organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

11-[1-(4-Meth­­oxy­phen­yl)-4-oxo-3-phen­­oxy­azetidin-2-yl]-14-methyl-12-oxa-8,14-di­aza­tetra­cyclo­[8.3.3.01,10.02,7]hexa­deca-2(7),3,5-triene-9,13-dione

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai - 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 9 June 2012; accepted 16 June 2012; online 23 June 2012)

In the title compound, C30H27N3O6, the furan and pyrrolidine rings adopt envelope conformations (with C and N atoms as the flaps, respectively). The piperidine ring is in a distorted boat conformation. The β-lactam ring is planar [maximum deviation = 0.0044 (16) Å] and forms dihedral angles of 30.61 (9) and 85.51 (9)°, respectively, with the attached meth­oxy­phenyl and phen­oxy rings. The crystal packing is stabilized by N—H⋯O and C—H⋯O inter­actions forming R22(8), R22(20) and R22(14) ring motifs. The crystal structure is further consolidated by weak C—H⋯π inter­actions.

Related literature

For general background to β-lactams, see: Jones et al. (1989[Jones, R. N., Barry, A. L. & Thornsberry, C. (1989). J. Antimicrob. Chemother. 24, 9-29.]); Mehta et al. (2010[Mehta, P. D., Sengar, N. P. S. & Pathak, A. K. (2010). Eur. J. Med. Chem. 45, 5541-5560.]); Brakhage (1998[Brakhage, A. A. (1998). Microbiol. Mol. Biol. Rev. 62, 547-585.]). For a related structure, see: Arun et al. (2003[Arun, M., Joshi, S. N., Puranik, V. G., Bhawal, B. M. & Deshmukh, A. R. A. S. (2003). Tetrahedron, 59, 2309-2316.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C30H27N3O6

  • Mr = 525.55

  • Triclinic, [P \overline 1]

  • a = 10.8510 (4) Å

  • b = 11.1669 (4) Å

  • c = 11.2736 (4) Å

  • α = 103.087 (2)°

  • β = 97.367 (2)°

  • γ = 93.402 (2)°

  • V = 1314.05 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.23 × 0.2 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.981

  • 24049 measured reflections

  • 6513 independent reflections

  • 4678 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.114

  • S = 1.03

  • 6513 reflections

  • 354 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg5 and Cg7 are the centroids of the C1–C6 and C22–C27 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O6i 0.86 1.99 2.8534 (14) 177
C12—H12⋯O5ii 0.93 2.50 3.4245 (17) 171
C16—H16⋯O2iii 0.93 2.52 3.3057 (19) 142
C5—H5⋯Cg7iv 0.93 2.93 3.6523 (18) 136
C25—H25⋯Cg5v 0.93 2.86 3.5633 (18) 134
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+2, -z+2; (iii) -x+1, -y+1, -z+1; (iv) x, y-1, z; (v) -x, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

β-Lactam based antibiotics have been successfully used in the treatment of infectious diseases for many years (Jones et al., 1989). The biological activity of β-lactams is mostly believed to be associated with the chemical reactivity of their β-lactam ring and its substituents, especially at the nitrogen of the 2-azetidinone ring (Mehta et al., 2010). The most commonly used β-lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporins (Brakhage, 1998). In view of potential applications, the crystal structure determination of the title β-lactam derivative was carried out which is reported in this article.

In the title molecule (Fig. 1), the β-lactam ring makes dihedral angles 30.61 (9)° and 85.51 (9)°, respectively, with the attached methoxyphenyl and phenoxy rings. The furan (O4/C17/C18/C19/C20) and pyrrolidine (C19/C18/C28/C29/N3) rings adopt envelope conformation with C18 and N3 atoms deviating by -0.2044 (13) Å and 0.2529 (13) Å, respectively, from the planes formed by the remaining atoms of the rings. The pyridine ring adopts a distorted boat conformation with atoms C19 and N2 deviating by 0.0932 (12) Å and 0.1741 (14) Å, respectively, from the least-squares plane defined by the remaining atoms (C18/C21/C22/C27) in the ring. The bond lengths and bond angles in the title compound agree with the corresponding bond lengths and angles reported for a closely related compound (Arun et al., (2003).

The crystal packing is stabilized by N—H···O, C—H···O interactions and further consolidated by weak C—H···π interaction. H-atoms bonded to N2, C12 and C16 are involved in hydrogen bonding with atoms O6, O5 and O2 (Fig 2. and Table 1) which connect the molecules forming cyclic centrosymmetric dimers in graph set motifs: R22(8), R22(20) and R22(14), respectively, (Bernstein et al., 1995).

Related literature top

For general background to β-lactams, see: Jones et al. (1989); Mehta et al. (2010); Brakhage (1998). For a related structure, see: Arun et al. (2003). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of methyl 2-(hydroxy(1-(4-methoxyphenyl)-4-oxo-3-phenoxyazetidin -2-yl)methyl)acrylate (1 mmol), isatin (1 mmol) and sarcosine (1 mmol) was refluxed in methanol until completion of the reaction was evidenced by TLC analysis. After completion of the reaction the solvent was evaporated under reduced pressure. The reaction mixture was dissolved in ethyl acetate and washed with water followed by brine solution. The organic layer was separated and evaporated under reduced pressure. The crude mixture was purified by column chromatography using ethyl acetate and hexane as eluent (4: 6). The product was dissolved in chloroform and heated for two minutes. The resulting solution was subjected to crystallization by slow evaporation of the solvent for 48 h resulting in the formation of single crystals.

Refinement top

The H atoms were positioned geometrically with N—H = 0.86 Å and C—H = 0.93, 0.96, 0.97 and 0.98 Å for aryl, methyl, methylene and methyne H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(methyl C) or 1.2Ueq(non-methyl C/N).

Structure description top

β-Lactam based antibiotics have been successfully used in the treatment of infectious diseases for many years (Jones et al., 1989). The biological activity of β-lactams is mostly believed to be associated with the chemical reactivity of their β-lactam ring and its substituents, especially at the nitrogen of the 2-azetidinone ring (Mehta et al., 2010). The most commonly used β-lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporins (Brakhage, 1998). In view of potential applications, the crystal structure determination of the title β-lactam derivative was carried out which is reported in this article.

In the title molecule (Fig. 1), the β-lactam ring makes dihedral angles 30.61 (9)° and 85.51 (9)°, respectively, with the attached methoxyphenyl and phenoxy rings. The furan (O4/C17/C18/C19/C20) and pyrrolidine (C19/C18/C28/C29/N3) rings adopt envelope conformation with C18 and N3 atoms deviating by -0.2044 (13) Å and 0.2529 (13) Å, respectively, from the planes formed by the remaining atoms of the rings. The pyridine ring adopts a distorted boat conformation with atoms C19 and N2 deviating by 0.0932 (12) Å and 0.1741 (14) Å, respectively, from the least-squares plane defined by the remaining atoms (C18/C21/C22/C27) in the ring. The bond lengths and bond angles in the title compound agree with the corresponding bond lengths and angles reported for a closely related compound (Arun et al., (2003).

The crystal packing is stabilized by N—H···O, C—H···O interactions and further consolidated by weak C—H···π interaction. H-atoms bonded to N2, C12 and C16 are involved in hydrogen bonding with atoms O6, O5 and O2 (Fig 2. and Table 1) which connect the molecules forming cyclic centrosymmetric dimers in graph set motifs: R22(8), R22(20) and R22(14), respectively, (Bernstein et al., 1995).

For general background to β-lactams, see: Jones et al. (1989); Mehta et al. (2010); Brakhage (1998). For a related structure, see: Arun et al. (2003). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A perspective view of the molecule showing the thermal ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. N—H···O and C—H···O interactions (dotted lines) in the crystal structure of the title compound. The crystal packing of the molecules is viewed down the a axis.
11-[1-(4-Methoxyphenyl)-4-oxo-3-phenoxyazetidin-2-yl]-14-methyl-12-oxa-8,14- diazatetracyclo[8.3.3.01,10.02,7]hexadeca-2(7),3,5-triene-9,13-dione top
Crystal data top
C30H27N3O6Z = 2
Mr = 525.55F(000) = 552
Triclinic, P1Dx = 1.328 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.8510 (4) ÅCell parameters from 1025 reflections
b = 11.1669 (4) Åθ = 1.9–28.4°
c = 11.2736 (4) ŵ = 0.09 mm1
α = 103.087 (2)°T = 293 K
β = 97.367 (2)°Block, colourless
γ = 93.402 (2)°0.25 × 0.23 × 0.2 mm
V = 1314.05 (8) Å3
Data collection top
Bruker SMART APEXII area-detector
diffractometer
6513 independent reflections
Radiation source: fine-focus sealed tube4678 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and φ scansθmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1414
Tmin = 0.977, Tmax = 0.981k = 1414
24049 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.1891P]
where P = (Fo2 + 2Fc2)/3
6513 reflections(Δ/σ)max < 0.001
354 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C30H27N3O6γ = 93.402 (2)°
Mr = 525.55V = 1314.05 (8) Å3
Triclinic, P1Z = 2
a = 10.8510 (4) ÅMo Kα radiation
b = 11.1669 (4) ŵ = 0.09 mm1
c = 11.2736 (4) ÅT = 293 K
α = 103.087 (2)°0.25 × 0.23 × 0.2 mm
β = 97.367 (2)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
6513 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4678 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.981Rint = 0.027
24049 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.03Δρmax = 0.20 e Å3
6513 reflectionsΔρmin = 0.19 e Å3
354 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.16075 (12)0.58171 (11)0.74291 (12)0.0414 (3)
C20.05204 (13)0.58690 (13)0.66728 (13)0.0498 (3)
H20.05380.62830.60450.060*
C30.05986 (14)0.53120 (14)0.68355 (15)0.0577 (4)
H30.13310.53590.63260.069*
C40.06221 (15)0.46879 (14)0.77544 (17)0.0597 (4)
C50.04776 (16)0.46016 (15)0.84873 (16)0.0629 (4)
H50.04680.41510.90860.075*
C60.15848 (14)0.51742 (14)0.83404 (14)0.0530 (4)
H60.23160.51290.88520.064*
C70.2835 (2)0.4281 (3)0.7371 (3)0.1326 (11)
H7A0.29020.51370.73850.199*
H7B0.34960.39810.77480.199*
H7C0.28960.38160.65340.199*
C80.29483 (11)0.75643 (12)0.68381 (12)0.0399 (3)
H80.26130.74520.59670.048*
C90.43518 (12)0.73721 (13)0.70216 (12)0.0443 (3)
H90.48660.80220.76530.053*
C100.39587 (13)0.62241 (13)0.74624 (13)0.0473 (3)
C110.60370 (12)0.73217 (12)0.57939 (12)0.0423 (3)
C120.69196 (14)0.79959 (15)0.67328 (13)0.0548 (4)
H120.67070.83110.75090.066*
C130.81251 (15)0.81965 (17)0.65024 (15)0.0615 (4)
H130.87270.86470.71330.074*
C140.84512 (15)0.77452 (15)0.53627 (15)0.0575 (4)
H140.92650.78940.52190.069*
C150.75673 (16)0.70726 (15)0.44355 (15)0.0585 (4)
H150.77820.67640.36590.070*
C160.63631 (14)0.68513 (14)0.46480 (13)0.0531 (4)
H160.57700.63850.40190.064*
C170.24857 (11)0.86746 (11)0.76324 (11)0.0364 (3)
H170.16070.84720.76860.044*
C180.25947 (11)0.99100 (11)0.72499 (11)0.0356 (3)
C190.26498 (12)1.08545 (11)0.84898 (11)0.0381 (3)
C200.32569 (12)1.01372 (12)0.94040 (11)0.0405 (3)
C210.14812 (12)0.99217 (12)0.62907 (11)0.0389 (3)
C220.03803 (12)1.10370 (12)0.78916 (11)0.0396 (3)
C230.07869 (13)1.13688 (14)0.81541 (14)0.0505 (3)
H230.14531.12600.75210.061*
C240.09565 (15)1.18579 (14)0.93505 (14)0.0565 (4)
H240.17361.20830.95270.068*
C250.00299 (16)1.20127 (15)1.02851 (14)0.0588 (4)
H250.00831.23451.10940.071*
C260.11868 (15)1.16760 (14)1.00262 (13)0.0521 (4)
H260.18431.17731.06670.062*
C270.13889 (12)1.11940 (11)0.88234 (11)0.0397 (3)
C280.38190 (13)1.02492 (14)0.67733 (13)0.0486 (3)
H28A0.43390.95660.66850.058*
H28B0.36371.04590.59840.058*
C290.44595 (13)1.13530 (15)0.77436 (14)0.0560 (4)
H29A0.50671.10980.83250.067*
H29B0.48771.19330.73700.067*
C300.38670 (19)1.29116 (15)0.94274 (17)0.0732 (5)
H30A0.44381.26271.00040.110*
H30B0.31611.31930.98080.110*
H30C0.42781.35790.91780.110*
N10.27315 (10)0.64267 (10)0.72704 (11)0.0449 (3)
N30.34465 (11)1.18995 (10)0.83485 (11)0.0490 (3)
N20.05128 (10)1.05094 (10)0.66654 (9)0.0434 (3)
H2A0.00821.05700.61060.052*
O10.16778 (12)0.41466 (13)0.80246 (16)0.0936 (5)
O20.44842 (10)0.54240 (10)0.78242 (11)0.0653 (3)
O30.47929 (9)0.70977 (11)0.58733 (9)0.0612 (3)
O40.31803 (9)0.89176 (8)0.88606 (8)0.0428 (2)
O50.37457 (10)1.05310 (9)1.04423 (8)0.0543 (3)
O60.14758 (9)0.93721 (10)0.52118 (8)0.0522 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0402 (7)0.0347 (6)0.0461 (7)0.0049 (5)0.0049 (5)0.0033 (5)
C20.0469 (8)0.0514 (8)0.0494 (8)0.0007 (6)0.0001 (6)0.0133 (6)
C30.0420 (8)0.0585 (9)0.0689 (10)0.0005 (6)0.0037 (7)0.0156 (8)
C40.0478 (9)0.0514 (9)0.0829 (12)0.0033 (7)0.0138 (8)0.0197 (8)
C50.0595 (10)0.0636 (10)0.0767 (11)0.0118 (8)0.0168 (8)0.0343 (9)
C60.0495 (8)0.0543 (8)0.0571 (9)0.0110 (6)0.0026 (7)0.0182 (7)
C70.0458 (12)0.159 (3)0.215 (3)0.0101 (13)0.0112 (15)0.098 (2)
C80.0348 (6)0.0435 (7)0.0391 (7)0.0028 (5)0.0031 (5)0.0066 (5)
C90.0343 (7)0.0528 (8)0.0395 (7)0.0053 (5)0.0040 (5)0.0016 (6)
C100.0411 (7)0.0456 (7)0.0481 (8)0.0099 (6)0.0006 (6)0.0011 (6)
C110.0371 (7)0.0481 (7)0.0402 (7)0.0080 (5)0.0063 (5)0.0061 (6)
C120.0449 (8)0.0751 (10)0.0389 (7)0.0007 (7)0.0069 (6)0.0032 (7)
C130.0448 (8)0.0806 (11)0.0557 (9)0.0065 (7)0.0035 (7)0.0143 (8)
C140.0469 (8)0.0686 (10)0.0665 (10)0.0082 (7)0.0194 (7)0.0286 (8)
C150.0659 (10)0.0638 (9)0.0511 (9)0.0167 (8)0.0259 (8)0.0121 (7)
C160.0533 (9)0.0575 (9)0.0431 (8)0.0090 (7)0.0088 (6)0.0014 (6)
C170.0321 (6)0.0424 (7)0.0346 (6)0.0030 (5)0.0032 (5)0.0103 (5)
C180.0327 (6)0.0420 (6)0.0324 (6)0.0035 (5)0.0029 (5)0.0106 (5)
C190.0394 (7)0.0397 (6)0.0333 (6)0.0025 (5)0.0017 (5)0.0087 (5)
C200.0391 (7)0.0478 (7)0.0348 (7)0.0077 (5)0.0037 (5)0.0103 (5)
C210.0389 (7)0.0459 (7)0.0325 (6)0.0037 (5)0.0031 (5)0.0120 (5)
C220.0419 (7)0.0410 (7)0.0369 (7)0.0065 (5)0.0058 (5)0.0104 (5)
C230.0431 (8)0.0585 (9)0.0500 (8)0.0111 (6)0.0065 (6)0.0113 (7)
C240.0541 (9)0.0602 (9)0.0597 (9)0.0180 (7)0.0205 (7)0.0132 (7)
C250.0733 (11)0.0616 (9)0.0439 (8)0.0214 (8)0.0195 (8)0.0072 (7)
C260.0608 (9)0.0548 (8)0.0378 (7)0.0156 (7)0.0025 (6)0.0053 (6)
C270.0440 (7)0.0389 (6)0.0354 (7)0.0077 (5)0.0030 (5)0.0080 (5)
C280.0401 (7)0.0591 (9)0.0515 (8)0.0019 (6)0.0118 (6)0.0212 (7)
C290.0402 (8)0.0667 (10)0.0622 (9)0.0083 (7)0.0005 (7)0.0256 (8)
C300.0839 (13)0.0511 (9)0.0714 (11)0.0157 (8)0.0125 (9)0.0062 (8)
N10.0376 (6)0.0405 (6)0.0550 (7)0.0062 (4)0.0021 (5)0.0097 (5)
N30.0484 (7)0.0442 (6)0.0508 (7)0.0058 (5)0.0042 (5)0.0127 (5)
N20.0374 (6)0.0595 (7)0.0325 (6)0.0108 (5)0.0003 (4)0.0107 (5)
O10.0535 (7)0.0957 (10)0.1521 (14)0.0036 (7)0.0264 (8)0.0661 (10)
O20.0554 (6)0.0561 (6)0.0787 (8)0.0190 (5)0.0064 (5)0.0097 (6)
O30.0361 (5)0.0928 (8)0.0415 (5)0.0004 (5)0.0060 (4)0.0101 (5)
O40.0497 (5)0.0452 (5)0.0346 (5)0.0108 (4)0.0027 (4)0.0119 (4)
O50.0599 (6)0.0642 (6)0.0340 (5)0.0152 (5)0.0064 (4)0.0066 (4)
O60.0505 (6)0.0716 (7)0.0321 (5)0.0171 (5)0.0013 (4)0.0071 (5)
Geometric parameters (Å, º) top
C1—C21.3763 (19)C16—H160.9300
C1—C61.3819 (19)C17—O41.4480 (14)
C1—N11.4127 (17)C17—C181.5382 (17)
C2—C31.384 (2)C17—H170.9800
C2—H20.9300C18—C211.5174 (17)
C3—C41.375 (2)C18—C191.5406 (17)
C3—H30.9300C18—C281.5532 (17)
C4—O11.3643 (19)C19—N31.4610 (17)
C4—C51.383 (2)C19—C271.5119 (18)
C5—C61.374 (2)C19—C201.5491 (17)
C5—H50.9300C20—O51.1937 (15)
C6—H60.9300C20—O41.3538 (16)
C7—O11.406 (3)C21—O61.2313 (15)
C7—H7A0.9600C21—N21.3354 (16)
C7—H7B0.9600C22—C271.3896 (18)
C7—H7C0.9600C22—C231.3897 (18)
C8—N11.4769 (17)C22—N21.4039 (16)
C8—C171.5091 (17)C23—C241.376 (2)
C8—C91.5447 (18)C23—H230.9300
C8—H80.9800C24—C251.376 (2)
C9—O31.4127 (16)C24—H240.9300
C9—C101.533 (2)C25—C261.379 (2)
C9—H90.9800C25—H250.9300
C10—O21.2065 (16)C26—C271.3916 (18)
C10—N11.3621 (17)C26—H260.9300
C11—O31.3762 (16)C28—C291.514 (2)
C11—C121.3776 (19)C28—H28A0.9700
C11—C161.3791 (18)C28—H28B0.9700
C12—C131.381 (2)C29—N31.4591 (19)
C12—H120.9300C29—H29A0.9700
C13—C141.369 (2)C29—H29B0.9700
C13—H130.9300C30—N31.463 (2)
C14—C151.371 (2)C30—H30A0.9600
C14—H140.9300C30—H30B0.9600
C15—C161.376 (2)C30—H30C0.9600
C15—H150.9300N2—H2A0.8600
C2—C1—C6119.55 (13)C17—C18—C19102.07 (9)
C2—C1—N1119.70 (12)C21—C18—C28109.79 (10)
C6—C1—N1120.75 (12)C17—C18—C28117.05 (10)
C1—C2—C3120.73 (14)C19—C18—C28104.08 (10)
C1—C2—H2119.6N3—C19—C27113.49 (11)
C3—C2—H2119.6N3—C19—C18103.26 (10)
C4—C3—C2119.61 (14)C27—C19—C18114.36 (10)
C4—C3—H3120.2N3—C19—C20114.43 (10)
C2—C3—H3120.2C27—C19—C20109.15 (10)
O1—C4—C3124.43 (15)C18—C19—C20101.56 (10)
O1—C4—C5115.97 (15)O5—C20—O4121.28 (12)
C3—C4—C5119.59 (15)O5—C20—C19128.54 (12)
C6—C5—C4120.75 (15)O4—C20—C19110.18 (10)
C6—C5—H5119.6O6—C21—N2122.05 (11)
C4—C5—H5119.6O6—C21—C18120.01 (11)
C5—C6—C1119.72 (14)N2—C21—C18117.91 (11)
C5—C6—H6120.1C27—C22—C23120.91 (12)
C1—C6—H6120.1C27—C22—N2120.55 (11)
O1—C7—H7A109.5C23—C22—N2118.52 (12)
O1—C7—H7B109.5C24—C23—C22120.00 (14)
H7A—C7—H7B109.5C24—C23—H23120.0
O1—C7—H7C109.5C22—C23—H23120.0
H7A—C7—H7C109.5C25—C24—C23119.86 (14)
H7B—C7—H7C109.5C25—C24—H24120.1
N1—C8—C17112.75 (10)C23—C24—H24120.1
N1—C8—C986.95 (10)C24—C25—C26120.18 (14)
C17—C8—C9119.27 (11)C24—C25—H25119.9
N1—C8—H8111.8C26—C25—H25119.9
C17—C8—H8111.8C25—C26—C27121.19 (14)
C9—C8—H8111.8C25—C26—H26119.4
O3—C9—C10113.64 (11)C27—C26—H26119.4
O3—C9—C8110.17 (11)C22—C27—C26117.85 (12)
C10—C9—C886.06 (10)C22—C27—C19119.04 (11)
O3—C9—H9114.6C26—C27—C19123.10 (12)
C10—C9—H9114.6C29—C28—C18104.97 (11)
C8—C9—H9114.6C29—C28—H28A110.8
O2—C10—N1132.35 (15)C18—C28—H28A110.8
O2—C10—C9136.01 (13)C29—C28—H28B110.8
N1—C10—C991.63 (10)C18—C28—H28B110.8
O3—C11—C12125.27 (12)H28A—C28—H28B108.8
O3—C11—C16114.56 (12)N3—C29—C28104.19 (11)
C12—C11—C16120.11 (13)N3—C29—H29A110.9
C11—C12—C13118.92 (13)C28—C29—H29A110.9
C11—C12—H12120.5N3—C29—H29B110.9
C13—C12—H12120.5C28—C29—H29B110.9
C14—C13—C12121.25 (15)H29A—C29—H29B108.9
C14—C13—H13119.4N3—C30—H30A109.5
C12—C13—H13119.4N3—C30—H30B109.5
C13—C14—C15119.39 (15)H30A—C30—H30B109.5
C13—C14—H14120.3N3—C30—H30C109.5
C15—C14—H14120.3H30A—C30—H30C109.5
C14—C15—C16120.33 (14)H30B—C30—H30C109.5
C14—C15—H15119.8C10—N1—C1134.48 (12)
C16—C15—H15119.8C10—N1—C895.34 (10)
C15—C16—C11119.98 (14)C1—N1—C8130.16 (10)
C15—C16—H16120.0C29—N3—C19105.18 (11)
C11—C16—H16120.0C29—N3—C30113.88 (13)
O4—C17—C8108.95 (10)C19—N3—C30118.63 (12)
O4—C17—C18105.16 (9)C21—N2—C22125.78 (11)
C8—C17—C18118.21 (10)C21—N2—H2A117.1
O4—C17—H17108.0C22—N2—H2A117.1
C8—C17—H17108.0C4—O1—C7118.60 (16)
C18—C17—H17108.0C11—O3—C9120.94 (10)
C21—C18—C17108.20 (10)C20—O4—C17110.29 (9)
C21—C18—C19115.74 (10)
C6—C1—C2—C31.7 (2)C28—C18—C21—N2132.92 (12)
N1—C1—C2—C3177.96 (13)C27—C22—C23—C240.1 (2)
C1—C2—C3—C40.7 (2)N2—C22—C23—C24178.28 (13)
C2—C3—C4—O1177.42 (15)C22—C23—C24—C250.3 (2)
C2—C3—C4—C51.4 (2)C23—C24—C25—C260.2 (2)
O1—C4—C5—C6176.28 (15)C24—C25—C26—C271.0 (2)
C3—C4—C5—C62.7 (3)C23—C22—C27—C260.9 (2)
C4—C5—C6—C11.7 (2)N2—C22—C27—C26177.45 (12)
C2—C1—C6—C50.4 (2)C23—C22—C27—C19178.23 (12)
N1—C1—C6—C5179.18 (13)N2—C22—C27—C193.39 (18)
N1—C8—C9—O3113.13 (12)C25—C26—C27—C221.4 (2)
C17—C8—C9—O3132.40 (12)C25—C26—C27—C19177.76 (13)
N1—C8—C9—C100.63 (9)N3—C19—C27—C2294.95 (14)
C17—C8—C9—C10113.83 (12)C18—C19—C27—C2223.17 (16)
O3—C9—C10—O269.4 (2)C20—C19—C27—C22136.13 (12)
C8—C9—C10—O2179.68 (17)N3—C19—C27—C2684.17 (15)
O3—C9—C10—N1109.63 (12)C18—C19—C27—C26157.71 (12)
C8—C9—C10—N10.68 (10)C20—C19—C27—C2644.75 (17)
O3—C11—C12—C13176.86 (15)C21—C18—C28—C29123.53 (12)
C16—C11—C12—C130.4 (2)C17—C18—C28—C29112.67 (12)
C11—C12—C13—C140.4 (3)C19—C18—C28—C290.95 (13)
C12—C13—C14—C150.6 (3)C18—C28—C29—N324.05 (14)
C13—C14—C15—C160.1 (2)O2—C10—N1—C11.2 (3)
C14—C15—C16—C110.9 (2)C9—C10—N1—C1179.72 (14)
O3—C11—C16—C15176.51 (14)O2—C10—N1—C8179.77 (16)
C12—C11—C16—C151.1 (2)C9—C10—N1—C80.72 (10)
N1—C8—C17—O463.06 (13)C2—C1—N1—C10150.00 (15)
C9—C8—C17—O436.66 (15)C6—C1—N1—C1030.4 (2)
N1—C8—C17—C18177.08 (10)C2—C1—N1—C831.3 (2)
C9—C8—C17—C1883.20 (15)C6—C1—N1—C8148.33 (13)
O4—C17—C18—C21154.91 (9)C17—C8—N1—C10119.86 (11)
C8—C17—C18—C2183.28 (13)C9—C8—N1—C100.71 (10)
O4—C17—C18—C1932.37 (11)C17—C8—N1—C159.21 (17)
C8—C17—C18—C19154.18 (10)C9—C8—N1—C1179.78 (13)
O4—C17—C18—C2880.49 (12)C28—C29—N3—C1941.75 (13)
C8—C17—C18—C2841.32 (15)C28—C29—N3—C30173.28 (12)
C21—C18—C19—N395.07 (12)C27—C19—N3—C29166.39 (11)
C17—C18—C19—N3147.70 (10)C18—C19—N3—C2942.03 (12)
C28—C18—C19—N325.49 (12)C20—C19—N3—C2967.44 (13)
C21—C18—C19—C2728.72 (15)C27—C19—N3—C3064.87 (16)
C17—C18—C19—C2788.51 (11)C18—C19—N3—C30170.77 (13)
C28—C18—C19—C27149.28 (10)C20—C19—N3—C3061.31 (17)
C21—C18—C19—C20146.12 (10)O6—C21—N2—C22172.34 (12)
C17—C18—C19—C2028.89 (11)C18—C21—N2—C225.68 (19)
C28—C18—C19—C2093.32 (11)C27—C22—N2—C2112.6 (2)
N3—C19—C20—O552.09 (19)C23—C22—N2—C21165.80 (13)
C27—C19—C20—O576.31 (17)C3—C4—O1—C73.4 (3)
C18—C19—C20—O5162.59 (14)C5—C4—O1—C7175.4 (2)
N3—C19—C20—O4127.41 (12)C12—C11—O3—C911.3 (2)
C27—C19—C20—O4104.19 (12)C16—C11—O3—C9171.25 (13)
C18—C19—C20—O416.92 (13)C10—C9—O3—C11109.08 (14)
C17—C18—C21—O679.81 (14)C8—C9—O3—C11156.28 (12)
C19—C18—C21—O6166.44 (11)O5—C20—O4—C17176.75 (12)
C28—C18—C21—O649.02 (16)C19—C20—O4—C173.70 (13)
C17—C18—C21—N298.26 (13)C8—C17—O4—C20150.77 (10)
C19—C18—C21—N215.49 (16)C18—C17—O4—C2023.12 (12)
Hydrogen-bond geometry (Å, º) top
Cg5 and Cg7 are the centroids of the C1–C6 and C22–C27 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O6i0.861.992.8534 (14)177
C12—H12···O5ii0.932.503.4245 (17)171
C16—H16···O2iii0.932.523.3057 (19)142
C26—H26···O50.932.563.150 (2)122
C5—H5···Cg7iv0.932.933.6523 (18)136
C25—H25···Cg5v0.932.863.5633 (18)134
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+2, z+2; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC30H27N3O6
Mr525.55
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.8510 (4), 11.1669 (4), 11.2736 (4)
α, β, γ (°)103.087 (2), 97.367 (2), 93.402 (2)
V3)1314.05 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.23 × 0.2
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.977, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
24049, 6513, 4678
Rint0.027
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.114, 1.03
No. of reflections6513
No. of parameters354
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.19

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg5 and Cg7 are the centroids of the C1–C6 and C22–C27 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O6i0.861.992.8534 (14)177
C12—H12···O5ii0.932.503.4245 (17)171
C16—H16···O2iii0.932.523.3057 (19)142
C5—H5···Cg7iv0.932.933.6523 (18)136
C25—H25···Cg5v0.932.863.5633 (18)134
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+2, z+2; (iii) x+1, y+1, z+1; (iv) x, y1, z; (v) x, y+2, z+2.
 

Acknowledgements

SS and DV thank the TBI X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the University Grants Commission (UGC & SAP) for financial support.

References

First citationArun, M., Joshi, S. N., Puranik, V. G., Bhawal, B. M. & Deshmukh, A. R. A. S. (2003). Tetrahedron, 59, 2309–2316.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrakhage, A. A. (1998). Microbiol. Mol. Biol. Rev. 62, 547–585.  Web of Science CAS PubMed Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJones, R. N., Barry, A. L. & Thornsberry, C. (1989). J. Antimicrob. Chemother. 24, 9–29.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMehta, P. D., Sengar, N. P. S. & Pathak, A. K. (2010). Eur. J. Med. Chem. 45, 5541–5560.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds