Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## 2-[(4-Chlorobenzyl)sulfanyl]-4-(2methylpropyl)-6-(phenylsulfanyl)pyrimidine-5-carbonitrile

### Ali A. El-Emam,<sup>a</sup><sup>‡</sup> Omar A. Al-Deeb,<sup>a</sup> Abdulghafoor A. Al-Turkistani,<sup>a</sup> Seik Weng Ng<sup>b,c</sup> and Edward R. T. Tiekink<sup>b</sup>\*

<sup>a</sup>Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, <sup>b</sup>Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and <sup>c</sup>Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: Edward.Tiekink@gmail.com

Received 31 May 2012; accepted 6 June 2012

Key indicators: single-crystal X-ray study; T = 294 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.041; wR factor = 0.117; data-to-parameter ratio = 17.8.

In the title compound, C<sub>22</sub>H<sub>20</sub>ClN<sub>3</sub>S<sub>2</sub>, the S-bound benzene rings are inclined [dihedral angles = 78.13 (10) and  $36.70 (9)^{\circ}$ ] with respect to the pyrimidine ring. The methylpropyl group occupies a position normal to the pyrimidine ring [N-C-C-C torsion angle =  $92.3 (2)^{\circ}$ ]. In the crystal, supramolecular layers are formed in the bc plane, being consolidated by C- $H \cdots \pi$  and  $\pi - \pi$  interactions, the latter between the pyrimidine and S-bound benzene rings [inter-centroid distance = 3.7683 (12) Å].

### **Related literature**

For the chemotherapeutic activity of pyrimidine derivatives, see: Al-Abdullah et al. (2011); Brunelle et al. (2007); Ding et al. (2006); Al-Safarjalani et al. (2005). For a related pyrimidine structure, see: El-Emam et al. (2011).



‡ Additional correspondence author, e-mail: elemam5@hotmail.com.

 $\times$  0.25 mm

### **Experimental**

#### Crystal data

| 6.82 (5) A <sup>3</sup> |
|-------------------------|
|                         |
| radiation               |
| $1 \text{ mm}^{-1}$     |
| Κ                       |
| $0.30 \times 0.25$      |
|                         |
|                         |

### Data collection

| Agilent SuperNova Dual                 | 15819 measured reflections             |
|----------------------------------------|----------------------------------------|
| diffractometer with Atlas              | 4512 independent reflections           |
| detector                               | 4113 reflections with $I > 2\sigma(I)$ |
| Absorption correction: multi-scan      | $R_{\rm int} = 0.018$                  |
| (CrysAlis PRO; Agilent, 2012)          |                                        |
| $T_{\min} = 0.611, \ T_{\max} = 1.000$ |                                        |
|                                        |                                        |
| Refinement                             |                                        |

| $R[F^2 > 2\sigma(F^2)] = 0.041$ | 254 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.117$               | H-atom parameters constrained                              |
| S = 1.04                        | $\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$  |
| 4512 reflections                | $\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$ |

#### Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C17-C22 ring.

| $D - H \cdots A$                                    | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|-----------------------------------------------------|------|-------------------------|--------------|---------------------------|
| $C6-H6\cdots Cg1^{i}$                               | 0.98 | 2.92                    | 3.789 (2)    | 148                       |
| Summetry code: (i) $-x \pm 1$ $-y \pm 1$ $-z \pm 1$ |      |                         |              |                           |

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, is greatly appreciated. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2554).

### References

- Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Al-Abdullah, E. S., Al-Obaid, A. M., Al-Deeb, O. A., Habib, E. E. & El-Emam, A. A. (2011). Eur. J. Med. Chem. 46, 4642-4647.
- Al-Safarjalani, O. N., Zhou, X., Rais, R. H., Shi, J., Schinazi, R. F., Naguib, F. N. M. & El Kouni, M. H. (2005). Cancer Chemother. Pharmacol. 55, 541-551. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Brunelle, M. N., Lucifora, J., Neyts, J., Villet, S., Holy, A., Trepo, C. & Zoulim,
- F. (2007). Antimicrob. Agents Chemother. 51, 2240-2243. Ding, Y., Girardet, J.-L., Smith, K. L., Larson, G., Prigaro, B., Wu, J. Z. & Yao, N. (2006). Bioorg. Chem. 34, 26-38.

El-Emam, A. A., Al-Deeb, O. A., Al-Turkistani, A. A., Ng, S. W. & Tiekink, E. R. T. (2011). *Acta Cryst.* E67, o3126.
Farrugia, L. J. (1997). *J. Appl. Cryst.* 30, 565.

Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122. Westrip, S. P. (2010). J. Appl. Cryst. **43**, 920–925.

# supporting information

Acta Cryst. (2012). E68, o2055–o2056 [https://doi.org/10.1107/S1600536812025810]

# 2-[(4-Chlorobenzyl)sulfanyl]-4-(2-methylpropyl)-6-(phenylsulfanyl)pyrimidine-5-carbonitrile

# Ali A. El-Emam, Omar A. Al-Deeb, Abdulghafoor A. Al-Turkistani, Seik Weng Ng and Edward R. T. Tiekink

### S1. Comment

The chemotherapeutic efficacy of pyrimidine derivatives is related to their ability to inhibit vital enzymes responsible for DNA biosynthesis. Thus, several non-nucleoside pyrimidine derivatives exhibit anti-cancer (Al-Safarjalani *et al.*, 2005), anti-viral (Brunelle *et al.*, 2007; Ding *et al.*, 2006) and anti-bacterial activities (Al-Abdullah *et al.*, 2011). In continuation of our interest in the chemical, pharmacological and structural properties of pyrimidine derivatives (El-Emam *et al.*, 2011), we synthesized the title compound as a potential chemotherapeutic agent.

With respect to the pyrimidine ring in the title molecule (Fig. 1), the S1- and S2-bound benzene rings form dihedral angles of 78.13 (10) and 36.70 (9)°, respectively, indicating orthogonal and splayed orientations, respectively; the dihedral angle between the benzene rings =  $69.72 (11)^\circ$ . The methylpropyl group occupies a position normal to the pyrimidine ring with the N2—C4—C5—C6 torsion angle being 92.3 (2)°.

In the crystal packing, supramolecular layers, consolidated by C—H··· $\pi$ , Table 1, and  $\pi$ — $\pi$  interactions between the pyrimidine and the S1-bound benzene rings [ring centroid(N1,N2,C1–C4)···centroid(C10–C15) distance = 3.7683 (12) Å, angle of inclination = 5.52 (10)° for symmetry operation: 1 - *x*, -1/2 + *y*, 3/2 - *z*], are formed in the *bc* plane, Fig. 2.

### S2. Experimental

To a solution of 2-(4-chlorobenzylsulfanyl)-6-chloro-4-(2-methylpropyl)pyrimidine-5-carbonitrile (705 mg, 2 mmol) in dry pyridine (3 ml), thiophenol (220 mg, 2 mmol) was added and the mixture was heated under reflux for 6 h. On cooling, the solvent was distilled off *in vacuo* and water (5 ml) was added to the residue. The separated precipitate was filtered, washed with cold water, dried and crystallized from ethanol to yield 724 mg (85%) of the title compound as colourless crystals. *M*.pt: 394–396 K. Crystals for the X-ray analysis were obtained by slow evaporation of a solution of the title compound in CHCl<sub>3</sub>:EtOH (1:1, 5 ml) held at room temperature.

### **S3. Refinement**

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.93 to 0.98 Å,  $U_{iso}(H) = 1.2-1.5U_{eq}(C)$ ] and were included in the refinement in the riding model approximation.



### Figure 1

The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.



Figure 2

A view in projection down the *b* axis of the unit-cell contents for the title compound. The C—H $\cdots\pi$  and  $\pi$ — $\pi$  interactions are shown as brown and purple dashed lines, respectively.

2-[(4-Chlorobenzyl)sulfanyl]-4-(2-methylpropyl)-6-(phenylsulfanyl)pyrimidine- 5-carbonitrile

| Crystal data                           |                                                     |
|----------------------------------------|-----------------------------------------------------|
| $C_{22}H_{20}ClN_{3}S_{2}$             | F(000) = 888                                        |
| $M_r = 425.98$                         | $D_{\rm x} = 1.312 {\rm Mg m^{-3}}$                 |
| Monoclinic, $P2_1/c$                   | Cu Ka radiation, $\lambda = 1.54184$ Å              |
| Hall symbol: -P 2ybc                   | Cell parameters from 8707 reflections               |
| a = 13.7771 (2)  Å                     | $\theta = 3.8-76.4^{\circ}$                         |
| b = 8.4961(1) Å                        | $\mu = 3.47 \text{ mm}^{-1}$                        |
| c = 18.5878 (2) Å                      | T = 294  K                                          |
| $\beta = 97.559 (1)^{\circ}$           | Prism, colourless                                   |
| $V = 2156.82 (5) Å^3$                  | $0.35 \times 0.30 \times 0.25 \text{ mm}$           |
| Z = 4                                  |                                                     |
| Data collection                        |                                                     |
| Agilent SuperNova Dual                 | Detector resolution: 10.4041 pixels mm <sup>-</sup> |
| diffractometer with Atlas detector     | $\omega$ scan                                       |
| Radiation source: SuperNova (Cu) X-ray | Absorption correction: multi-scan                   |
| Source                                 | (CrysAlis PRO; Agilent, 2012)                       |
| Mirror monochromator                   | $T_{\rm min} = 0.611, \ T_{\rm max} = 1.000$        |
|                                        |                                                     |

| 15819 measured reflections                                     | $\theta_{\text{max}} = 76.6^{\circ}, \ \theta_{\text{min}} = 4.8^{\circ}$               |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 4512 independent reflections                                   | $h = -16 \rightarrow 17$                                                                |
| 4113 reflections with $I > 2\sigma(I)$                         | $k = -10 \rightarrow 10$                                                                |
| $R_{\rm int} = 0.018$                                          | <i>l</i> = −23→22                                                                       |
| Refinement                                                     |                                                                                         |
| Refinement on $F^2$                                            | Hydrogen site location: inferred from                                                   |
| Least-squares matrix: full                                     | neighbouring sites                                                                      |
| $R[F^2 > 2\sigma(F^2)] = 0.041$                                | H-atom parameters constrained                                                           |
| $wR(F^2) = 0.117$                                              | $w = 1/[\sigma^2(F_o^2) + (0.0576P)^2 + 0.7026P]$                                       |
| S = 1.04                                                       | where $P = (F_0^2 + 2F_c^2)/3$                                                          |
| 4512 reflections                                               | $(\Delta/\sigma)_{\rm max} < 0.001$                                                     |
| 254 parameters                                                 | $\Delta \rho_{\rm max} = 0.41$ e Å <sup>-3</sup>                                        |
| 0 restraints                                                   | $\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$                              |
| Primary atom site location: structure-invariant direct methods | Extinction correction: SHELXL,<br>$Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
| Secondary atom site location: difference Fourier map           | Extinction coefficient: 0.0033 (3)                                                      |
| -                                                              |                                                                                         |

### Special details

**Geometry**. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|            | x            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------------|--------------|--------------|--------------|-----------------------------|--|
| <b>S</b> 1 | 0.54678 (4)  | 0.70944 (6)  | 0.73269 (3)  | 0.06701 (18)                |  |
| S2         | 0.49600 (3)  | 0.22299 (6)  | 0.55116 (3)  | 0.06114 (16)                |  |
| C11        | 0.03279 (4)  | 0.03665 (9)  | 0.36870 (4)  | 0.0973 (2)                  |  |
| N1         | 0.53172 (10) | 0.46391 (16) | 0.64164 (8)  | 0.0477 (3)                  |  |
| N2         | 0.66645 (10) | 0.30012 (16) | 0.61951 (8)  | 0.0505 (3)                  |  |
| N3         | 0.80681 (16) | 0.6954 (3)   | 0.78507 (12) | 0.0912 (7)                  |  |
| C1         | 0.57237 (12) | 0.34328 (19) | 0.61056 (9)  | 0.0466 (3)                  |  |
| C2         | 0.59250 (12) | 0.55031 (19) | 0.68709 (9)  | 0.0474 (4)                  |  |
| C3         | 0.69249 (12) | 0.5177 (2)   | 0.70000 (9)  | 0.0483 (4)                  |  |
| C4         | 0.72740 (11) | 0.3888 (2)   | 0.66431 (9)  | 0.0466 (4)                  |  |
| C5         | 0.83447 (12) | 0.3509 (2)   | 0.67331 (10) | 0.0541 (4)                  |  |
| H5A        | 0.8431       | 0.2392       | 0.6652       | 0.065*                      |  |
| H5B        | 0.8631       | 0.3749       | 0.7226       | 0.065*                      |  |
| C6         | 0.88789 (13) | 0.4457 (2)   | 0.61966 (11) | 0.0578 (4)                  |  |
| H6         | 0.8652       | 0.5549       | 0.6198       | 0.069*                      |  |
| C7         | 0.86479 (17) | 0.3820 (3)   | 0.54342 (12) | 0.0774 (6)                  |  |
| H7A        | 0.8969       | 0.4452       | 0.5109       | 0.116*                      |  |
| H7B        | 0.7953       | 0.3850       | 0.5289       | 0.116*                      |  |
| H7C        | 0.8874       | 0.2753       | 0.5421       | 0.116*                      |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| C8   | 0.99730 (16) | 0.4440 (4) | 0.64422 (16) | 0.0962 (9) |
|------|--------------|------------|--------------|------------|
| H8A  | 1.0300       | 0.5050     | 0.6112       | 0.144*     |
| H8B  | 1.0208       | 0.3375     | 0.6450       | 0.144*     |
| H8C  | 1.0104       | 0.4882     | 0.6920       | 0.144*     |
| C9   | 0.75677 (14) | 0.6152 (3) | 0.74776 (11) | 0.0616 (5) |
| C10  | 0.42250 (13) | 0.7160 (2) | 0.69300 (10) | 0.0532 (4) |
| C11  | 0.39312 (19) | 0.8248 (3) | 0.63982 (13) | 0.0737 (6) |
| H11  | 0.4385       | 0.8918     | 0.6229       | 0.088*     |
| C12  | 0.2950 (2)   | 0.8330 (3) | 0.61170 (15) | 0.0912 (8) |
| H12  | 0.2744       | 0.9069     | 0.5760       | 0.109*     |
| C13  | 0.22799 (19) | 0.7338 (3) | 0.63589 (14) | 0.0811 (7) |
| H13  | 0.1623       | 0.7404     | 0.6166       | 0.097*     |
| C14  | 0.25756 (15) | 0.6249 (3) | 0.68832 (13) | 0.0698 (5) |
| H14  | 0.2122       | 0.5564     | 0.7042       | 0.084*     |
| C15  | 0.35460 (14) | 0.6169 (2) | 0.71770 (11) | 0.0592 (4) |
| H15  | 0.3744       | 0.5445     | 0.7542       | 0.071*     |
| C16  | 0.37985 (15) | 0.3241 (3) | 0.55162 (13) | 0.0707 (6) |
| H16A | 0.3653       | 0.3319     | 0.6011       | 0.085*     |
| H16B | 0.3852       | 0.4301     | 0.5331       | 0.085*     |
| C17  | 0.29733 (13) | 0.2398 (2) | 0.50618 (10) | 0.0530 (4) |
| C18  | 0.20723 (15) | 0.2336 (3) | 0.53091 (11) | 0.0636 (5) |
| H18  | 0.2008       | 0.2733     | 0.5767       | 0.076*     |
| C19  | 0.12653 (15) | 0.1699 (3) | 0.48935 (12) | 0.0672 (5) |
| H19  | 0.0663       | 0.1673     | 0.5068       | 0.081*     |
| C20  | 0.13592 (14) | 0.1106 (2) | 0.42242 (11) | 0.0604 (5) |
| C21  | 0.22472 (16) | 0.1110 (3) | 0.39687 (11) | 0.0685 (5) |
| H21  | 0.2309       | 0.0679     | 0.3517       | 0.082*     |
| C22  | 0.30503 (15) | 0.1760 (3) | 0.43874 (11) | 0.0636 (5) |
| H22  | 0.3653       | 0.1769     | 0.4213       | 0.076*     |
|      |              |            |              |            |

Atomic displacement parameters  $(Å^2)$ 

|            | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|------------|-------------|-------------|-------------|--------------|-------------|--------------|
| <b>S</b> 1 | 0.0521 (3)  | 0.0639 (3)  | 0.0867 (4)  | -0.0022 (2)  | 0.0151 (2)  | -0.0328 (2)  |
| S2         | 0.0492 (3)  | 0.0598 (3)  | 0.0739 (3)  | 0.00163 (18) | 0.0062 (2)  | -0.0236 (2)  |
| Cl1        | 0.0661 (3)  | 0.0886 (4)  | 0.1270 (6)  | 0.0010 (3)   | -0.0249 (3) | -0.0215 (4)  |
| N1         | 0.0413 (7)  | 0.0467 (7)  | 0.0565 (8)  | -0.0006 (5)  | 0.0117 (6)  | -0.0069 (6)  |
| N2         | 0.0446 (7)  | 0.0483 (7)  | 0.0603 (8)  | 0.0020 (6)   | 0.0134 (6)  | -0.0042 (6)  |
| N3         | 0.0757 (13) | 0.1114 (17) | 0.0859 (13) | -0.0333 (12) | 0.0085 (10) | -0.0302 (12) |
| C1         | 0.0442 (8)  | 0.0445 (8)  | 0.0527 (8)  | -0.0004 (6)  | 0.0123 (6)  | -0.0034 (7)  |
| C2         | 0.0440 (8)  | 0.0463 (8)  | 0.0545 (9)  | -0.0042 (6)  | 0.0163 (7)  | -0.0049 (7)  |
| C3         | 0.0430 (8)  | 0.0529 (9)  | 0.0506 (8)  | -0.0079 (7)  | 0.0123 (6)  | -0.0027 (7)  |
| C4         | 0.0413 (8)  | 0.0495 (8)  | 0.0510 (8)  | -0.0007 (6)  | 0.0133 (6)  | 0.0049 (7)   |
| C5         | 0.0421 (8)  | 0.0611 (10) | 0.0600 (10) | 0.0032 (7)   | 0.0099 (7)  | 0.0072 (8)   |
| C6         | 0.0439 (9)  | 0.0626 (10) | 0.0695 (11) | 0.0016 (8)   | 0.0172 (8)  | 0.0068 (9)   |
| C7         | 0.0677 (13) | 0.1020 (18) | 0.0650 (12) | 0.0075 (12)  | 0.0184 (10) | 0.0083 (12)  |
| C8         | 0.0482 (11) | 0.144 (3)   | 0.0971 (18) | -0.0158 (14) | 0.0143 (11) | 0.0087 (18)  |
| C9         | 0.0500 (9)  | 0.0742 (12) | 0.0629 (11) | -0.0112 (9)  | 0.0153 (8)  | -0.0114 (10) |
|            |             |             |             |              |             |              |

# supporting information

| C10 | 0.0537 (9)  | 0.0465 (9)  | 0.0624 (10) | 0.0039 (7)   | 0.0183 (8)   | -0.0125 (7)  |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C11 | 0.0877 (15) | 0.0614 (12) | 0.0753 (13) | -0.0019 (11) | 0.0226 (12)  | 0.0039 (10)  |
| C12 | 0.110 (2)   | 0.0811 (16) | 0.0783 (15) | 0.0204 (15)  | -0.0029 (14) | 0.0126 (13)  |
| C13 | 0.0647 (13) | 0.0928 (17) | 0.0828 (15) | 0.0155 (12)  | -0.0022 (11) | -0.0145 (13) |
| C14 | 0.0537 (11) | 0.0739 (13) | 0.0844 (14) | -0.0014 (9)  | 0.0186 (10)  | -0.0115 (11) |
| C15 | 0.0572 (10) | 0.0526 (10) | 0.0701 (11) | 0.0050 (8)   | 0.0168 (9)   | 0.0003 (8)   |
| C16 | 0.0530 (10) | 0.0725 (13) | 0.0839 (14) | 0.0089 (9)   | -0.0012 (9)  | -0.0261 (11) |
| C17 | 0.0493 (9)  | 0.0534 (9)  | 0.0558 (9)  | 0.0030 (7)   | 0.0048 (7)   | -0.0034 (8)  |
| C18 | 0.0588 (11) | 0.0810 (13) | 0.0525 (10) | 0.0087 (10)  | 0.0126 (8)   | -0.0025 (9)  |
| C19 | 0.0480 (10) | 0.0773 (13) | 0.0777 (13) | 0.0024 (9)   | 0.0139 (9)   | 0.0035 (11)  |
| C20 | 0.0525 (10) | 0.0521 (10) | 0.0736 (12) | 0.0029 (8)   | -0.0033 (8)  | 0.0005 (9)   |
| C21 | 0.0693 (12) | 0.0758 (13) | 0.0603 (11) | -0.0030 (10) | 0.0081 (9)   | -0.0163 (10) |
| C22 | 0.0552 (10) | 0.0750 (12) | 0.0633 (11) | -0.0053 (9)  | 0.0177 (8)   | -0.0113 (10) |
|     |             |             |             |              |              |              |

Geometric parameters (Å, °)

| 1.7559 (16) | C8—H8C                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.774 (2)   | C10—C11                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.375 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.7508 (17) | C10—C15                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.382 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.817 (2)   | C11—C12                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.386 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.743 (2)   | C11—H11                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.330 (2)   | C12—C13                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.369 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.335 (2)   | C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.335 (2)   | C13—C14                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.366 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.336 (2)   | С13—Н13                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.138 (3)   | C14—C15                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.378 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.395 (2)   | C14—H14                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.398 (2)   | C15—H15                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.432 (2)   | C16—C17                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.505 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.498 (2)   | C16—H16A                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.542 (2)   | C16—H16B                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.9700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.9700      | C17—C18                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.380 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.9700      | C17—C22                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.382 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.511 (3)   | C18—C19                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.378 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1.516 (3)   | C18—H18                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.9800      | C19—C20                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.364 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.9600      | С19—Н19                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.9600      | C20—C21                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.369 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.9600      | C21—C22                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.381 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.9600      | C21—H21                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.9600      | С22—Н22                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.9300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 102.20 (8)  | C11—C10—S1                                                                                                                                                                                                                                                                                                                                                                                                                                        | 119.80 (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 100.23 (9)  | C15—C10—S1                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120.09 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 115.71 (14) | C10—C11—C12                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.1 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 116.30 (14) | C10-C11-H11                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 127.73 (15) | C12—C11—H11                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 118.00 (12) | C13—C12—C11                                                                                                                                                                                                                                                                                                                                                                                                                                       | 120.8 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | 1.7559 (16) $1.774 (2)$ $1.7508 (17)$ $1.817 (2)$ $1.743 (2)$ $1.330 (2)$ $1.335 (2)$ $1.335 (2)$ $1.335 (2)$ $1.336 (2)$ $1.38 (3)$ $1.395 (2)$ $1.398 (2)$ $1.432 (2)$ $1.498 (2)$ $1.542 (2)$ $0.9700$ $0.9700$ $1.511 (3)$ $1.516 (3)$ $0.9800$ $0.9600$ $0.9600$ $0.9600$ $0.9600$ $0.9600$ $0.9600$ $0.9600$ $0.9600$ $0.9600$ $0.9600$ $0.9600$ $0.9600$ $102.20 (8)$ $100.23 (9)$ $115.71 (14)$ $116.30 (14)$ $127.73 (15)$ $118.00 (12)$ | 1.7559 (16) $C8$ —H8C $1.774 (2)$ $C10$ — $C11$ $1.7508 (17)$ $C10$ — $C15$ $1.817 (2)$ $C11$ — $C12$ $1.743 (2)$ $C11$ — $H11$ $1.330 (2)$ $C12$ — $C13$ $1.335 (2)$ $C12$ —H12 $1.335 (2)$ $C13$ —C14 $1.335 (2)$ $C13$ —H13 $1.138 (3)$ $C14$ —C15 $1.395 (2)$ $C14$ —H14 $1.398 (2)$ $C16$ —H16A $1.542 (2)$ $C16$ —H16B $0.9700$ $C17$ —C18 $0.9700$ $C17$ —C18 $0.9700$ $C17$ —C18 $0.9700$ $C17$ —C22 $1.511 (3)$ $C18$ —H18 $0.9800$ $C19$ —C20 $0.9600$ $C21$ —C22 $0.9600$ $C21$ —H21 $0.9600$ $C21$ —H21 $0.9600$ $C21$ —H21 $0.9600$ $C22$ —H22 $102.20 (8)$ $C11$ —C10—S1 $100.23 (9)$ $C15$ —C10—S1 $102.73 (15)$ $C12$ —C11—H11 $127.73 (15)$ $C12$ —C11—H11 |

| N2—C1—S2                                                                             | 114.27 (12)              | C13—C12—H12                                          | 119.6                    |
|--------------------------------------------------------------------------------------|--------------------------|------------------------------------------------------|--------------------------|
| N1—C2—C3                                                                             | 121.65 (15)              | C11—C12—H12                                          | 119.6                    |
| N1—C2—S1                                                                             | 119.73 (12)              | C14—C13—C12                                          | 120.0 (2)                |
| C3—C2—S1                                                                             | 118.62 (13)              | C14—C13—H13                                          | 120.0                    |
| C2—C3—C4                                                                             | 117.89 (15)              | С12—С13—Н13                                          | 120.0                    |
| C2-C3-C9                                                                             | 120.51 (16)              | C13—C14—C15                                          | 120.0 (2)                |
| C4—C3—C9                                                                             | 121.59 (16)              | C13—C14—H14                                          | 120.0                    |
| N2-C4-C3                                                                             | 120 71 (15)              | C15—C14—H14                                          | 120.0                    |
| N2-C4-C5                                                                             | 118 54 (15)              | C14-C15-C10                                          | 12010<br>1201(2)         |
| $C_{3}$ $-C_{4}$ $-C_{5}$                                                            | 120.72 (16)              | C14-C15-H15                                          | 119.9                    |
| C4-C5-C6                                                                             | 111 24 (15)              | C10-C15-H15                                          | 119.9                    |
| C4-C5-H5A                                                                            | 109.4                    | $C17 - C16 - S^2$                                    | 111.90 (14)              |
| C6-C5-H5A                                                                            | 109.1                    | C17 - C16 - H16A                                     | 109.2                    |
| C4-C5-H5B                                                                            | 109.4                    | S2-C16-H16A                                          | 109.2                    |
| C6-C5-H5B                                                                            | 109.4                    | C17_C16_H16B                                         | 109.2                    |
| H5A C5 H5B                                                                           | 109.4                    | S2 C16 H16B                                          | 109.2                    |
| $\begin{array}{c} \text{IIJA} \\ \text{C7} \\ \text{C6} \\ \text{C8} \\ \end{array}$ | 110.03 (18)              |                                                      | 109.2                    |
| $C_{7} = C_{6} = C_{8}$                                                              | 110.93(10)<br>111.11(17) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 107.9                    |
| $C^{2} = C^{2} = C^{2}$                                                              | 111.11(17)<br>100.01(18) | $C_{10} - C_{17} - C_{22}$                           | 117.62(16)<br>118.50(17) |
| $C_{0} = C_{0} = C_{0}$                                                              | 109.91 (10)              | $C_{10} = C_{17} = C_{10}$                           | 110.30(17)               |
| $C^{2} = C^{2} = C^{2} = C^{2}$                                                      | 108.3                    | $C_{22} = C_{17} = C_{10}$                           | 123.30(18)<br>121.52(18) |
|                                                                                      | 108.3                    | C19 - C18 - C17                                      | 121.32 (18)              |
| $C_{0} = C_{0} = H_{0}$                                                              | 108.5                    | C17 C18 H18                                          | 119.2                    |
| $C_{0}$ $C_{1}$ $H_{1}$ $H_{2}$                                                      | 109.5                    | C1/-C18-H18                                          | 119.2                    |
|                                                                                      | 109.5                    | $C_{20} = C_{19} = C_{18}$                           | 119.33 (19)              |
| H/A - C/ - H/B                                                                       | 109.5                    | С20—С19—Н19                                          | 120.3                    |
| C6—C/—H/C                                                                            | 109.5                    | С18—С19—Н19                                          | 120.3                    |
| H7A—C7—H7C                                                                           | 109.5                    | C19—C20—C21                                          | 120.78 (19)              |
| H7B—C7—H7C                                                                           | 109.5                    | C19—C20—Cl1                                          | 119.19 (16)              |
| С6—С8—Н8А                                                                            | 109.5                    | C21—C20—C11                                          | 120.02 (16)              |
| С6—С8—Н8В                                                                            | 109.5                    | C20—C21—C22                                          | 119.44 (19)              |
| H8A—C8—H8B                                                                           | 109.5                    | C20—C21—H21                                          | 120.3                    |
| C6—C8—H8C                                                                            | 109.5                    | C22—C21—H21                                          | 120.3                    |
| H8A—C8—H8C                                                                           | 109.5                    | C21—C22—C17                                          | 121.07 (18)              |
| H8B—C8—H8C                                                                           | 109.5                    | C21—C22—H22                                          | 119.5                    |
| N3—C9—C3                                                                             | 178.5 (3)                | C17—C22—H22                                          | 119.5                    |
| C11—C10—C15                                                                          | 120.0 (2)                |                                                      |                          |
| C2—N1—C1—N2                                                                          | -0.4 (3)                 | C2—S1—C10—C11                                        | -100.58 (16)             |
| C2—N1—C1—S2                                                                          | 179.05 (12)              | C2—S1—C10—C15                                        | 82.29 (16)               |
| C4—N2—C1—N1                                                                          | -0.7 (3)                 | C15-C10-C11-C12                                      | 0.0 (3)                  |
| C4—N2—C1—S2                                                                          | 179.89 (12)              | S1—C10—C11—C12                                       | -177.11 (19)             |
| C16—S2—C1—N1                                                                         | 2.66 (17)                | C10-C11-C12-C13                                      | -0.5 (4)                 |
| C16—S2—C1—N2                                                                         | -177.85 (15)             | C11—C12—C13—C14                                      | 0.0 (4)                  |
| C1—N1—C2—C3                                                                          | 1.2 (2)                  | C12—C13—C14—C15                                      | 1.1 (4)                  |
| C1—N1—C2—S1                                                                          | -178.59 (12)             | C13—C14—C15—C10                                      | -1.6 (3)                 |
| C10—S1—C2—N1                                                                         | -5.74 (16)               | C11—C10—C15—C14                                      | 1.0 (3)                  |
| C10—S1—C2—C3                                                                         | 174.49 (14)              | S1—C10—C15—C14                                       | 178.16 (15)              |
| N1—C2—C3—C4                                                                          | -0.9 (2)                 | C1—S2—C16—C17                                        | -177.46 (16)             |

| S1—C2—C3—C4 | 178.83 (12)  | S2-C16-C17-C18  | 141.33 (18)  |
|-------------|--------------|-----------------|--------------|
| N1—C2—C3—C9 | 178.32 (17)  | S2-C16-C17-C22  | -42.7 (3)    |
| S1—C2—C3—C9 | -1.9 (2)     | C22-C17-C18-C19 | -1.7 (3)     |
| C1—N2—C4—C3 | 0.9 (2)      | C16—C17—C18—C19 | 174.6 (2)    |
| C1—N2—C4—C5 | -176.83 (15) | C17—C18—C19—C20 | 0.4 (3)      |
| C2-C3-C4-N2 | -0.2 (2)     | C18—C19—C20—C21 | 1.3 (3)      |
| C9—C3—C4—N2 | -179.41 (16) | C18—C19—C20—C11 | -177.69 (17) |
| C2—C3—C4—C5 | 177.52 (15)  | C19—C20—C21—C22 | -1.7 (3)     |
| C9—C3—C4—C5 | -1.7 (3)     | Cl1—C20—C21—C22 | 177.29 (18)  |
| N2-C4-C5-C6 | 92.3 (2)     | C20-C21-C22-C17 | 0.4 (3)      |
| C3—C4—C5—C6 | -85.4 (2)    | C18—C17—C22—C21 | 1.2 (3)      |
| C4—C5—C6—C7 | -73.9 (2)    | C16—C17—C22—C21 | -174.8 (2)   |
| C4—C5—C6—C8 | 162.9 (2)    |                 |              |

## Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C17–C22 ring.

| D—H···A                  | <i>D</i> —Н | $H \cdots A$ | D···· $A$ | D—H··· $A$ |  |
|--------------------------|-------------|--------------|-----------|------------|--|
| C6—H6···Cg1 <sup>i</sup> | 0.98        | 2.92         | 3.789 (2) | 148        |  |

Symmetry code: (i) -x+1, -y+1, -z+1.