N2179.41 (16)C18—C19—C20—Cl1177.69 (17)
C2—C3—C4—C5177.52 (15)C19—C20—C21—C221.7 (3)
C9—C3—C4—C51.7 (3)Cl1—C20—C21—C22177.29 (18)
N2—C4—C5—C692.3 (2)C20—C21—C22—C170.4 (3)
C3—C4—C5—C685.4 (2)C18—C17—C22—C211.2 (3)
C4—C5—C6—C773.9 (2)C16—C17—C22—C21174.8 (2)
C4—C5—C6—C8162.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C17–C22 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg1i0.982.923.789 (2)148
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC22H20ClN3S2
Mr425.98
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)13.7771 (2), 8.4961 (1), 18.5878 (2)
β (°) 97.559 (1)
V3)2156.82 (5)
Z4
Radiation typeCu Kα
µ (mm1)3.47
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.611, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15819, 4512, 4113
Rint0.018
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.117, 1.04
No. of reflections4512
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.46

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C17–C22 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg1i0.982.923.789 (2)148
Symmetry code: (i) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: elemam5@hotmail.com.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, is greatly appreciated. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAl-Abdullah, E. S., Al-Obaid, A. M., Al-Deeb, O. A., Habib, E. E. & El-Emam, A. A. (2011). Eur. J. Med. Chem. 46, 4642–4647.  Web of Science CAS PubMed Google Scholar
First citationAl-Safarjalani, O. N., Zhou, X., Rais, R. H., Shi, J., Schinazi, R. F., Naguib, F. N. M. & El Kouni, M. H. (2005). Cancer Chemother. Pharmacol. 55, 541–551.  Web of Science PubMed CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrunelle, M. N., Lucifora, J., Neyts, J., Villet, S., Holy, A., Trepo, C. & Zoulim, F. (2007). Antimicrob. Agents Chemother. 51, 2240–2243.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDing, Y., Girardet, J.-L., Smith, K. L., Larson, G., Prigaro, B., Wu, J. Z. & Yao, N. (2006). Bioorg. Chem. 34, 26–38.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Turkistani, A. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o3126.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds