organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1′-Methyl-4′-(4-methyl­phen­yl)di­spiro­[indane-2,3′-pyrrolidine-2′,3′′-indoline]-1,2′′-dione

aSolid State Department, Physics Division, National Research Centre, Dokki, Giza, Egypt, bPesticide Chemistry Department, National Research Centre, Dokki, Giza, Egypt, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 12 June 2012; accepted 20 June 2012; online 23 June 2012)

In the title mol­ecule, C27H24N2O2, the pyrrolidin-2-one ring is almost planar (r.m.s. deviation = 0.003 Å), the pyrrolidine ring has an envelope conformation (the N atom is the flap atom) and the cyclo­penta­none ring is twisted about the Cq—Cm bond (q = quaternary and m = methylene). The ketone O atoms are directed to opposite sides of the mol­ecule. Supra­molecular chains along the a axis are formed in the crystal packing mediated by N—H⋯N and C—H⋯O inter­actions. These are connected into layers in the ab plane via C—H⋯π inter­actions.

Related literature

For the biological activity of spiro­pyrrolidinyl-oxindolyl analogues, see: James & Williams (1972[James, M. N. G. & Williams, G. J. B. (1972). Can. J. Chem. 50, 2407-2412.]); Cui et al. (1996a[Cui, C. B., Kakeya, H. & Osada, H. (1996a). Tetrahedron, 52, 12651-12666.],b[Cui, C. B., Kakeya, H. & Osada, H. (1996b). J. Antibiot. 49, 832-835.]); Palmisano et al. (1996[Palmisano, G., Annunziata, R., Papeo, G. & Sisti, M. (1996). Tetrahedron Asymmetry, 7, 1-4.]); Garcia Prado et al. (2007[Garcia Prado, E., Garcia Gimenez, M. D., De la Puerta Vázquez, R., Espartero Sánchez, J. L. & Sáenz Rodriguez, M. T. (2007). Phytomedicine, 14, 280-284.]); Girgis (2009b[Girgis, A. S. (2009b). Eur. J. Med. Chem. 44, 1257-1264.]); Girgis et al. (2012[Girgis, A. S., Stawinski, J., Ismail, N. S. M. & Farag, H. (2012). Eur. J. Med. Chem. 47, 312-322.]). For related structures, see: Moustafa et al. (2008[Moustafa, A. M., Dinnebier, R. E., Nasser, S. T. & Jansen, M. (2008). Cryst. Res. Technol. 43, 205-213.]); Li et al. (2008[Li, M., Yang, W.-L., Wen, L.-B. & Li, F.-Q. (2008). Eur. J. Org. Chem. pp. 2751-2758.]). For the synthesis, see: Girgis et al. (2009a[Girgis, A. S. (2009a). Eur. J. Med. Chem. 44, 91-100.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C27H24N2O2

  • Mr = 408.48

  • Triclinic, [P \overline 1]

  • a = 6.2414 (2) Å

  • b = 11.3954 (5) Å

  • c = 15.5563 (7) Å

  • α = 78.386 (2)°

  • β = 87.165 (2)°

  • γ = 77.046 (2)°

  • V = 1056.17 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.25 × 0.08 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.852, Tmax = 0.991

  • 12225 measured reflections

  • 4833 independent reflections

  • 2335 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.154

  • S = 1.01

  • 4833 reflections

  • 285 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C13–C18 and C21–C26 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N2i 0.86 (1) 2.28 (1) 3.098 (3) 160 (2)
C9—H9B⋯O1ii 0.97 2.45 3.241 (2) 138
C27—H27B⋯O2i 0.97 2.56 3.385 (2) 143
C24—H24⋯Cg1iii 0.93 2.78 3.620 (3) 150
C19—H19BCg2iv 0.96 2.97 3.761 (4) 140
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) -x+1, -y, -z+2; (iv) x, y-1, z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Many spiropyrrolidinyl-oxindolyl analogues have been isolated from natural sources and identified as promising bio-active agents, e.g. spirotryprostatine A and spirotryprostatine B were found to be inhibitors of mammalian cell cycle at G2/M phase, from the secondary metabolites of Aspergillus fugimatus (Cui et al., 1996a; Cui et al., 1996b). Elacomine (James & Williams, 1972) was isolated from Eleagnus commutata, and horsfiline (Palmisano et al., 1996), from Horsfieldia superba, a small Malaysian tree, extracts of which have found use in indigenous medicine. Mitraphylline was isolated from Uncaria tomentosa (cat's claw) and identified as an anti-tumour agent against human brain cancer cell lines, neuroblastoma SKN-BE(2) and malignant glioma GAMG (Garcia Prado et al., 2007). One of the driving forces for initiating this work was our previous observations that compounds with alkaloid heterocyclic system skeletons, such as dispiro[1H-indene-2,3'-pyrrolidine-2',3''-[3H]indole]-1,2''(1''H)-diones and dispiro[3H-indole-3,2'-pyrrolidine-3',3''-piperidine]-2(1H),4''-diones, revealed promising anti-tumour properties against SK-MEL-2 (melanoma) cell line (Girgis, 2009a), and colon (HCT-116), breast (T-47D), leukemia [HL-60 (TB), MOLT-4, RPMI-8226] and prostate (PC-3) cell line cancers (Girgis, 2009b). Additionally, the analogue reported herein revealed mild anti-tumour properties against HCT116 (colon), HELA (cervical), HEPG2 (liver) and MCF7 (breast) human tumor cell lines (IC50 values = 33.81, 41.10, 23.89, 42.23 µM, respectively), compared to that of the standard drug Doxorubicin (IC50 = 6.86, 7.71, 7.36, 5.46 µM, respectively), utilizing the standard Sulfo-Rhodamine-B (SRB) method (Girgis et al., 2012). With this background in mind, and in continuation of related structure studies (Moustafa et al., 2008), herein we describe the crystal and molecular structure of the title compound, 2,3-dihydro-1'-methyl-4'-(4-methylphenyl)-dispiro-[1H-indene-2,3''-pyrrolidine-2',3''-[3H]indole]-1,2''(1''H)- dione, (I).

In (I), Fig. 1, the pyrrolidin-2-one ring is planar (r.m.s. deviation = 0.003 Å), the pyrrolidine ring has an envelope conformation where the N2 atom is the flap atom, and the cyclopentanone ring is twisted about the C11–C27 bond (Cremer & Pople, 1975). The ketone-O atoms are directed to opposite sides of the molecule. The overall conformation of the (I) matches that of the isoindole-1,3-dione derivative (Li et al., 2008) with the greatest difference being found in the dihedral angle between the 2,3-dihydroisoindol-1-one and tolyl ring in (I), i.e. 23.97 (11)°, compared to 48.63 (7)° for the dihedral angle between the isoindole-1,3-dione and tolyl rings in the literature structure.

In the crystal packing, supramolecular chains along the a axis are formed by N—H···N hydrogen bonds complemented by C—H···O interactions with both carbonyl-O atoms participating in these contacts, Fig. 2 and Table 1. The chains are connected into supramolecular layers via C—H···π interactions, Table 1. Layers stack along the c axis without specific intermolecular interactions between them, Fig. 3.

Related literature top

For the biological activity of spiropyrrolidinyl-oxindolyl analogues, see: James & Williams (1972); Cui et al. (1996a,b); Palmisano et al. (1996); Garcia Prado et al. (2007); Girgis (2009b); Girgis et al. (2012). For related structures, see: Moustafa et al. (2008); Li et al. (2008). For the synthesis, see: Girgis et al. (2009a). For conformational analysis, see: Cremer & Pople (1975).

Experimental top

The compound was prepared in accord with the literature procedure (Girgis et al., 2009a). A mixture of 2(E)-2,3-dihydro-2-[(4-methylphenyl)methylene]-1H-inden-1-one 1 (1.17 g, 5 mmol), isatin 2 (0.81 g, 5.5 mmol) and sarcosine 3 (0.49 g, 5.5 mmol) in absolute ethanol (25 ml) was boiled under reflux. The separated solid was collected and re-crystallized from n-butanol by slow evaporation affording the title compound as colourless crystals, M.pt. 481–483 K. Yield: 80%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.93 to 0.98 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation. The N-bound H atom was refined with N—H = 0.86±0.01 Å, and with Uiso(H) = 1.2Ueq(N).

Structure description top

Many spiropyrrolidinyl-oxindolyl analogues have been isolated from natural sources and identified as promising bio-active agents, e.g. spirotryprostatine A and spirotryprostatine B were found to be inhibitors of mammalian cell cycle at G2/M phase, from the secondary metabolites of Aspergillus fugimatus (Cui et al., 1996a; Cui et al., 1996b). Elacomine (James & Williams, 1972) was isolated from Eleagnus commutata, and horsfiline (Palmisano et al., 1996), from Horsfieldia superba, a small Malaysian tree, extracts of which have found use in indigenous medicine. Mitraphylline was isolated from Uncaria tomentosa (cat's claw) and identified as an anti-tumour agent against human brain cancer cell lines, neuroblastoma SKN-BE(2) and malignant glioma GAMG (Garcia Prado et al., 2007). One of the driving forces for initiating this work was our previous observations that compounds with alkaloid heterocyclic system skeletons, such as dispiro[1H-indene-2,3'-pyrrolidine-2',3''-[3H]indole]-1,2''(1''H)-diones and dispiro[3H-indole-3,2'-pyrrolidine-3',3''-piperidine]-2(1H),4''-diones, revealed promising anti-tumour properties against SK-MEL-2 (melanoma) cell line (Girgis, 2009a), and colon (HCT-116), breast (T-47D), leukemia [HL-60 (TB), MOLT-4, RPMI-8226] and prostate (PC-3) cell line cancers (Girgis, 2009b). Additionally, the analogue reported herein revealed mild anti-tumour properties against HCT116 (colon), HELA (cervical), HEPG2 (liver) and MCF7 (breast) human tumor cell lines (IC50 values = 33.81, 41.10, 23.89, 42.23 µM, respectively), compared to that of the standard drug Doxorubicin (IC50 = 6.86, 7.71, 7.36, 5.46 µM, respectively), utilizing the standard Sulfo-Rhodamine-B (SRB) method (Girgis et al., 2012). With this background in mind, and in continuation of related structure studies (Moustafa et al., 2008), herein we describe the crystal and molecular structure of the title compound, 2,3-dihydro-1'-methyl-4'-(4-methylphenyl)-dispiro-[1H-indene-2,3''-pyrrolidine-2',3''-[3H]indole]-1,2''(1''H)- dione, (I).

In (I), Fig. 1, the pyrrolidin-2-one ring is planar (r.m.s. deviation = 0.003 Å), the pyrrolidine ring has an envelope conformation where the N2 atom is the flap atom, and the cyclopentanone ring is twisted about the C11–C27 bond (Cremer & Pople, 1975). The ketone-O atoms are directed to opposite sides of the molecule. The overall conformation of the (I) matches that of the isoindole-1,3-dione derivative (Li et al., 2008) with the greatest difference being found in the dihedral angle between the 2,3-dihydroisoindol-1-one and tolyl ring in (I), i.e. 23.97 (11)°, compared to 48.63 (7)° for the dihedral angle between the isoindole-1,3-dione and tolyl rings in the literature structure.

In the crystal packing, supramolecular chains along the a axis are formed by N—H···N hydrogen bonds complemented by C—H···O interactions with both carbonyl-O atoms participating in these contacts, Fig. 2 and Table 1. The chains are connected into supramolecular layers via C—H···π interactions, Table 1. Layers stack along the c axis without specific intermolecular interactions between them, Fig. 3.

For the biological activity of spiropyrrolidinyl-oxindolyl analogues, see: James & Williams (1972); Cui et al. (1996a,b); Palmisano et al. (1996); Garcia Prado et al. (2007); Girgis (2009b); Girgis et al. (2012). For related structures, see: Moustafa et al. (2008); Li et al. (2008). For the synthesis, see: Girgis et al. (2009a). For conformational analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view of the linear supramolecular chain propagated down the a axis via N—H···N hydrogen bonds (blue dashed lines) and C—H···O interactions (orange dashed lines) in the crystal structure of (I).
[Figure 3] Fig. 3. A view in projection down the a axis of the unit contents of (I). The N—H···N, C—H···O and C—H···π interactions are shown as blue, orange and purple dashed lines, respectively.
1'-Methyl-4'-(4-methylphenyl)dispiro[indane-2,3'-pyrrolidine-2',3''- indoline]-1,2''-dione top
Crystal data top
C27H24N2O2Z = 2
Mr = 408.48F(000) = 432
Triclinic, P1Dx = 1.284 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2414 (2) ÅCell parameters from 12225 reflections
b = 11.3954 (5) Åθ = 3.0–27.5°
c = 15.5563 (7) ŵ = 0.08 mm1
α = 78.386 (2)°T = 293 K
β = 87.165 (2)°Block, colourless
γ = 77.046 (2)°0.25 × 0.08 × 0.05 mm
V = 1056.17 (7) Å3
Data collection top
Nonius KappaCCD
diffractometer
4833 independent reflections
Radiation source: fine-focus sealed tube2335 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.081
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.0°
φ & ω scansh = 87
Absorption correction: multi-scan
(SORTAV; Blessing 1995)
k = 1114
Tmin = 0.852, Tmax = 0.991l = 1520
12225 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0631P)2 + 0.0079P]
where P = (Fo2 + 2Fc2)/3
4833 reflections(Δ/σ)max < 0.001
285 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.23 e Å3
Crystal data top
C27H24N2O2γ = 77.046 (2)°
Mr = 408.48V = 1056.17 (7) Å3
Triclinic, P1Z = 2
a = 6.2414 (2) ÅMo Kα radiation
b = 11.3954 (5) ŵ = 0.08 mm1
c = 15.5563 (7) ÅT = 293 K
α = 78.386 (2)°0.25 × 0.08 × 0.05 mm
β = 87.165 (2)°
Data collection top
Nonius KappaCCD
diffractometer
4833 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing 1995)
2335 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.991Rint = 0.081
12225 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0621 restraint
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.21 e Å3
4833 reflectionsΔρmin = 0.23 e Å3
285 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6791 (2)0.04076 (16)0.60805 (11)0.0457 (5)
O20.0672 (2)0.20742 (16)0.77463 (11)0.0496 (5)
N10.6771 (3)0.24335 (18)0.60219 (12)0.0393 (5)
H1N0.8160 (17)0.240 (2)0.5962 (15)0.047*
N20.1836 (3)0.16036 (17)0.58965 (11)0.0343 (5)
C10.5853 (3)0.1437 (2)0.61737 (14)0.0351 (6)
C20.5274 (3)0.3484 (2)0.61858 (14)0.0363 (6)
C30.5576 (4)0.4665 (2)0.60611 (16)0.0481 (7)
H30.69320.48430.58820.058*
C40.3809 (4)0.5584 (2)0.62086 (16)0.0530 (7)
H40.39770.63890.61300.064*
C50.1796 (4)0.5311 (2)0.64715 (16)0.0511 (7)
H50.06210.59370.65650.061*
C60.1508 (4)0.4119 (2)0.65968 (16)0.0441 (6)
H60.01500.39440.67740.053*
C70.3261 (3)0.3190 (2)0.64565 (14)0.0340 (6)
C80.3426 (3)0.1840 (2)0.64811 (14)0.0323 (6)
C90.2032 (3)0.0270 (2)0.61042 (14)0.0381 (6)
H9A0.33810.01540.58650.046*
H9B0.07930.00470.58760.046*
C100.2052 (3)0.0030 (2)0.71083 (14)0.0352 (6)
H100.05070.01210.72940.042*
C110.3042 (3)0.1001 (2)0.73840 (14)0.0320 (5)
C120.2139 (4)0.2079 (2)0.49617 (15)0.0470 (7)
H12A0.20070.29510.48660.070*
H12B0.10370.19020.46290.070*
H12C0.35710.16960.47770.070*
C130.3025 (3)0.1357 (2)0.74969 (15)0.0368 (6)
C140.5212 (3)0.1917 (2)0.73573 (16)0.0425 (6)
H140.61270.14650.70160.051*
C150.6024 (4)0.3142 (2)0.77248 (17)0.0515 (7)
H150.74960.34890.76390.062*
C160.4717 (4)0.3865 (2)0.82152 (17)0.0529 (7)
C170.2557 (4)0.3311 (2)0.83404 (17)0.0548 (7)
H170.16340.37710.86670.066*
C180.1730 (4)0.2087 (2)0.79924 (16)0.0471 (7)
H180.02640.17430.80930.057*
C190.5612 (5)0.5205 (3)0.8587 (2)0.0880 (11)
H19A0.67310.55390.82030.132*
H19B0.44440.56390.86400.132*
H19C0.62290.52900.91550.132*
C200.1271 (3)0.1721 (2)0.79323 (15)0.0368 (6)
C210.2297 (4)0.1875 (2)0.87198 (15)0.0395 (6)
C220.1345 (4)0.2491 (3)0.93741 (17)0.0552 (7)
H220.01380.28750.93570.066*
C230.2674 (5)0.2515 (3)1.00543 (18)0.0648 (8)
H230.20830.29271.05000.078*
C240.4867 (5)0.1933 (3)1.00763 (18)0.0597 (8)
H240.57380.19651.05360.072*
C250.5791 (4)0.1306 (2)0.94330 (16)0.0495 (7)
H250.72680.09090.94590.059*
C260.4486 (3)0.1274 (2)0.87431 (14)0.0359 (6)
C270.5096 (3)0.0624 (2)0.79916 (14)0.0395 (6)
H27A0.54590.02580.82000.047*
H27B0.63540.08710.76770.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0351 (9)0.0427 (11)0.0610 (12)0.0061 (8)0.0061 (7)0.0184 (9)
O20.0313 (9)0.0638 (12)0.0546 (11)0.0040 (8)0.0022 (7)0.0210 (9)
N10.0286 (10)0.0458 (14)0.0456 (12)0.0113 (10)0.0011 (9)0.0106 (10)
N20.0328 (10)0.0362 (12)0.0346 (12)0.0074 (8)0.0043 (8)0.0077 (9)
C10.0329 (12)0.0411 (16)0.0336 (14)0.0103 (12)0.0009 (10)0.0098 (12)
C20.0377 (13)0.0376 (15)0.0346 (14)0.0091 (11)0.0036 (10)0.0078 (11)
C30.0484 (15)0.0461 (18)0.0523 (17)0.0180 (13)0.0077 (12)0.0054 (13)
C40.0685 (18)0.0400 (17)0.0524 (18)0.0164 (14)0.0126 (13)0.0054 (14)
C50.0603 (17)0.0402 (18)0.0508 (17)0.0013 (13)0.0068 (13)0.0132 (14)
C60.0415 (14)0.0424 (17)0.0482 (16)0.0053 (12)0.0008 (11)0.0125 (13)
C70.0349 (12)0.0340 (15)0.0332 (14)0.0064 (10)0.0031 (10)0.0077 (11)
C80.0268 (11)0.0358 (14)0.0363 (14)0.0081 (9)0.0015 (9)0.0100 (11)
C90.0325 (12)0.0441 (16)0.0410 (15)0.0103 (10)0.0031 (10)0.0132 (12)
C100.0276 (11)0.0386 (15)0.0408 (15)0.0086 (10)0.0007 (9)0.0095 (11)
C110.0303 (11)0.0361 (14)0.0309 (13)0.0065 (10)0.0008 (9)0.0109 (11)
C120.0536 (15)0.0507 (17)0.0370 (15)0.0110 (12)0.0052 (11)0.0085 (12)
C130.0389 (13)0.0361 (15)0.0378 (14)0.0104 (11)0.0020 (10)0.0101 (12)
C140.0408 (14)0.0408 (16)0.0463 (16)0.0063 (11)0.0001 (11)0.0123 (13)
C150.0477 (15)0.0485 (18)0.0543 (18)0.0036 (13)0.0028 (12)0.0161 (14)
C160.0678 (18)0.0447 (18)0.0440 (16)0.0070 (14)0.0060 (13)0.0077 (14)
C170.0659 (18)0.0479 (19)0.0518 (18)0.0228 (14)0.0019 (13)0.0011 (14)
C180.0455 (14)0.0460 (17)0.0498 (16)0.0120 (12)0.0008 (11)0.0067 (13)
C190.109 (3)0.048 (2)0.091 (3)0.0015 (18)0.0049 (19)0.0051 (19)
C200.0344 (13)0.0390 (15)0.0372 (14)0.0102 (10)0.0032 (10)0.0066 (11)
C210.0463 (14)0.0419 (16)0.0330 (14)0.0139 (11)0.0025 (11)0.0097 (12)
C220.0619 (16)0.059 (2)0.0473 (17)0.0111 (14)0.0055 (13)0.0205 (15)
C230.085 (2)0.074 (2)0.0436 (18)0.0241 (17)0.0074 (15)0.0248 (16)
C240.084 (2)0.066 (2)0.0372 (17)0.0302 (17)0.0091 (14)0.0109 (15)
C250.0588 (16)0.0476 (17)0.0435 (17)0.0183 (13)0.0117 (13)0.0017 (14)
C260.0443 (14)0.0365 (15)0.0290 (13)0.0151 (11)0.0003 (10)0.0041 (11)
C270.0351 (12)0.0436 (16)0.0400 (15)0.0082 (10)0.0037 (10)0.0083 (12)
Geometric parameters (Å, º) top
O1—C11.222 (3)C12—H12B0.9600
O2—C201.219 (2)C12—H12C0.9600
N1—C11.357 (3)C13—C181.386 (3)
N1—C21.403 (3)C13—C141.397 (3)
N1—H1N0.860 (9)C14—C151.387 (3)
N2—C121.465 (3)C14—H140.9300
N2—C91.467 (3)C15—C161.383 (3)
N2—C81.481 (3)C15—H150.9300
C1—C81.562 (3)C16—C171.377 (3)
C2—C31.375 (3)C16—C191.508 (4)
C2—C71.396 (3)C17—C181.380 (3)
C3—C41.385 (3)C17—H170.9300
C3—H30.9300C18—H180.9300
C4—C51.384 (3)C19—H19A0.9600
C4—H40.9300C19—H19B0.9600
C5—C61.383 (3)C19—H19C0.9600
C5—H50.9300C20—C211.468 (3)
C6—C71.384 (3)C21—C261.383 (3)
C6—H60.9300C21—C221.387 (3)
C7—C81.511 (3)C22—C231.385 (4)
C8—C111.573 (3)C22—H220.9300
C9—C101.530 (3)C23—C241.380 (4)
C9—H9A0.9700C23—H230.9300
C9—H9B0.9700C24—C251.375 (4)
C10—C131.509 (3)C24—H240.9300
C10—C111.582 (3)C25—C261.390 (3)
C10—H100.9800C25—H250.9300
C11—C201.551 (3)C26—C271.496 (3)
C11—C271.559 (3)C27—H27A0.9700
C12—H12A0.9600C27—H27B0.9700
C1—N1—C2111.53 (18)N2—C12—H12C109.5
C1—N1—H1N124.0 (16)H12A—C12—H12C109.5
C2—N1—H1N122.8 (16)H12B—C12—H12C109.5
C12—N2—C9113.17 (18)C18—C13—C14117.0 (2)
C12—N2—C8114.51 (16)C18—C13—C10120.33 (19)
C9—N2—C8105.06 (15)C14—C13—C10122.6 (2)
O1—C1—N1125.0 (2)C15—C14—C13120.4 (2)
O1—C1—C8126.6 (2)C15—C14—H14119.8
N1—C1—C8108.4 (2)C13—C14—H14119.8
C3—C2—C7122.1 (2)C16—C15—C14122.2 (2)
C3—C2—N1128.0 (2)C16—C15—H15118.9
C7—C2—N1109.8 (2)C14—C15—H15118.9
C2—C3—C4118.3 (2)C17—C16—C15117.1 (2)
C2—C3—H3120.9C17—C16—C19121.5 (3)
C4—C3—H3120.9C15—C16—C19121.4 (3)
C5—C4—C3120.4 (3)C16—C17—C18121.5 (2)
C5—C4—H4119.8C16—C17—H17119.3
C3—C4—H4119.8C18—C17—H17119.3
C6—C5—C4120.9 (2)C17—C18—C13121.8 (2)
C6—C5—H5119.6C17—C18—H18119.1
C4—C5—H5119.6C13—C18—H18119.1
C5—C6—C7119.4 (2)C16—C19—H19A109.5
C5—C6—H6120.3C16—C19—H19B109.5
C7—C6—H6120.3H19A—C19—H19B109.5
C6—C7—C2118.9 (2)C16—C19—H19C109.5
C6—C7—C8131.74 (19)H19A—C19—H19C109.5
C2—C7—C8109.20 (19)H19B—C19—H19C109.5
N2—C8—C7113.33 (16)O2—C20—C21125.7 (2)
N2—C8—C1112.07 (18)O2—C20—C11125.1 (2)
C7—C8—C1101.14 (16)C21—C20—C11109.17 (18)
N2—C8—C11102.74 (16)C26—C21—C22122.0 (2)
C7—C8—C11118.25 (18)C26—C21—C20109.3 (2)
C1—C8—C11109.57 (16)C22—C21—C20128.7 (2)
N2—C9—C10103.46 (18)C23—C22—C21117.8 (2)
N2—C9—H9A111.1C23—C22—H22121.1
C10—C9—H9A111.1C21—C22—H22121.1
N2—C9—H9B111.1C24—C23—C22120.5 (3)
C10—C9—H9B111.1C24—C23—H23119.7
H9A—C9—H9B109.0C22—C23—H23119.7
C13—C10—C9114.3 (2)C25—C24—C23121.3 (3)
C13—C10—C11118.71 (17)C25—C24—H24119.3
C9—C10—C11104.82 (17)C23—C24—H24119.3
C13—C10—H10106.0C24—C25—C26119.0 (2)
C9—C10—H10106.0C24—C25—H25120.5
C11—C10—H10106.0C26—C25—H25120.5
C20—C11—C27102.80 (17)C21—C26—C25119.3 (2)
C20—C11—C8110.42 (17)C21—C26—C27112.04 (19)
C27—C11—C8112.89 (16)C25—C26—C27128.6 (2)
C20—C11—C10107.69 (16)C26—C27—C11106.05 (17)
C27—C11—C10119.51 (18)C26—C27—H27A110.5
C8—C11—C10103.42 (17)C11—C27—H27A110.5
N2—C12—H12A109.5C26—C27—H27B110.5
N2—C12—H12B109.5C11—C27—H27B110.5
H12A—C12—H12B109.5H27A—C27—H27B108.7
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C13–C18 and C21–C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···N2i0.86 (1)2.28 (1)3.098 (3)160 (2)
C9—H9B···O1ii0.972.453.241 (2)138
C27—H27B···O2i0.972.563.385 (2)143
C24—H24···Cg1iii0.932.783.620 (3)150
C19—H19B···Cg2iv0.962.973.761 (4)140
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y, z+2; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC27H24N2O2
Mr408.48
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.2414 (2), 11.3954 (5), 15.5563 (7)
α, β, γ (°)78.386 (2), 87.165 (2), 77.046 (2)
V3)1056.17 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.08 × 0.05
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing 1995)
Tmin, Tmax0.852, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
12225, 4833, 2335
Rint0.081
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.154, 1.01
No. of reflections4833
No. of parameters285
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.23

Computer programs: COLLECT (Hooft, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C13–C18 and C21–C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N···N2i0.860 (12)2.276 (14)3.098 (3)160 (2)
C9—H9B···O1ii0.972.453.241 (2)138
C27—H27B···O2i0.972.563.385 (2)143
C24—H24···Cg1iii0.932.783.620 (3)150
C19—H19B···Cg2iv0.962.973.761 (4)140
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y, z+2; (iv) x, y1, z.
 

Footnotes

Additional correspondence author, e-mail: aishamoustafa@yahoo.com.

Acknowledgements

We thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCui, C. B., Kakeya, H. & Osada, H. (1996a). Tetrahedron, 52, 12651–12666.  CrossRef CAS Web of Science Google Scholar
First citationCui, C. B., Kakeya, H. & Osada, H. (1996b). J. Antibiot. 49, 832–835.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGarcia Prado, E., Garcia Gimenez, M. D., De la Puerta Vázquez, R., Espartero Sánchez, J. L. & Sáenz Rodriguez, M. T. (2007). Phytomedicine, 14, 280–284.  PubMed CAS Google Scholar
First citationGirgis, A. S. (2009a). Eur. J. Med. Chem. 44, 91–100.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGirgis, A. S. (2009b). Eur. J. Med. Chem. 44, 1257–1264.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGirgis, A. S., Stawinski, J., Ismail, N. S. M. & Farag, H. (2012). Eur. J. Med. Chem. 47, 312–322.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJames, M. N. G. & Williams, G. J. B. (1972). Can. J. Chem. 50, 2407–2412.  CrossRef CAS Web of Science Google Scholar
First citationLi, M., Yang, W.-L., Wen, L.-B. & Li, F.-Q. (2008). Eur. J. Org. Chem. pp. 2751–2758.  Web of Science CrossRef Google Scholar
First citationMoustafa, A. M., Dinnebier, R. E., Nasser, S. T. & Jansen, M. (2008). Cryst. Res. Technol. 43, 205–213.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPalmisano, G., Annunziata, R., Papeo, G. & Sisti, M. (1996). Tetrahedron Asymmetry, 7, 1–4.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds