## organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## 5-Hydroxy-6-[(E)-2-phenylethenyl]-5,6dihvdro-2H-pyran-2-one isolated from Goniothalamus ridleyi

## Samsiah Jusoh,<sup>a</sup> Laily B. Din,<sup>a</sup> Zuriati Zakaria<sup>a</sup> and Hamid Khaledi<sup>b</sup>\*

<sup>a</sup>School of Chemical Sciences and Food Technology, Faculty of Science and Technology, National University of Malaysia, 43600 UKM Bangi, Selangor, Malaysia, and <sup>b</sup>Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: hamid.khaledi@gmail.com

Received 14 June 2012; accepted 22 June 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.027; wR factor = 0.069; data-to-parameter ratio = 8.4.

In the title compound,  $C_{13}H_{12}O_3$ , the pyran ring adopts a halfchair conformation with a C atom deviating from the leastsquares plane of the remaining ring atoms by 0.606(2) Å. This plane and that of the benzene ring make a dihedral angle of 44.18 (6)°. In the crystal, molecules are linked through O- $H \cdots O$  hydrogen bonds into infinite chains along the b axis, and these chains are cross-linked by C-H···O hydrogen bonded into sheets lying parallel to the bc plane. The layers are further connected via  $C-H\cdots\pi$  interactions to form a three-dimensional supramolecular structure.

## **Related literature**

For spectroscopic characterization of the  $5\beta$ -hydroxygoniothalamin, see: Goh et al. (1995). For the crystal structures of some similar compounds, see: Fun et al. (1995); Tuchinda et al. (2006).



## **Experimental**

Crystal data C13H12O3

 $M_r = 216.23$ 

| Monoclinic, $P2_1$              |  |
|---------------------------------|--|
| a = 6.5442 (8) Å                |  |
| b = 11.0267 (14)  Å             |  |
| c = 8.0991 (10)  Å              |  |
| $\beta = 111.402 \ (2)^{\circ}$ |  |
| V = 544.14 (12) Å <sup>3</sup>  |  |

#### Data collection

| Bruker APEXII CCD                      | 2559 measured reflections              |
|----------------------------------------|----------------------------------------|
| diffractometer                         | 1250 independent reflections           |
| Absorption correction: multi-scan      | 1220 reflections with $I > 2\sigma(I)$ |
| (SADABS; Sheldrick, 1996)              | $R_{\rm int} = 0.012$                  |
| $T_{\min} = 0.973, \ T_{\max} = 0.994$ |                                        |
|                                        |                                        |

Z = 2

Mo  $K\alpha$  radiation

 $0.30 \times 0.18 \times 0.06 \text{ mm}$ 

 $\mu = 0.09 \text{ mm}^{-1}$ 

T = 100 K

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.027$ | H atoms treated by a mixture of                          |
|---------------------------------|----------------------------------------------------------|
| $wR(F^2) = 0.069$               | independent and constrained                              |
| S = 1.08                        | refinement                                               |
| 1250 reflections                | $\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$  |
| 148 parameters                  | $\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$ |
| 1 restraint                     |                                                          |

#### Table 1 Hydrogen-bond geometry (Å, °).

1

Cg is the centroid of the C1-C6 ring.

| $D - H \cdots A$         | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|--------------------------|----------|-------------------------|--------------|--------------------------------------|
| $01$ H14 $02^{i}$        | 0.87 (3) | 1.05 (3)                | 2 8026 (19)  | 170 (2)                              |
| $C12-H12\cdots O1^{ii}$  | 0.87 (3) | 2.53                    | 3.427 (2)    | 157                                  |
| $C9-H9\cdots Cg^{ii}$    | 1.00     | 2.97                    | 3.747 (2)    | 135                                  |
| $C10-H10\cdots Cg^{iii}$ | 1.00     | 2.80                    | 3.6561 (18)  | 144                                  |
|                          | . 1      |                         | ann - 1      |                                      |

Symmetry codes: (i) -x + 1,  $y - \frac{1}{2}$ , -z; (ii) x - 1, y, z; (iii) -x + 2,  $y - \frac{1}{2}$ , -z + 1.

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

This research was financially supported by UKM grant (grant No. UKM-DLP-2012-033). We are grateful to Dr Shamsul Khamis for the assistance in identifying plant material.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2562).

#### References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Fun, H.-K., Sivakumar, K., Ang, H.-B., Sam, T.-W. & Gan, E.-K. (1995). Acta Cryst. C51, 1330-1333.

Goh, S. H., Ee, G. C. L. & Chuah, C. H. (1995). Nat. Prod. Lett. 5, 255-259.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Tuchinda, P., Munyoo, B., Pohmakotr, M., Thinapong, P., Sophasan, S., Santisuk, T. & Reutrakul, V. (2006). J. Nat. Prod. 69, 1728-1733. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

02274 lusoh et al

## supporting information

## Acta Cryst. (2012). E68, o2274 [https://doi.org/10.1107/S1600536812028334]

# 5-Hydroxy-6-[(*E*)-2-phenylethenyl]-5,6-dihydro-2*H*-pyran-2-one isolated from *Goniothalamus ridleyi*

## Samsiah Jusoh, Laily B. Din, Zuriati Zakaria and Hamid Khaledi

## S1. Comment

The title compound was isolated from the roots of *Goniothalamus ridleyi* and found to be the same styrylpyrone isolated from the stem bark of *Goniothalamus dolichocarpus* (Goh *et al.*, 1995). In agreement with the structures of similar molecules (Fun *et al.*, 1995; Tuchinda *et al.*, 2006), the pyran ring in the title molecule adopts a half-chair conformation with C9 displaced by 0.606 (2) Å from the plane of the remaining ring atoms (C10/C11/C12/C13/O3). This plane and the benzene ring make a dihedral angle of 44.18 (6)°. The crystal packing comprises three dimensional network formed by O -H···O, C-H···O and C-H··· $\pi$  interactions (Table 1, Fig. 2).

## **S2. Experimental**

Samples of the roots of *G. ridleyi* were collected from Post Brooke, Gua Musang, Kelantan, Malaysia. The roots were dried in an oven (323 K), ground and extracted using cool extraction. The extraction using three types of solvents *i. e.*, hexane, chloroform and methanol gave three crude extracts. The chloroform crude extract (9.57 g) was separated using vacuum liquid chromatography (VLC). A mixture solvent of ethyl acetate and methanol as eluent solvent gave 12 fractions. TLC profiles showed fractions 1–3 were identical. Therefore, these fractions has been selected for further separation using column chromatography (CC) with eluent solvents hexane and ethyl acetate; 178 vials were collected and vials 157–165 have been selected for preparative TLC (PTLC) using hexane:ethyl acetate (9:11). GRAB 6 (0.0617 g) with  $R_f$  0.46 in solvent system hexane: ethyl acetate (5:5) was crystallized from a mixture of ethyl acetate and n-hexane (1:1) at room temperature.

## **S3. Refinement**

The C-bound hydrogen atoms were located in the calculated positions and refined in a riding mode with C—H distances of 0.95 ( $C_{sp2}$ ) and 1.000 ( $C_{sp3}$ ) Å. The O-bound H atom was found in a difference Fourier map and refined freely. For all hydrogen atoms,  $U_{iso}$  were set to 1.2 $U_{eq}$ (carrier atom). In the absence of significant anomalous scattering effects Friedel pairs were merged.



Figure 1

Molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.



Figure 2

A view of the O—H···O, C—H···O and C—H··· $\pi$  interactions in the structure. Hydrogen atoms, except those involved in hydrogen bonding, are ommitted. Symmetry codes: ' = -x + 1, y - 1/2; '' = x - 1, y, z; ''' = -x + 2, y - 1/2, -z + 1.

5-Hydroxy-6-[(*E*)-2-phenylethenyl]-5,6-dihydro-2*H*-pyran-2-one

## Crystal data

C<sub>13</sub>H<sub>12</sub>O<sub>3</sub>  $M_r = 216.23$ Monoclinic,  $P2_1$ Hall symbol: P 2yb a = 6.5442 (8) Å b = 11.0267 (14) Å c = 8.0991 (10) Å  $\beta = 111.402$  (2)° V = 544.14 (12) Å<sup>3</sup> Z = 2

## Data collection

| Bruker APEXII CCD                        |
|------------------------------------------|
| diffractometer                           |
| Radiation source: fine-focus sealed tube |
| Graphite monochromator                   |
| $\varphi$ and $\omega$ scans             |
| Absorption correction: multi-scan        |
| (SADABS; Sheldrick, 1996)                |
| $T_{\min} = 0.973, \ T_{\max} = 0.994$   |
|                                          |

## Refinement

| Refinement on $F^2$                              | Hydrogen site location: inferred from                      |
|--------------------------------------------------|------------------------------------------------------------|
| Least-squares matrix: full                       | neighbouring sites                                         |
| $R[F^2 > 2\sigma(F^2)] = 0.027$                  | H atoms treated by a mixture of independent                |
| $wR(F^2) = 0.069$                                | and constrained refinement                                 |
| S = 1.08                                         | $w = 1/[\sigma^2(F_o^2) + (0.0382P)^2 + 0.0929P]$          |
| 1250 reflections                                 | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 148 parameters                                   | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| 1 restraint                                      | $\Delta  ho_{ m max} = 0.18 \ { m e} \ { m \AA}^{-3}$      |
| Primary atom site location: structure-invariant  | $\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$ |
| direct methods                                   | Absolute structure: 749 Friedel pairs were                 |
| Secondary atom site location: difference Fourier | merged                                                     |
| map                                              |                                                            |

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

F(000) = 228

 $\theta = 2.7 - 29.6^{\circ}$ 

 $\mu = 0.09 \text{ mm}^{-1}$ 

Plate, colorless

 $0.30 \times 0.18 \times 0.06 \text{ mm}$ 

2559 measured reflections 1250 independent reflections 1220 reflections with  $I > 2\sigma(I)$ 

 $\theta_{\text{max}} = 27.0^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$ 

T = 100 K

 $R_{\rm int} = 0.012$ 

 $h = -8 \rightarrow 8$   $k = -12 \rightarrow 14$  $l = -10 \rightarrow 10$ 

 $D_{\rm x} = 1.320 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 1643 reflections

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | У            | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------------|--------------|---------------|-----------------------------|
| O1  | 0.6604 (2)   | 0.26455 (12) | -0.01641 (17) | 0.0203 (3)                  |
| H1A | 0.720 (4)    | 0.194 (2)    | -0.012 (3)    | 0.024*                      |
| O2  | 0.12430 (19) | 0.53996 (12) | -0.04165 (17) | 0.0225 (3)                  |

| 03  | 0.46365 (18) | 0.48046 (11) | 0.10232 (16) | 0.0185 (3) |
|-----|--------------|--------------|--------------|------------|
| C1  | 1.2436 (3)   | 0.59025 (18) | 0.3976 (2)   | 0.0217 (4) |
| H1  | 1.1293       | 0.6247       | 0.2994       | 0.026*     |
| C2  | 1.4539 (3)   | 0.63794 (18) | 0.4495 (2)   | 0.0248 (4) |
| H2  | 1.4827       | 0.7041       | 0.3862       | 0.030*     |
| C3  | 1.6224 (3)   | 0.58916 (18) | 0.5938 (3)   | 0.0237 (4) |
| H3  | 1.7666       | 0.6215       | 0.6292       | 0.028*     |
| C4  | 1.5782 (3)   | 0.49275 (18) | 0.6858 (2)   | 0.0221 (4) |
| H4  | 1.6928       | 0.4591       | 0.7846       | 0.027*     |
| C5  | 1.3677 (3)   | 0.44522 (17) | 0.6346 (2)   | 0.0187 (3) |
| H5  | 1.3388       | 0.3801       | 0.6997       | 0.022*     |
| C6  | 1.1977 (3)   | 0.49255 (16) | 0.4877 (2)   | 0.0173 (3) |
| C7  | 0.9754 (3)   | 0.43928 (17) | 0.4324 (2)   | 0.0191 (3) |
| H7  | 0.9309       | 0.4056       | 0.5219       | 0.023*     |
| C8  | 0.8338 (3)   | 0.43534 (17) | 0.2661 (2)   | 0.0186 (3) |
| H8  | 0.8795       | 0.4654       | 0.1752       | 0.022*     |
| C9  | 0.6060 (3)   | 0.38607 (15) | 0.2147 (2)   | 0.0172 (3) |
| Н9  | 0.5705       | 0.3771       | 0.3242       | 0.021*     |
| C10 | 0.5697 (2)   | 0.26443 (16) | 0.1191 (2)   | 0.0176 (3) |
| H10 | 0.6423       | 0.1994       | 0.2070       | 0.021*     |
| C11 | 0.3265 (3)   | 0.23880 (16) | 0.0389 (2)   | 0.0200 (4) |
| H11 | 0.2771       | 0.1573       | 0.0154       | 0.024*     |
| C12 | 0.1802 (3)   | 0.32814 (17) | 0.0004 (2)   | 0.0203 (4) |
| H12 | 0.0282       | 0.3092       | -0.0406      | 0.024*     |
| C13 | 0.2497 (3)   | 0.45594 (16) | 0.0204 (2)   | 0.0179 (3) |
|     |              |              |              |            |

Atomic displacement parameters  $(\AA^2)$ 

|     | $U^{11}$   | $U^{22}$    | $U^{33}$   | $U^{12}$    | $U^{13}$   | $U^{23}$    |
|-----|------------|-------------|------------|-------------|------------|-------------|
| 01  | 0.0233 (6) | 0.0155 (6)  | 0.0254 (6) | 0.0005 (5)  | 0.0130 (5) | -0.0002 (5) |
| O2  | 0.0178 (6) | 0.0187 (6)  | 0.0302 (7) | 0.0013 (5)  | 0.0079 (5) | 0.0025 (5)  |
| O3  | 0.0136 (5) | 0.0159 (6)  | 0.0237 (6) | -0.0004 (4) | 0.0040 (4) | 0.0009 (5)  |
| C1  | 0.0229 (8) | 0.0214 (9)  | 0.0180 (8) | 0.0008 (7)  | 0.0042 (6) | 0.0000 (7)  |
| C2  | 0.0290 (9) | 0.0222 (9)  | 0.0257 (9) | -0.0061 (8) | 0.0130 (8) | -0.0031 (8) |
| C3  | 0.0175 (7) | 0.0268 (10) | 0.0282 (9) | -0.0057 (7) | 0.0099 (7) | -0.0106 (8) |
| C4  | 0.0189 (8) | 0.0226 (9)  | 0.0217 (8) | 0.0044 (7)  | 0.0035 (6) | -0.0045 (7) |
| C5  | 0.0197 (8) | 0.0184 (8)  | 0.0180 (8) | 0.0023 (7)  | 0.0068 (6) | -0.0011 (7) |
| C6  | 0.0160 (7) | 0.0180 (8)  | 0.0180 (7) | 0.0004 (7)  | 0.0062 (6) | -0.0035 (7) |
| C7  | 0.0182 (8) | 0.0184 (8)  | 0.0217 (8) | 0.0001 (7)  | 0.0084 (7) | -0.0003 (7) |
| C8  | 0.0162 (7) | 0.0177 (8)  | 0.0224 (8) | -0.0008(7)  | 0.0078 (6) | -0.0008(7)  |
| C9  | 0.0161 (8) | 0.0175 (8)  | 0.0179 (8) | 0.0010 (6)  | 0.0059 (6) | 0.0021 (6)  |
| C10 | 0.0171 (7) | 0.0154 (8)  | 0.0208 (8) | -0.0001 (6) | 0.0075 (6) | 0.0022 (7)  |
| C11 | 0.0205 (8) | 0.0163 (8)  | 0.0230 (8) | -0.0046 (7) | 0.0077 (7) | -0.0006 (7) |
| C12 | 0.0128 (7) | 0.0220 (9)  | 0.0241 (8) | -0.0039 (7) | 0.0044 (7) | 0.0003 (7)  |
| C13 | 0.0153 (7) | 0.0195 (9)  | 0.0204 (8) | -0.0005 (7) | 0.0081 (6) | 0.0005 (7)  |

Geometric parameters (Å, °)

| 1.426 (2)<br>0.87 (3)<br>1.218 (2) | C5—H5<br>C6—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9500<br>1.479 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.87 (3)<br>1.218 (2)              | C6—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.479 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.218 (2)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (-)                                | C7—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.328 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.3399 (19)                        | С7—Н7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.470 (2)                          | C8—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.496 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.387 (2)                          | C8—H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.9500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.394 (3)                          | C9—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.523 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.9500                             | С9—Н9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.390 (3)                          | C10—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.510 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.9500                             | C10—H10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.388 (3)                          | C11—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.329 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.9500                             | C11—H11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.388 (2)                          | C12—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.471 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.9500                             | C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.9500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1.400 (2)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 106.0 (15)                         | С7—С8—Н8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 118.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 118.37 (13)                        | С9—С8—Н8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 118.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 120.93 (16)                        | O3—C9—C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 104.91 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 119.5                              | O3—C9—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 111.27 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 119.5                              | C8—C9—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 114.59 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 120.21 (18)                        | О3—С9—Н9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 119.9                              | С8—С9—Н9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 119.9                              | С10—С9—Н9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 108.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 119.41 (16)                        | O1—C10—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.78 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 120.3                              | O1—C10—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 111.02 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 120.3                              | C11—C10—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.15 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 120.46 (16)                        | O1—C10—H10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 119.8                              | C11—C10—H10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 119.8                              | C9—C10—H10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 120.50 (16)                        | C12—C11—C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 121.20 (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 119.8                              | C12—C11—H11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 119.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 119.8                              | C10-C11-H11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 119.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 118.47 (15)                        | C11—C12—C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 121.12 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 121.66 (15)                        | C11—C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 119.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 119.87 (15)                        | C13—C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 119.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 124.42 (16)                        | O2—C13—O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 118.41 (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 117.8                              | O2—C13—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 123.25 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 117.8                              | O3—C13—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 118.22 (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 123.36 (16)                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                    | 1.387 (2)<br>1.387 (2)<br>1.394 (3)<br>0.9500<br>1.390 (3)<br>0.9500<br>1.388 (3)<br>0.9500<br>1.388 (2)<br>0.9500<br>1.400 (2)<br>106.0 (15)<br>118.37 (13)<br>120.93 (16)<br>119.5<br>120.21 (18)<br>119.9<br>119.41 (16)<br>120.3<br>120.46 (16)<br>119.8<br>119.8<br>120.50 (16)<br>119.8<br>119.8<br>119.8<br>119.8<br>119.8<br>119.8<br>119.8<br>119.8<br>119.8<br>119.8<br>119.8<br>119.8<br>119.8<br>119.8<br>119.8<br>119.8<br>119.8<br>119.8<br>119.8<br>119.8<br>119.8<br>119.8<br>119.8<br>119.8<br>119.7<br>121.66 (15)<br>119.87 (15)<br>124.42 (16)<br>117.8<br>123.36 (16) | 1.187 (2)       C8 $-$ H8         1.394 (3)       C9 $-$ C10         0.9500       C9 $-$ H9         1.390 (3)       C10 $-$ C11         0.9500       C10 $-$ H10         1.388 (3)       C11 $-$ C12         0.9500       C12 $-$ H10         1.388 (2)       C12 $-$ C13         0.9500       C12 $-$ H12         1.400 (2)       106.0 (15)         106.0 (15)       C7 $-$ C8 $-$ H8         118.37 (13)       C9 $-$ C8 $-$ H8         120.93 (16)       O3 $-$ C9 $-$ C10         19.5       C8 $-$ C9 $-$ C10         120.21 (18)       O3 $-$ C9 $-$ H9         119.9       C8 $-$ C9 $-$ H9         119.9       C10 $-$ C9         120.3       C11 $-$ C10 $-$ C11         120.3       C11 $-$ C10 $-$ C10         119.8       C11 $-$ C10 $-$ H10         119.8       C12 $-$ C11 $-$ C10         119.8       C12 $-$ C11 $-$ C10         120.50 (16)       C12 $-$ C11 $-$ C10         120.50 (16)       C12 $-$ C11 $-$ H11         19.8       C10 $-$ C11 $-$ H11         19.87 (15)       C13 $-$ C12 $-$ H12 |

## Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1-C6 ring.

| <i>D</i> —H··· <i>A</i> | D—H      | H…A      | D····A      | <i>D</i> —H··· <i>A</i> |
|-------------------------|----------|----------|-------------|-------------------------|
| 01—H1A…O2 <sup>i</sup>  | 0.87 (3) | 1.95 (3) | 2.8026 (19) | 170 (2)                 |

#### supporting information $C12 - H12 \cdots O1^{ii}$ 0.95 2.53 3.427 (2) 157 С9—Н9…Сдіі 1.00 2.97 3.747 (2) 135 C10—H10····*Cg*<sup>iii</sup> 1.00 2.80 3.6561 (18) 144

Symmetry codes: (i) -*x*+1, *y*-1/2, -*z*; (ii) *x*-1, *y*, *z*; (iii) -*x*+2, *y*-1/2, -*z*+1.