metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­{5-[(pyridin-2-yl­methyl­­idene)amino]benzene-1,3-di­carboxyl­ato-κ2N,N′}nickel(II) tetra­hydrate

aCollege of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China, and bLangfang Health Vocational College, Langfang 065001, People's Republic of China
*Correspondence e-mail: xieyabo@bjut.edu.cn

(Received 6 April 2012; accepted 15 June 2012; online 23 June 2012)

The title structure, [Ni(C14H8N2O4)(H2O)4]·4H2O, contains a mononuclear NiII complex formed by a chelating bidentate Schiff base and by four Ni-bonded water mol­ecules. The NiII atom is in a distorted octa­hedral coordination by two N atoms in a cis disposition [Ni—N = 2.0753 (16) and 2.1048 (16) Å] and by four water O atoms [Ni—O = 2.0500 (15)–2.0822 (15) Å]. The crystal structure is completed by four further non-coordinating water mol­ecules and all constituents are linked in a three-dimensional manner by an extensive system of 16 O—H⋯O hydrogen bonds.

Related literature

For related coordination compounds, see: Buffin et al. (2004[Buffin, B. P., Squattrito, P. J. & Ojewole, A. O. (2004). Inorg. Chem. Commun. 7, 14-17.]); Datta et al. (2005[Datta, A., Dey, D. K., Hwang, W. S., Matsushita, T. & Rosair, G. (2005). J. Chem. Res. 8, 502-504.]); Jiang et al. (2007[Jiang, C. F., Liang, F. P., Li, Y., Wang, X. J., Chen, Z. L. & Bian, H. D. (2007). J. Mol. Struct. 842, 109-116.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C14H8N2O4)(H2O)4]·4H2O

  • Mr = 471.06

  • Monoclinic, P n

  • a = 10.998 (2) Å

  • b = 7.4536 (15) Å

  • c = 12.271 (3) Å

  • β = 95.86 (3)°

  • V = 1000.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 153 K

  • 0.28 × 0.25 × 0.23 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.76, Tmax = 0.79

  • 4844 measured reflections

  • 3243 independent reflections

  • 3186 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.044

  • S = 1.00

  • 3243 reflections

  • 326 parameters

  • 18 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1482 Friedel pairs>

  • Flack parameter: 0.012 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O8W 0.84 (1) 1.88 (1) 2.715 (3) 176 (3)
O1W—H1WB⋯O12i 0.85 (1) 1.89 (1) 2.739 (2) 177 (3)
O2W—H2WA⋯O12ii 0.85 (1) 1.83 (1) 2.6630 (18) 170 (2)
O2W—H2WB⋯O14iii 0.84 (1) 1.89 (1) 2.719 (2) 170 (2)
O3W—H3WA⋯O13iii 0.84 (1) 1.89 (1) 2.733 (2) 178 (3)
O3W—H3WB⋯O6W 0.85 (1) 1.95 (1) 2.798 (3) 176 (3)
O4W—H4WA⋯O7Wiv 0.85 (1) 1.96 (1) 2.751 (2) 156 (2)
O4W—H4WB⋯O5Wv 0.84 (1) 1.99 (1) 2.808 (2) 168 (3)
O5W—H5WB⋯O13 0.84 (1) 1.98 (1) 2.801 (2) 166 (3)
O5W—H5WA⋯O11vi 0.84 (1) 1.96 (1) 2.789 (2) 167 (3)
O7W—H7WB⋯O13vii 0.85 (1) 1.97 (1) 2.797 (3) 165 (4)
O7W—H7WA⋯O11 0.85 (1) 1.85 (1) 2.685 (2) 167 (3)
O6W—H6WB⋯O2Wiv 0.86 (1) 2.42 (4) 3.157 (2) 145 (6)
O6W—H6WA⋯O7Wiv 0.86 (1) 1.94 (2) 2.769 (3) 160 (4)
O8W—H8WB⋯O14i 0.84 (1) 2.08 (3) 2.750 (2) 137 (3)
O8W—H8WA⋯O5W 0.85 (1) 2.02 (1) 2.856 (3) 171 (4)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) x-1, y, z; (iv) x, y-1, z; (v) [x-{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (vi) [x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (vii) [x-{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases with carboxylic groups derived from pyridine 2-carboxaldehyde and amino carboxylic acids are a kind of multifunctional ligand having several potential coordination sites involving N and carboxylate oxygen atoms. The structural chemistry of the coordination compounds of Schiff bases involving some amino benzoic acids and amino acids have been studied (Buffin et al., 2004; Datta et al., 2005; Jiang et al., 2007). However, that of 5-(pyridin-2-ylmethyleneamino)isophthalic acid created by condensation of pyridine 2-carboxaldehyde and 5-aminoisophthalic acid has not been reported. Herein, we describe the synthesis and structural characterization of a new nickel complex coordinated by 5-(pyridin-2-ylmethyleneamino)isophthalic acid. The structure is built up from a neutral mononuclear complex [Ni(C14H8N2O4)(H2O)4] and from four uncoordinated water molecules. Each Ni(II) ion is six-coordinated by two N atoms of the Schiff base ligand and four O atoms from four water molecules, forming a slightly distorted octahedral coordination geometry. The ligand adopts N,N'-bidentate coordination mode with two N atoms chelating Ni(II) in cis-configuration. In the complex, the two Ni—N bond lengths differ modestly, with Ni—N (pyridine) = 2.0753 (16) Å and Ni—N (azomethine) = 2.1048 (16) Å. Likewise, the four Ni—O bonds vary little, from 2.0500 (15) to 2.0822 (15) Å. The eight independent water molecules form 16 different 16 O—H···O hydrogen bonds with O···O distances between 2.6630 (18) Å and 3.157 (2) Å (Table 1). They link the constituents into a three-dimensional supramolecular structure. Nine of these hydrogen bonds are accepted by carboxyl oxygen atoms, while seven are accepted by the water molecules (with one exception by non-coordinating water molecules, cf. Table 1).

Related literature top

For related coordination compounds, see: Buffin et al. (2004); Datta et al. (2005); Jiang et al. (2007).

Experimental top

The title complex was prepared by slowly adding 1 ml of H2O solution of 5-(pyridin-2-ylmethyleneamino)isophthalic acid (0.1 mmol, 27.1 mg) to 6 ml of a solution of Ni(NO3)2 (0.1 mmol, 18.2 mg) in MeOH/H2O (V:V = 2:1) at room temperature with stirring. The pH value of the solution was adjusted to 7 by addition of aqueous NaOH. The resulting solution was slowly evaporated at room temperature over several days until green single crystals suitable for X-ray diffraction were obtained.

Refinement top

All C-bound H atoms were placed geometrically and treated as riding with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). The water H atoms were located in a difference Fourier map and refined in x,y,z and Uiso(H) using an distance restraint of O—H = 0.85 (1) Å.

Structure description top

Schiff bases with carboxylic groups derived from pyridine 2-carboxaldehyde and amino carboxylic acids are a kind of multifunctional ligand having several potential coordination sites involving N and carboxylate oxygen atoms. The structural chemistry of the coordination compounds of Schiff bases involving some amino benzoic acids and amino acids have been studied (Buffin et al., 2004; Datta et al., 2005; Jiang et al., 2007). However, that of 5-(pyridin-2-ylmethyleneamino)isophthalic acid created by condensation of pyridine 2-carboxaldehyde and 5-aminoisophthalic acid has not been reported. Herein, we describe the synthesis and structural characterization of a new nickel complex coordinated by 5-(pyridin-2-ylmethyleneamino)isophthalic acid. The structure is built up from a neutral mononuclear complex [Ni(C14H8N2O4)(H2O)4] and from four uncoordinated water molecules. Each Ni(II) ion is six-coordinated by two N atoms of the Schiff base ligand and four O atoms from four water molecules, forming a slightly distorted octahedral coordination geometry. The ligand adopts N,N'-bidentate coordination mode with two N atoms chelating Ni(II) in cis-configuration. In the complex, the two Ni—N bond lengths differ modestly, with Ni—N (pyridine) = 2.0753 (16) Å and Ni—N (azomethine) = 2.1048 (16) Å. Likewise, the four Ni—O bonds vary little, from 2.0500 (15) to 2.0822 (15) Å. The eight independent water molecules form 16 different 16 O—H···O hydrogen bonds with O···O distances between 2.6630 (18) Å and 3.157 (2) Å (Table 1). They link the constituents into a three-dimensional supramolecular structure. Nine of these hydrogen bonds are accepted by carboxyl oxygen atoms, while seven are accepted by the water molecules (with one exception by non-coordinating water molecules, cf. Table 1).

For related coordination compounds, see: Buffin et al. (2004); Datta et al. (2005); Jiang et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level for non-hydrogen atoms, hydrogen atoms are shown as small circles of arbitrary radius.
Tetraaqua{5-[(pyridin-2-ylmethylidene)amino]benzene-1,3-dicarboxylato- κ2N,N'}nickel(II) tetrahydrate top
Crystal data top
[Ni(C14H8N2O4)(H2O)4]·4H2OF(000) = 492
Mr = 471.06Dx = 1.563 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 4687 reflections
a = 10.998 (2) Åθ = 2.7–28.3°
b = 7.4536 (15) ŵ = 1.03 mm1
c = 12.271 (3) ÅT = 153 K
β = 95.86 (3)°Block, green
V = 1000.7 (3) Å30.28 × 0.25 × 0.23 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3243 independent reflections
Radiation source: fine-focus sealed tube3186 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
π and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1213
Tmin = 0.76, Tmax = 0.79k = 85
4844 measured reflectionsl = 1413
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.044 w = 1/[σ2(Fo2) + (0.P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
3243 reflectionsΔρmax = 0.17 e Å3
326 parametersΔρmin = 0.32 e Å3
18 restraintsAbsolute structure: Flack (1983), 1482 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.012 (7)
Crystal data top
[Ni(C14H8N2O4)(H2O)4]·4H2OV = 1000.7 (3) Å3
Mr = 471.06Z = 2
Monoclinic, PnMo Kα radiation
a = 10.998 (2) ŵ = 1.03 mm1
b = 7.4536 (15) ÅT = 153 K
c = 12.271 (3) Å0.28 × 0.25 × 0.23 mm
β = 95.86 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3243 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3186 reflections with I > 2σ(I)
Tmin = 0.76, Tmax = 0.79Rint = 0.011
4844 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.018H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.044Δρmax = 0.17 e Å3
S = 1.00Δρmin = 0.32 e Å3
3243 reflectionsAbsolute structure: Flack (1983), 1482 Friedel pairs
326 parametersAbsolute structure parameter: 0.012 (7)
18 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.37023 (2)0.06687 (3)0.25107 (2)0.02312 (6)
O110.59391 (13)0.4492 (2)0.60907 (11)0.0365 (3)
O120.79525 (13)0.44664 (17)0.65146 (10)0.0312 (3)
O130.99057 (13)0.0971 (2)0.23435 (11)0.0368 (3)
O141.06809 (13)0.2502 (2)0.37992 (11)0.0437 (4)
N10.33191 (14)0.1330 (2)0.08687 (12)0.0262 (3)
N20.53004 (14)0.2062 (2)0.22151 (11)0.0245 (3)
C10.61826 (18)0.3092 (3)0.39979 (14)0.0251 (4)
H10.53810.33450.41790.030*
C20.71820 (17)0.3406 (3)0.47565 (14)0.0235 (4)
C30.83473 (18)0.3022 (3)0.44835 (15)0.0259 (4)
H30.90340.32480.50000.031*
C40.85227 (17)0.2312 (3)0.34669 (14)0.0250 (4)
C50.75203 (17)0.1988 (3)0.27103 (14)0.0265 (4)
H50.76310.14810.20170.032*
C60.63539 (17)0.2408 (2)0.29722 (13)0.0236 (4)
C70.70072 (18)0.4171 (2)0.58770 (15)0.0262 (4)
C80.97978 (17)0.1900 (3)0.31911 (14)0.0288 (4)
C90.22699 (19)0.1125 (3)0.02380 (15)0.0317 (4)
H90.16100.05350.05310.038*
C100.42487 (17)0.2153 (3)0.04433 (14)0.0276 (4)
C110.4170 (2)0.2744 (3)0.06311 (15)0.0365 (5)
H110.48520.32810.09200.044*
C120.3065 (2)0.2531 (3)0.12734 (17)0.0387 (5)
H120.29750.29290.20130.046*
C130.2108 (2)0.1744 (3)0.08316 (15)0.0376 (5)
H130.13390.16200.12530.045*
C140.53287 (18)0.2494 (3)0.12145 (15)0.0298 (4)
H27A0.60380.30280.09730.036*
O1W0.45336 (14)0.1770 (2)0.22189 (11)0.0320 (3)
H1WA0.5141 (17)0.182 (4)0.1854 (19)0.051 (8)*
H1WB0.404 (2)0.260 (3)0.197 (2)0.052 (8)*
O2W0.28859 (13)0.29701 (19)0.30190 (10)0.0287 (3)
H2WA0.282 (2)0.380 (2)0.2549 (15)0.041 (7)*
H2WB0.2170 (12)0.278 (4)0.318 (2)0.040 (7)*
O3W0.21080 (13)0.0759 (2)0.25377 (13)0.0347 (3)
H3WA0.1436 (15)0.021 (3)0.2488 (19)0.045 (7)*
H3WB0.213 (3)0.161 (3)0.2999 (18)0.052 (9)*
O4W0.42066 (14)0.0135 (2)0.41328 (11)0.0354 (3)
H4WA0.426 (2)0.0947 (16)0.4340 (18)0.039 (7)*
H4WB0.404 (3)0.071 (3)0.4687 (15)0.053 (8)*
O5W0.90461 (16)0.2004 (3)0.10994 (13)0.0428 (4)
H5WA0.960 (2)0.278 (4)0.121 (3)0.072 (11)*
H5WB0.923 (3)0.118 (3)0.1558 (17)0.056 (8)*
O6W0.2147 (2)0.3434 (3)0.41405 (17)0.0606 (5)
H6WA0.2869 (17)0.353 (6)0.448 (3)0.099 (13)*
H6WB0.208 (7)0.455 (3)0.400 (7)0.24 (3)*
O7W0.43501 (19)0.7089 (3)0.54059 (15)0.0513 (5)
H7WA0.481 (2)0.617 (3)0.554 (2)0.064 (9)*
H7WB0.440 (4)0.779 (4)0.596 (2)0.097 (13)*
O8W0.6440 (2)0.2071 (5)0.09886 (15)0.1086 (11)
H8WA0.7214 (10)0.215 (5)0.107 (3)0.098 (12)*
H8WB0.638 (3)0.166 (5)0.0353 (14)0.088 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01730 (11)0.03003 (11)0.02190 (9)0.00037 (11)0.00138 (7)0.00049 (11)
O110.0299 (8)0.0466 (9)0.0337 (7)0.0084 (7)0.0070 (6)0.0074 (7)
O120.0304 (8)0.0353 (8)0.0270 (6)0.0010 (6)0.0011 (6)0.0065 (6)
O130.0244 (8)0.0506 (9)0.0361 (7)0.0039 (7)0.0062 (6)0.0093 (7)
O140.0179 (7)0.0810 (12)0.0321 (7)0.0026 (7)0.0019 (6)0.0121 (7)
N10.0212 (8)0.0314 (9)0.0253 (7)0.0028 (7)0.0011 (6)0.0035 (7)
N20.0182 (8)0.0319 (9)0.0229 (7)0.0009 (7)0.0000 (6)0.0014 (7)
C10.0198 (9)0.0295 (10)0.0264 (8)0.0006 (8)0.0039 (7)0.0011 (8)
C20.0226 (10)0.0261 (10)0.0219 (8)0.0010 (8)0.0019 (7)0.0015 (7)
C30.0204 (10)0.0306 (11)0.0261 (9)0.0008 (8)0.0001 (8)0.0014 (8)
C40.0194 (9)0.0310 (10)0.0247 (8)0.0003 (8)0.0034 (7)0.0007 (7)
C50.0215 (10)0.0356 (10)0.0226 (8)0.0001 (8)0.0032 (7)0.0012 (8)
C60.0189 (10)0.0288 (9)0.0225 (8)0.0017 (7)0.0001 (7)0.0009 (7)
C70.0261 (11)0.0250 (9)0.0278 (9)0.0033 (8)0.0043 (7)0.0002 (7)
C80.0219 (10)0.0388 (11)0.0264 (9)0.0023 (8)0.0051 (7)0.0026 (8)
C90.0253 (10)0.0376 (11)0.0309 (9)0.0000 (9)0.0028 (8)0.0037 (9)
C100.0231 (10)0.0347 (11)0.0250 (8)0.0037 (8)0.0029 (7)0.0020 (8)
C110.0359 (12)0.0491 (13)0.0248 (9)0.0052 (10)0.0043 (8)0.0009 (9)
C120.0434 (14)0.0479 (14)0.0228 (9)0.0077 (11)0.0059 (9)0.0006 (9)
C130.0358 (12)0.0424 (12)0.0316 (10)0.0039 (10)0.0108 (8)0.0069 (9)
C140.0222 (10)0.0422 (12)0.0254 (9)0.0029 (8)0.0037 (7)0.0021 (8)
O1W0.0236 (8)0.0363 (8)0.0361 (7)0.0018 (7)0.0035 (6)0.0063 (6)
O2W0.0253 (8)0.0324 (8)0.0290 (7)0.0004 (6)0.0058 (6)0.0038 (6)
O3W0.0210 (8)0.0361 (8)0.0475 (8)0.0001 (6)0.0065 (7)0.0005 (7)
O4W0.0477 (9)0.0341 (8)0.0247 (7)0.0011 (8)0.0043 (6)0.0034 (7)
O5W0.0378 (10)0.0533 (11)0.0367 (8)0.0026 (9)0.0010 (7)0.0056 (8)
O6W0.0602 (13)0.0528 (11)0.0698 (11)0.0011 (10)0.0114 (10)0.0038 (10)
O7W0.0583 (13)0.0500 (11)0.0451 (10)0.0174 (10)0.0023 (9)0.0078 (9)
O8W0.0349 (12)0.256 (4)0.0353 (10)0.0051 (16)0.0066 (8)0.0276 (14)
Geometric parameters (Å, º) top
Ni1—O4W2.0500 (15)C9—H90.9500
Ni1—O3W2.0542 (15)C10—C111.384 (3)
Ni1—O2W2.0621 (14)C10—C141.463 (3)
Ni1—N12.0753 (16)C11—C121.389 (3)
Ni1—O1W2.0822 (15)C11—H110.9500
Ni1—N22.1048 (16)C12—C131.364 (3)
O11—C71.253 (2)C12—H120.9500
O12—C71.255 (2)C13—H130.9500
O13—C81.265 (2)C14—H27A0.9500
O14—C81.247 (2)O1W—H1WA0.842 (10)
N1—C91.331 (2)O1W—H1WB0.853 (10)
N1—C101.343 (3)O2W—H2WA0.846 (10)
N2—C141.273 (2)O2W—H2WB0.843 (10)
N2—C61.433 (2)O3W—H3WA0.842 (10)
C1—C21.386 (3)O3W—H3WB0.850 (10)
C1—C61.389 (2)O4W—H4WA0.846 (10)
C1—H10.9500O4W—H4WB0.837 (10)
C2—C31.387 (3)O5W—H5WA0.841 (10)
C2—C71.519 (3)O5W—H5WB0.844 (10)
C3—C41.387 (3)O6W—H6WA0.862 (10)
C3—H30.9500O6W—H6WB0.855 (10)
C4—C51.388 (3)O7W—H7WA0.853 (10)
C4—C81.508 (3)O7W—H7WB0.850 (10)
C5—C61.390 (3)O8W—H8WA0.849 (10)
C5—H50.9500O8W—H8WB0.835 (10)
C9—C131.385 (3)
O4W—Ni1—O3W91.75 (7)O11—C7—C2117.99 (16)
O4W—Ni1—O2W87.18 (6)O12—C7—C2117.19 (17)
O3W—Ni1—O2W91.56 (6)O14—C8—O13123.82 (17)
O4W—Ni1—N1175.40 (7)O14—C8—C4118.55 (16)
O3W—Ni1—N192.85 (7)O13—C8—C4117.63 (16)
O2W—Ni1—N192.55 (6)N1—C9—C13122.2 (2)
O4W—Ni1—O1W85.27 (6)N1—C9—H9118.9
O3W—Ni1—O1W86.63 (6)C13—C9—H9118.9
O2W—Ni1—O1W172.17 (5)N1—C10—C11122.65 (17)
N1—Ni1—O1W95.14 (6)N1—C10—C14115.33 (15)
O4W—Ni1—N296.62 (6)C11—C10—C14121.90 (18)
O3W—Ni1—N2170.98 (6)C10—C11—C12118.0 (2)
O2W—Ni1—N292.22 (6)C10—C11—H11121.0
N1—Ni1—N278.80 (7)C12—C11—H11121.0
O1W—Ni1—N290.69 (6)C13—C12—C11119.31 (19)
C9—N1—C10118.40 (16)C13—C12—H12120.3
C9—N1—Ni1127.97 (14)C11—C12—H12120.3
C10—N1—Ni1113.51 (12)C12—C13—C9119.36 (19)
C14—N2—C6118.84 (16)C12—C13—H13120.3
C14—N2—Ni1113.22 (12)C9—C13—H13120.3
C6—N2—Ni1127.68 (11)N2—C14—C10118.80 (17)
C2—C1—C6119.95 (17)N2—C14—H27A120.6
C2—C1—H1120.0C10—C14—H27A120.6
C6—C1—H1120.0Ni1—O1W—H1WA120.9 (19)
C1—C2—C3119.46 (16)Ni1—O1W—H1WB114.8 (19)
C1—C2—C7120.43 (17)H1WA—O1W—H1WB107 (3)
C3—C2—C7120.11 (16)Ni1—O2W—H2WA114.6 (16)
C4—C3—C2120.86 (17)Ni1—O2W—H2WB112.4 (18)
C4—C3—H3119.6H2WA—O2W—H2WB105 (2)
C2—C3—H3119.6Ni1—O3W—H3WA119.3 (19)
C3—C4—C5119.62 (17)Ni1—O3W—H3WB115.6 (19)
C3—C4—C8119.86 (17)H3WA—O3W—H3WB112 (3)
C5—C4—C8120.52 (16)Ni1—O4W—H4WA118.7 (16)
C4—C5—C6119.66 (16)Ni1—O4W—H4WB129.1 (19)
C4—C5—H5120.2H4WA—O4W—H4WB105 (2)
C6—C5—H5120.2H5WA—O5W—H5WB106 (3)
C1—C6—C5120.42 (17)H6WA—O6W—H6WB94 (6)
C1—C6—N2118.58 (16)H7WA—O7W—H7WB111 (3)
C5—C6—N2120.93 (15)H8WA—O8W—H8WB97 (3)
O11—C7—O12124.81 (17)
O3W—Ni1—N1—C911.52 (18)C14—N2—C6—C1137.78 (19)
O2W—Ni1—N1—C980.16 (18)Ni1—N2—C6—C148.5 (2)
O1W—Ni1—N1—C998.39 (18)C14—N2—C6—C545.3 (3)
N2—Ni1—N1—C9171.92 (19)Ni1—N2—C6—C5128.36 (16)
O3W—Ni1—N1—C10172.54 (14)C1—C2—C7—O110.5 (3)
O2W—Ni1—N1—C1095.77 (14)C3—C2—C7—O11179.73 (19)
O1W—Ni1—N1—C1085.67 (14)C1—C2—C7—O12178.20 (17)
N2—Ni1—N1—C104.02 (13)C3—C2—C7—O121.6 (3)
O4W—Ni1—N2—C14175.05 (15)C3—C4—C8—O1412.9 (3)
O2W—Ni1—N2—C1497.54 (15)C5—C4—C8—O14167.08 (18)
N1—Ni1—N2—C145.37 (14)C3—C4—C8—O13167.79 (18)
O1W—Ni1—N2—C1489.73 (15)C5—C4—C8—O1312.3 (3)
O4W—Ni1—N2—C61.06 (16)C10—N1—C9—C130.5 (3)
O2W—Ni1—N2—C688.47 (15)Ni1—N1—C9—C13175.25 (16)
N1—Ni1—N2—C6179.37 (16)C9—N1—C10—C112.0 (3)
O1W—Ni1—N2—C684.26 (15)Ni1—N1—C10—C11178.38 (15)
C6—C1—C2—C30.4 (3)C9—N1—C10—C14174.02 (18)
C6—C1—C2—C7179.43 (17)Ni1—N1—C10—C142.3 (2)
C1—C2—C3—C40.6 (3)N1—C10—C11—C122.5 (3)
C7—C2—C3—C4179.55 (17)C14—C10—C11—C12173.3 (2)
C2—C3—C4—C50.2 (3)C10—C11—C12—C130.5 (3)
C2—C3—C4—C8179.80 (19)C11—C12—C13—C91.9 (3)
C3—C4—C5—C61.2 (3)N1—C9—C13—C122.5 (3)
C8—C4—C5—C6178.80 (17)C6—N2—C14—C10179.54 (17)
C2—C1—C6—C51.8 (3)Ni1—N2—C14—C105.9 (2)
C2—C1—C6—N2178.69 (16)N1—C10—C14—N22.5 (3)
C4—C5—C6—C12.2 (3)C11—C10—C14—N2173.6 (2)
C4—C5—C6—N2179.01 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O8W0.84 (1)1.88 (1)2.715 (3)176 (3)
O1W—H1WB···O12i0.85 (1)1.89 (1)2.739 (2)177 (3)
O2W—H2WA···O12ii0.85 (1)1.83 (1)2.6630 (18)170 (2)
O2W—H2WB···O14iii0.84 (1)1.89 (1)2.719 (2)170 (2)
O3W—H3WA···O13iii0.84 (1)1.89 (1)2.733 (2)178 (3)
O3W—H3WB···O6W0.85 (1)1.95 (1)2.798 (3)176 (3)
O4W—H4WA···O7Wiv0.85 (1)1.96 (1)2.751 (2)156 (2)
O4W—H4WB···O5Wv0.84 (1)1.99 (1)2.808 (2)168 (3)
O5W—H5WB···O130.84 (1)1.98 (1)2.801 (2)166 (3)
O5W—H5WA···O11vi0.84 (1)1.96 (1)2.789 (2)167 (3)
O7W—H7WB···O13vii0.85 (1)1.97 (1)2.797 (3)165 (4)
O7W—H7WA···O110.85 (1)1.85 (1)2.685 (2)167 (3)
O6W—H6WB···O2Wiv0.86 (1)2.42 (4)3.157 (2)145 (6)
O6W—H6WA···O7Wiv0.86 (1)1.94 (2)2.769 (3)160 (4)
O8W—H8WB···O14i0.84 (1)2.08 (3)2.750 (2)137 (3)
O8W—H8WA···O5W0.85 (1)2.02 (1)2.856 (3)171 (4)
Symmetry codes: (i) x1/2, y, z1/2; (ii) x1/2, y+1, z1/2; (iii) x1, y, z; (iv) x, y1, z; (v) x1/2, y, z+1/2; (vi) x+1/2, y, z1/2; (vii) x1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C14H8N2O4)(H2O)4]·4H2O
Mr471.06
Crystal system, space groupMonoclinic, Pn
Temperature (K)153
a, b, c (Å)10.998 (2), 7.4536 (15), 12.271 (3)
β (°) 95.86 (3)
V3)1000.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.03
Crystal size (mm)0.28 × 0.25 × 0.23
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.76, 0.79
No. of measured, independent and
observed [I > 2σ(I)] reflections
4844, 3243, 3186
Rint0.011
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.044, 1.00
No. of reflections3243
No. of parameters326
No. of restraints18
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.32
Absolute structureFlack (1983), 1482 Friedel pairs
Absolute structure parameter0.012 (7)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O8W0.842 (10)1.875 (11)2.715 (3)176 (3)
O1W—H1WB···O12i0.853 (10)1.887 (10)2.739 (2)177 (3)
O2W—H2WA···O12ii0.846 (10)1.826 (11)2.6630 (18)170 (2)
O2W—H2WB···O14iii0.843 (10)1.886 (11)2.719 (2)170 (2)
O3W—H3WA···O13iii0.842 (10)1.891 (10)2.733 (2)178 (3)
O3W—H3WB···O6W0.850 (10)1.950 (11)2.798 (3)176 (3)
O4W—H4WA···O7Wiv0.846 (10)1.959 (13)2.751 (2)156 (2)
O4W—H4WB···O5Wv0.837 (10)1.985 (12)2.808 (2)168 (3)
O5W—H5WB···O130.844 (10)1.976 (12)2.801 (2)166 (3)
O5W—H5WA···O11vi0.841 (10)1.964 (13)2.789 (2)167 (3)
O7W—H7WB···O13vii0.850 (10)1.968 (14)2.797 (3)165 (4)
O7W—H7WA···O110.853 (10)1.847 (12)2.685 (2)167 (3)
O6W—H6WB···O2Wiv0.855 (10)2.42 (4)3.157 (2)145 (6)
O6W—H6WA···O7Wiv0.862 (10)1.942 (17)2.769 (3)160 (4)
O8W—H8WB···O14i0.835 (10)2.08 (3)2.750 (2)137 (3)
O8W—H8WA···O5W0.849 (10)2.015 (12)2.856 (3)171 (4)
Symmetry codes: (i) x1/2, y, z1/2; (ii) x1/2, y+1, z1/2; (iii) x1, y, z; (iv) x, y1, z; (v) x1/2, y, z+1/2; (vi) x+1/2, y, z1/2; (vii) x1/2, y+1, z+1/2.
 

Acknowledgements

This work was supported by the Ninth Technology Fund for Postgraduates of Beijing University of Technology (ykj-2011-5116), the National Natural Science Foundation of China (No. 21075114) and the Special Environmental Protection Fund for Public Welfare Projects (201009015).

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuffin, B. P., Squattrito, P. J. & Ojewole, A. O. (2004). Inorg. Chem. Commun. 7, 14–17.  Web of Science CSD CrossRef CAS Google Scholar
First citationDatta, A., Dey, D. K., Hwang, W. S., Matsushita, T. & Rosair, G. (2005). J. Chem. Res. 8, 502–504.  CrossRef Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJiang, C. F., Liang, F. P., Li, Y., Wang, X. J., Chen, Z. L. & Bian, H. D. (2007). J. Mol. Struct. 842, 109–116.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds