

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1'-Methyl-4'-(4-methylphenyl)dispiro-[indane-2,3'-pyrrolidine-2',3"-indoline]-1,2"-dione

A. M. Moustafa,^a[‡] Adel S. Girgis,^b S. M. Shalaby^a and Edward R. T. Tiekink^c*

^aSolid State Department, Physics Division, National Research Centre, Dokki, Giza, Egypt, ^bPesticide Chemistry Department, National Research Centre, Dokki, Giza, Egypt, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: edward.tiekink@gmail.com

Received 12 June 2012; accepted 20 June 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.062; wR factor = 0.154; data-to-parameter ratio = 17.0.

In the title molecule, $C_{27}H_{24}N_2O_2$, the pyrrolidin-2-one ring is almost planar (r.m.s. deviation = 0.003 Å), the pyrrolidine ring has an envelope conformation (the N atom is the flap atom) and the cyclopentanone ring is twisted about the $C_q - C_m$ bond (q = quaternary and m = methylene). The ketone O atoms are directed to opposite sides of the molecule. Supramolecular chains along the *a* axis are formed in the crystal packing mediated by $N-H \cdots N$ and $C-H \cdots O$ interactions. These are connected into layers in the *ab* plane *via* $C-H \cdots \pi$ interactions.

Related literature

For the biological activity of spiropyrrolidinyl-oxindolyl analogues, see: James & Williams (1972); Cui et al. (1996a,b); Palmisano et al. (1996); Garcia Prado et al. (2007); Girgis (2009b); Girgis et al. (2012). For related structures, see: Moustafa et al. (2008); Li et al. (2008). For the synthesis, see: Girgis et al. (2009a). For conformational analysis, see: Cremer & Pople (1975).

‡ Additional correspondence author, e-mail: aishamoustafa@yahoo.com.

Experimental

Crystal data

β

$C_{27}H_{24}N_2O_2$	$\gamma = 77.046 \ (2)^{\circ}$
$M_r = 408.48$	V = 1056.17 (7) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 6.2414 (2) Å	Mo $K\alpha$ radiation
b = 11.3954 (5) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 15.5563 (7) Å	T = 293 K
$\alpha = 78.386 \ (2)^{\circ}$	$0.25 \times 0.08 \times 0.05$
$\beta = 87.165 \ (2)^{\circ}$	

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing 1995) $T_{\min} = 0.852, T_{\max} = 0.991$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.062$ $wR(F^2) = 0.154$ S = 1.014833 reflections 285 parameters 1 restraint

$R_{\rm int} = 0.081$ H atoms treated by a mixture of independent and constrained

mm

refinement $\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

12225 measured reflections

4833 independent reflections

2335 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C13-C18 and C21-C26 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1N \cdots N2^{i}$ $C9 - H9B \cdots O1^{ii}$ $C27 - H27B \cdots O2^{i}$ $C24 - H24 \cdots Cg1^{iii}$ $C19 - H19B \cdots Cg2^{iv}$	0.86 (1) 0.97 0.97 0.93 0.96	2.28 (1) 2.45 2.56 2.78 2.97	3.098 (3) 3.241 (2) 3.385 (2) 3.620 (3) 3.761 (4)	160 (2) 138 143 150 140

Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z; (iii) -x + 1, -y, -z + 2; (iv) x, y - 1, z.

Data collection: COLLECT (Hooft, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2073).

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358. Cui, C. B., Kakeya, H. & Osada, H. (1996a). Tetrahedron, 52, 12651-12666. Cui, C. B., Kakeya, H. & Osada, H. (1996b). J. Antibiot. 49, 832-835. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Garcia Prado, E., Garcia Gimenez, M. D., De la Puerta Vázquez, R., Espartero Sánchez, J. L. & Sáenz Rodriguez, M. T. (2007). Phytomedicine, 14, 280-284. Girgis, A. S. (2009a). Eur. J. Med. Chem. 44, 91-100.

- Girgis, A. S. (2009b). Eur. J. Med. Chem. 44, 1257-1264.
- Girgis, A. S., Stawinski, J., Ismail, N. S. M. & Farag, H. (2012). Eur. J. Med. Chem. 47, 312–322.
- Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- James, M. N. G. & Williams, G. J. B. (1972). Can. J. Chem. 50, 2407-2412.
- Li, M., Yang, W.-L., Wen, L.-B. & Li, F.-Q. (2008). Eur. J. Org. Chem. pp. 2751–2758.
- Moustafa, A. M., Dinnebier, R. E., Nasser, S. T. & Jansen, M. (2008). Cryst. Res. Technol. 43, 205–213.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Palmisano, G., Annunziata, R., Papeo, G. & Sisti, M. (1996). Tetrahedron Asymmetry, 7, 1–4.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2012). E68, o2197–o2198 [https://doi.org/10.1107/S1600536812028012] 1'-Methyl-4'-(4-methylphenyl)dispiro[indane-2,3'-pyrrolidine-2',3''indoline]-1,2''-dione

A. M. Moustafa, Adel S. Girgis, S. M. Shalaby and Edward R. T. Tiekink

S1. Comment

Many spiropyrrolidinyl-oxindolyl analogues have been isolated from natural sources and identified as promising bioactive agents, e.g. spirotryprostatine A and spirotryprostatine B were found to be inhibitors of mammalian cell cycle at G2/M phase, from the secondary metabolites of Aspergillus fugimatus (Cui et al., 1996a; Cui et al., 1996b). Elacomine (James & Williams, 1972) was isolated from *Eleagnus commutata*, and horsfiline (Palmisano et al., 1996), from Horsfieldia superba, a small Malaysian tree, extracts of which have found use in indigenous medicine. Mitraphylline was isolated from Uncaria tomentosa (cat's claw) and identified as an anti-tumour agent against human brain cancer cell lines, neuroblastoma SKN-BE(2) and malignant glioma GAMG (Garcia Prado et al., 2007). One of the driving forces for initiating this work was our previous observations that compounds with alkaloid heterocyclic system skeletons, such as dispiro[1H-indene-2,3'-pyrrolidine-2',3''-[3H]indole]-1,2''(1''H)-diones and dispiro[3H-indole-3,2'-pyrrolidine-3',3''piperidine]-2(1H),4"-diones, revealed promising anti-tumour properties against SK-MEL-2 (melanoma) cell line (Girgis, 2009a), and colon (HCT-116), breast (T-47D), leukemia [HL-60 (TB), MOLT-4, RPMI-8226] and prostate (PC-3) cell line cancers (Girgis, 2009b). Additionally, the analogue reported herein revealed mild anti-tumour properties against HCT116 (colon), HELA (cervical), HEPG2 (liver) and MCF7 (breast) human tumor cell lines (IC_{50} values = 33.81, 41.10, 23.89, 42.23 μ M, respectively), compared to that of the standard drug Doxorubicin (IC₅₀ = 6.86, 7.71, 7.36, 5.46 μ M, respectively), utilizing the standard Sulfo-Rhodamine-B (SRB) method (Girgis et al., 2012). With this background in mind, and in continuation of related structure studies (Moustafa et al., 2008), herein we describe the crystal and molecular structure of the title compound, 2,3-dihydro-1'-methyl-4'-(4-methylphenyl)-dispiro-[1H-indene-2,3"pyrrolidine-2', 3''-[3H]indole]-1, 2''(1''H)- dione, (I).

In (I), Fig. 1, the pyrrolidin-2-one ring is planar (r.m.s. deviation = 0.003 Å), the pyrrolidine ring has an envelope conformation where the N2 atom is the flap atom, and the cyclopentanone ring is twisted about the C11–C27 bond (Cremer & Pople, 1975). The ketone-O atoms are directed to opposite sides of the molecule. The overall conformation of the (I) matches that of the isoindole-1,3-dione derivative (Li *et al.*, 2008) with the greatest difference being found in the dihedral angle between the 2,3-dihydroisoindol-1-one and tolyl ring in (I), *i.e.* 23.97 (11)°, compared to 48.63 (7)° for the dihedral angle between the isoindole-1,3-dione and tolyl rings in the literature structure.

In the crystal packing, supramolecular chains along the *a* axis are formed by N—H…N hydrogen bonds complemented by C—H…O interactions with both carbonyl-O atoms participating in these contacts, Fig. 2 and Table 1. The chains are connected into supramolecular layers *via* C—H… π interactions, Table 1. Layers stack along the *c* axis without specific intermolecular interactions between them, Fig. 3.

S2. Experimental

The compound was prepared in accord with the literature procedure (Girgis *et al.*, 2009*a*). A mixture of 2(E)-2,3-dihydro-2-[(4-methylphenyl)methylene]-1*H*-inden-1-one 1 (1.17 g, 5 mmol), isatin 2 (0.81 g, 5.5 mmol) and sarcosine 3 (0.49 g, 5.5 mmol) in absolute ethanol (25 ml) was boiled under reflux. The separated solid was collected and recrystallized from *n*-butanol by slow evaporation affording the title compound as colourless crystals, *M*.pt. 481–483 K. Yield: 80%.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.93 to 0.98 Å, $U_{iso}(H) = 1.2-1.5U_{eq}(C)$] and were included in the refinement in the riding model approximation. The N-bound H atom was refined with N—H = 0.86±0.01 Å, and with $U_{iso}(H) = 1.2U_{eq}(N)$.

Figure 1

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

Figure 2

A view of the linear supramolecular chain propagated down the *a* axis *via* N—H…N hydrogen bonds (blue dashed lines) and C—H…O interactions (orange dashed lines) in the crystal structure of (I).

Figure 3

A view in projection down the *a* axis of the unit contents of (I). The N—H···N, C—H···O and C—H··· π interactions are shown as blue, orange and purple dashed lines, respectively.

1'-Methyl-4'-(4-methylphenyl)dispiro[indane-2,3'-pyrrolidine-2',3''- indoline]-1,2''-dione

Z = 2

F(000) = 432

 $\theta = 3.0-27.5^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$

Block, colourless

 $0.25 \times 0.08 \times 0.05 \text{ mm}$

T = 293 K

 $D_{\rm x} = 1.284 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 12225 reflections

Crystal data

 $C_{27}H_{24}N_2O_2$ $M_r = 408.48$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 6.2414 (2) Å b = 11.3954 (5) Å c = 15.5563 (7) Å a = 78.386 (2)° $\beta = 87.165$ (2)° $\gamma = 77.046$ (2)° V = 1056.17 (7) Å³

Data collection

Nonius KappaCCD	$T_{\min} = 0.852, T_{\max} = 0.991$
diffractometer	12225 measured reflections
Radiation source: fine-focus sealed tube	4833 independent reflections
Horizonally mounted graphite crystal	2335 reflections with $I > 2\sigma(I)$
monochromator	$R_{\rm int} = 0.081$
Detector resolution: 9 pixels mm ⁻¹	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 3.0^{\circ}$
$\varphi \& \omega$ scans	$h = -8 \rightarrow 7$
Absorption correction: multi-scan	$k = -11 \rightarrow 14$
(SORTAV; Blessing 1995)	$l = -15 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.062$	Hydrogen site location: inferred from
$wR(F^2) = 0.154$	neighbouring sites
<i>S</i> = 1.01	H atoms treated by a mixture of independent
4833 reflections	and constrained refinement
285 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0631P)^2 + 0.0079P]$
1 restraint	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.6791 (2)	0.04076 (16)	0.60805 (11)	0.0457 (5)	
O2	-0.0672 (2)	0.20742 (16)	0.77463 (11)	0.0496 (5)	

N1	0.6771 (3)	0.24335 (18)	0.60219 (12)	0.0393 (5)
H1N	0.8160 (17)	0.240 (2)	0.5962 (15)	0.047*
N2	0.1836 (3)	0.16036 (17)	0.58965 (11)	0.0343 (5)
C1	0.5853 (3)	0.1437 (2)	0.61737 (14)	0.0351 (6)
C2	0.5274 (3)	0.3484 (2)	0.61858 (14)	0.0363 (6)
C3	0.5576 (4)	0.4665 (2)	0.60611 (16)	0.0481 (7)
H3	0.6932	0.4843	0.5882	0.058*
C4	0.3809 (4)	0.5584(2)	0.62086 (16)	0.0530(7)
H4	0.3977	0.6389	0.6130	0.064*
C5	0.1796 (4)	0.5311 (2)	0.64715 (16)	0.0511 (7)
Н5	0.0621	0.5937	0.6565	0.061*
C6	0.1508(4)	0.4119 (2)	0.65968 (16)	0.0441 (6)
H6	0.0150	0 3944	0.6774	0.053*
C7	0.3261(3)	0.3190 (2)	0.64565(14)	0.0340 (6)
C8	0.3261(3) 0.3426(3)	0.1840(2)	0.64811(14)	0.0310(0)
C9	0.2032(3)	0.1010(2) 0.0270(2)	0.61042(14)	0.0325(0) 0.0381(6)
НОА	0.3381	-0.0154	0.5865	0.046*
HOR	0.0793	0.0047	0.5876	0.046*
C10	0.0755	-0.0047	0.3370 0.71083 (14)	0.040
U10	0.2052 (5)	0.0030 (2)	0.71085 (14)	0.0352 (0)
C11	0.0507 0.3042(3)	0.0121 0.1001 (2)	0.7294 0.73840 (14)	0.042
C12	0.3042(3)	0.1001(2) 0.2070(2)	0.73840(14) 0.40617(15)	0.0320(3)
U12	0.2139 (4)	0.2079 (2)	0.49017 (15)	0.0470(7)
П12А 1112D	0.2007	0.2931	0.4600	0.070*
П12D	0.1037	0.1902	0.4029	0.070*
HI2C	0.35/1	0.1096	0.4///	0.070^{*}
C13	0.3025 (3)	-0.1357(2)	0.74969 (15)	0.0368 (6)
C14	0.5212 (3)	-0.1917 (2)	0.73573 (16)	0.0425 (6)
H14	0.6127	-0.1465	0.7016	0.051*
C15	0.6024 (4)	-0.3142 (2)	0.7/248 (17)	0.0515 (7)
H15	0.7496	-0.3489	0.7639	0.062*
C16	0.4717 (4)	-0.3865 (2)	0.82152 (17)	0.0529 (7)
C17	0.2557 (4)	-0.3311 (2)	0.83404 (17)	0.0548 (7)
H17	0.1634	-0.3771	0.8667	0.066*
C18	0.1730 (4)	-0.2087(2)	0.79924 (16)	0.0471 (7)
H18	0.0264	-0.1743	0.8093	0.057*
C19	0.5612 (5)	-0.5205 (3)	0.8587 (2)	0.0880 (11)
H19A	0.6731	-0.5539	0.8203	0.132*
H19B	0.4444	-0.5639	0.8640	0.132*
H19C	0.6229	-0.5290	0.9155	0.132*
C20	0.1271 (3)	0.1721 (2)	0.79323 (15)	0.0368 (6)
C21	0.2297 (4)	0.1875 (2)	0.87198 (15)	0.0395 (6)
C22	0.1345 (4)	0.2491 (3)	0.93741 (17)	0.0552 (7)
H22	-0.0138	0.2875	0.9357	0.066*
C23	0.2674 (5)	0.2515 (3)	1.00543 (18)	0.0648 (8)
H23	0.2083	0.2927	1.0500	0.078*
C24	0.4867 (5)	0.1933 (3)	1.00763 (18)	0.0597 (8)
H24	0.5738	0.1965	1.0536	0.072*
C25	0.5791 (4)	0.1306 (2)	0.94330 (16)	0.0495 (7)

supporting information

H25	0.7268	0.0909	0.9459	0.059*
C26	0.4486 (3)	0.1274 (2)	0.87431 (14)	0.0359 (6)
C27	0.5096 (3)	0.0624 (2)	0.79916 (14)	0.0395 (6)
H27A	0.5459	-0.0258	0.8200	0.047*
H27B	0.6354	0.0871	0.7677	0.047*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0351 (9)	0.0427 (11)	0.0610 (12)	-0.0061 (8)	0.0061 (7)	-0.0184 (9)
O2	0.0313 (9)	0.0638 (12)	0.0546 (11)	-0.0040 (8)	0.0022 (7)	-0.0210 (9)
N1	0.0286 (10)	0.0458 (14)	0.0456 (12)	-0.0113 (10)	0.0011 (9)	-0.0106 (10)
N2	0.0328 (10)	0.0362 (12)	0.0346 (12)	-0.0074 (8)	-0.0043 (8)	-0.0077 (9)
C1	0.0329 (12)	0.0411 (16)	0.0336 (14)	-0.0103 (12)	-0.0009 (10)	-0.0098 (12)
C2	0.0377 (13)	0.0376 (15)	0.0346 (14)	-0.0091 (11)	-0.0036 (10)	-0.0078 (11)
C3	0.0484 (15)	0.0461 (18)	0.0523 (17)	-0.0180 (13)	-0.0077 (12)	-0.0054 (13)
C4	0.0685 (18)	0.0400 (17)	0.0524 (18)	-0.0164 (14)	-0.0126 (13)	-0.0054 (14)
C5	0.0603 (17)	0.0402 (18)	0.0508 (17)	-0.0013 (13)	-0.0068 (13)	-0.0132 (14)
C6	0.0415 (14)	0.0424 (17)	0.0482 (16)	-0.0053 (12)	-0.0008 (11)	-0.0125 (13)
C7	0.0349 (12)	0.0340 (15)	0.0332 (14)	-0.0064 (10)	-0.0031 (10)	-0.0077 (11)
C8	0.0268 (11)	0.0358 (14)	0.0363 (14)	-0.0081 (9)	-0.0015 (9)	-0.0100 (11)
C9	0.0325 (12)	0.0441 (16)	0.0410 (15)	-0.0103 (10)	-0.0031 (10)	-0.0132 (12)
C10	0.0276 (11)	0.0386 (15)	0.0408 (15)	-0.0086 (10)	0.0007 (9)	-0.0095 (11)
C11	0.0303 (11)	0.0361 (14)	0.0309 (13)	-0.0065 (10)	0.0008 (9)	-0.0109 (11)
C12	0.0536 (15)	0.0507 (17)	0.0370 (15)	-0.0110 (12)	-0.0052 (11)	-0.0085 (12)
C13	0.0389 (13)	0.0361 (15)	0.0378 (14)	-0.0104 (11)	-0.0020 (10)	-0.0101 (12)
C14	0.0408 (14)	0.0408 (16)	0.0463 (16)	-0.0063 (11)	0.0001 (11)	-0.0123 (13)
C15	0.0477 (15)	0.0485 (18)	0.0543 (18)	0.0036 (13)	-0.0028 (12)	-0.0161 (14)
C16	0.0678 (18)	0.0447 (18)	0.0440 (16)	-0.0070 (14)	-0.0060 (13)	-0.0077 (14)
C17	0.0659 (18)	0.0479 (19)	0.0518 (18)	-0.0228 (14)	0.0019 (13)	-0.0011 (14)
C18	0.0455 (14)	0.0460 (17)	0.0498 (16)	-0.0120 (12)	-0.0008 (11)	-0.0067 (13)
C19	0.109 (3)	0.048 (2)	0.091 (3)	-0.0015 (18)	-0.0049 (19)	0.0051 (19)
C20	0.0344 (13)	0.0390 (15)	0.0372 (14)	-0.0102 (10)	0.0032 (10)	-0.0066 (11)
C21	0.0463 (14)	0.0419 (16)	0.0330 (14)	-0.0139 (11)	0.0025 (11)	-0.0097 (12)
C22	0.0619 (16)	0.059 (2)	0.0473 (17)	-0.0111 (14)	0.0055 (13)	-0.0205 (15)
C23	0.085 (2)	0.074 (2)	0.0436 (18)	-0.0241 (17)	0.0074 (15)	-0.0248 (16)
C24	0.084 (2)	0.066 (2)	0.0372 (17)	-0.0302 (17)	-0.0091 (14)	-0.0109 (15)
C25	0.0588 (16)	0.0476 (17)	0.0435 (17)	-0.0183 (13)	-0.0117 (13)	-0.0017 (14)
C26	0.0443 (14)	0.0365 (15)	0.0290 (13)	-0.0151 (11)	-0.0003 (10)	-0.0041 (11)
C27	0.0351 (12)	0.0436 (16)	0.0400 (15)	-0.0082 (10)	-0.0037 (10)	-0.0083 (12)

Geometric parameters (Å, °)

01—C1	1.222 (3)	C12—H12B	0.9600	
O2—C20	1.219 (2)	C12—H12C	0.9600	
N1—C1	1.357 (3)	C13—C18	1.386 (3)	
N1-C2	1.403 (3)	C13—C14	1.397 (3)	
N1—H1N	0.860 (9)	C14—C15	1.387 (3)	

supporting information

N2—C12	1.465 (3)	C14—H14	0.9300
N2—C9	1.467 (3)	C15—C16	1.383 (3)
N2—C8	1.481 (3)	C15—H15	0.9300
C1—C8	1.562 (3)	C16—C17	1.377 (3)
C2—C3	1.375 (3)	C16—C19	1.508 (4)
C2—C7	1.396 (3)	C17—C18	1.380 (3)
C3—C4	1.385 (3)	C17—H17	0.9300
С3—Н3	0.9300	C18—H18	0.9300
C4—C5	1.384 (3)	C19—H19A	0.9600
C4—H4	0.9300	C19—H19B	0.9600
C5—C6	1.383 (3)	С19—Н19С	0.9600
C5—H5	0.9300	C20—C21	1.468 (3)
C6—C7	1.384 (3)	$C_{21} - C_{26}$	1.383 (3)
С6—Н6	0.9300	$C_{21} - C_{22}$	1.387 (3)
C7—C8	1 511 (3)	C^{22} C^{23}	1.385(4)
C8-C11	1.573(3)	C22_H22	0.9300
C9-C10	1.575(3) 1.530(3)	C^{22} C^{24}	1.380(4)
	0.9700	C23_H23	0.9300
C9H9B	0.9700	$C_{23} = 1123$	1.375(4)
C_{10} C_{13}	1 500 (3)	$C_{24} = C_{23}$	0.0300
$C_{10} = C_{13}$	1.509(3) 1.582(3)	C_{24} C_{124} C_{25} C_{26}	1.300(3)
C10_U10	0.0800	$C_{25} = C_{20}$	0.0300
C_{10} C_{11} C_{20}	0.9600	C25—H25	1.406(3)
$C_{11} = C_{20}$	1.551(5)	$C_{20} = C_{27}$	1.490 (3)
C12 U12A	1.559 (5)	$C_2/-H_2/A$	0.9700
C12—H12A	0.9600	C27—H27B	0.9700
C1—N1—C2	111.53 (18)	N2—C12—H12C	109.5
C1—N1—H1N	124.0 (16)	H12A—C12—H12C	109.5
C2—N1—H1N	122.8 (16)	H12B—C12—H12C	109.5
C12—N2—C9	113.17 (18)	C18—C13—C14	117.0 (2)
C12—N2—C8	114.51 (16)	C18—C13—C10	120.33 (19)
C9—N2—C8	105.06 (15)	C14—C13—C10	122.6 (2)
O1—C1—N1	125.0 (2)	C15—C14—C13	120.4 (2)
O1—C1—C8	126.6 (2)	C15—C14—H14	119.8
N1—C1—C8	108.4 (2)	C13—C14—H14	119.8
C3—C2—C7	122.1 (2)	C16—C15—C14	122.2 (2)
C3—C2—N1	128.0 (2)	C16—C15—H15	118.9
C7—C2—N1	109.8 (2)	C14—C15—H15	118.9
C2-C3-C4	118.3 (2)	C17—C16—C15	117.1 (2)
С2—С3—Н3	120.9	C17—C16—C19	121.5 (3)
C4—C3—H3	120.9	C15—C16—C19	121.4(3)
C5-C4-C3	120.4 (3)	C16 - C17 - C18	121.5(2)
C5—C4—H4	119.8	C16—C17—H17	119.3
C3—C4—H4	119.8	C18—C17—H17	119.3
C6—C5—C4	120.9 (2)	C17-C18-C13	121.8 (2)
C6—C5—H5	119.6	C17—C18—H18	119.1
C4—C5—H5	119.6	C13—C18—H18	119.1
C5—C6—C7	119.4 (2)	C16—C19—H19A	109 5
	***** (#/		107.0

С5—С6—Н6	120.3	C16—C19—H19B	109 5
C7—C6—H6	120.3	H19A—C19—H19B	109.5
C6-C7-C2	118.9 (2)	C16—C19—H19C	109.5
C6-C7-C8	131 74 (19)	H19A—C19—H19C	109.5
$C_{2}-C_{7}-C_{8}$	109.20(19)	H19B—C19—H19C	109.5
N_{2} C_{8} C_{7}	113 33 (16)	02-C20-C21	125.7(2)
$N_2 - C_8 - C_1$	112.07 (18)	02 - C20 - C11	125.7(2) 125.1(2)
C7-C8-C1	101 14 (16)	$C_{21} = C_{20} = C_{11}$	109.17(18)
$N_2 - C_8 - C_{11}$	102.74 (16)	$C_{26} - C_{21} - C_{22}$	122.0(2)
C7—C8—C11	118.25 (18)	$C_{26} = C_{21} = C_{20}$	109.3 (2)
C1 - C8 - C11	109.57 (16)	C_{22} C_{21} C_{20}	128.7(2)
N2-C9-C10	103.46 (18)	C_{23} C_{22} C_{21} C_{21}	117.8 (2)
N2—C9—H9A	111.1	C23—C22—H22	121.1
C10—C9—H9A	111.1	C21—C22—H22	121.1
N2—C9—H9B	111.1	C24—C23—C22	120.5 (3)
C10—C9—H9B	111.1	C24—C23—H23	119.7
Н9А—С9—Н9В	109.0	С22—С23—Н23	119.7
C13—C10—C9	114.3 (2)	C25—C24—C23	121.3 (3)
C13—C10—C11	118.71 (17)	C25—C24—H24	119.3
C9—C10—C11	104.82 (17)	C23—C24—H24	119.3
C13—C10—H10	106.0	C24—C25—C26	119.0 (2)
С9—С10—Н10	106.0	С24—С25—Н25	120.5
C11—C10—H10	106.0	C26—C25—H25	120.5
C20—C11—C27	102.80 (17)	C21—C26—C25	119.3 (2)
C20—C11—C8	110.42 (17)	C21—C26—C27	112.04 (19)
C27—C11—C8	112.89 (16)	C25—C26—C27	128.6 (2)
C20—C11—C10	107.69 (16)	C26—C27—C11	106.05 (17)
C27—C11—C10	119.51 (18)	С26—С27—Н27А	110.5
C8—C11—C10	103.42 (17)	C11—C27—H27A	110.5
N2—C12—H12A	109.5	C26—C27—H27B	110.5
N2—C12—H12B	109.5	С11—С27—Н27В	110.5
H12A—C12—H12B	109.5	H27A—C27—H27B	108.7

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C13-C18 and C21-C26 rings, respectively.

$D - H \cdots A$
) 160 (2)
) 138
) 143
) 150
) 140

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*-1, *y*, *z*; (iii) -*x*+1, -*y*, -*z*+2; (iv) *x*, *y*-1, *z*.