#### organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

#### Bis{4-[(3,5-dimethyl-1*H*-pyrazol-4-yl)selanyl]-3,5-dimethyl-1*H*-pyrazol-2-ium} chloride monohydrate

# Maksym Seredyuk,<sup>a</sup> Vadim A. Pavlenko,<sup>a</sup>\* Kateryna O. Znovjyak,<sup>a</sup> Elzbieta Gumienna-Kontecka<sup>b</sup> and Larysa Penkova<sup>a</sup>

<sup>a</sup>National Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01033 Kyiv, Ukraine, and <sup>b</sup>Faculty of Chemistry, University of Wroclaw, 14, F. Joliot-Curie Str., 50383, Wroclaw, Poland Correspondence e-mail: pavlenko\_vadim@univ.kiev.ua

Received 11 April 2012; accepted 5 June 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.006 Å; R factor = 0.044; wR factor = 0.107; data-to-parameter ratio = 18.3.

In the title compound,  $2C_{10}H_{15}N_4Se^+\cdot Cl^-\cdot OH^-$ , a singly protonated molecule of the organic selenide participates in hydrogen bonding with neighboring molecules, forming zigzag chains along [001]. The molecule adapts a *cis* bridging mode with a C-Se-C angle of 102.13 (15)°.  $\pi$ - $\pi$  stacking interactions are observed between the closest pyrazole rings of neighboring chains [centroid–centroid distance = 3.888 (1) Å] and hydrogen bonding occurs through bridging chloride anions and hydroxide groups. Additionally, O-H···Cl hydrogen bonds are formed.

#### **Related literature**

For details and applications of related pyrazoles, see: Krämer & Fritsky (2000); Fritsky *et al.* (2004); Kovbasyuk *et al.* (2004); Sachse *et al.* (2008); Penkova *et al.* (20098). For structural studies of related bis(1*H*-pyrazol-4-yl)selenides, see: Seredyuk *et al.* (2010*a*). For structural studies of *d*-metal complexes of bis(3,5-dimethyl-1*H*-pyrazol-4-yl)selenide, see: Seredyuk *et al.* (2007, 2009, 2010*b*).



#### **Experimental**

Crystal data  $2C_{10}H_{15}N_4Se^+\cdot Cl^-\cdot HO^ M_r = 592.90$ Monoclinic, C2/c a = 22.805 (2) Å b = 8.8154 (8) Å c = 16.7462 (15) Å  $\beta = 131.448$  (7)°

 $V = 2523.4 \text{ (5) } \text{\AA}^{3}$  Z = 4Mo K\alpha radiation  $\mu = 3.07 \text{ mm}^{-1}$  T = 100 K $0.25 \times 0.20 \times 0.12 \text{ mm}$ 

### CrossMar

#### Data collection

Bruker SMART APEXII CCD

diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009)  $T_{min} = 0.488, T_{max} = 0.698$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.044$ | H atoms treated by a mixture of                           |
|---------------------------------|-----------------------------------------------------------|
| $wR(F^2) = 0.107$               | independent and constrained                               |
| S = 1.01                        | refinement                                                |
| 2926 reflections                | $\Delta \rho_{\rm max} = 1.15 \text{ e } \text{\AA}^{-3}$ |
| 160 parameters                  | $\Delta \rho_{\rm min} = -0.72 \text{ e} \text{ Å}^{-3}$  |

7656 measured reflections

 $R_{\rm int} = 0.087$ 

2926 independent reflections

2211 reflections with  $I > 2\sigma(I)$ 

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                                                            | D-H                                  | $H \cdot \cdot \cdot A$              | $D \cdots A$                                     | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------------------|--------------------------------------|
| $N1 - H1N1 \cdots O1W$<br>$N4 - H1N4 \cdots Cl1$<br>$O1 - H1O \cdots Cl1^{i}$<br>$N2 - H1N2 \cdots N3^{ii}$ | 0.77<br>0.77 (4)<br>0.74<br>1.03 (5) | 2.01<br>2.42 (5)<br>2.43<br>1.78 (5) | 2.747 (3)<br>3.146 (3)<br>3.166 (4)<br>2.804 (4) | 161<br>160 (5)<br>180<br>177 (4)     |
|                                                                                                             |                                      |                                      |                                                  |                                      |

Symmetry codes: (i)  $x + \frac{1}{2}, y + \frac{1}{2}, z$ ; (ii)  $x, -y + 1, z - \frac{1}{2}$ .

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SIR2004* (Burla *et al.*, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 2009); software used to prepare material for publication: *SHELXL97*.

Financial support from the State Fund for Fundamental Research of Ukraine (grant No. F40.3/041) and the Swedish Institute (Visby Program) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2354).

#### References

- Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2009). APEX2, SAINT and SADABS. Bruker–Nonius BV, Delft, The Netherlands.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Yu. & Dudarenko, N. M. (2004). *Inorg. Chim. Acta*, 346, 111–118.
- Kovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880–881.
- Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505-3510.
- Penkova, L. V., Maciag, A., Rybak-Akimova, E. V., Haukka, M., Pavlenko, V. A., Iskenderov, T. S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2009). *Inorg. Chem.* 48, 6960–6971.
- Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, 5, 800–806.
- Seredyuk, M., Fritsky, I. O., Krämer, R., Kozlowski, H., Haukka, M. & Gütlich, P. (2010a). *Tetrahedron*, **66**, 8772–8777.
- Seredyuk, M., Haukka, M., Fritsky, I. O., Kozłowski, H., Krämer, R., Pavlenko, V. A. & Gütlich, P. (2007). *Dalton Trans.* pp. 3183–3194.
- Seredyuk, M., Haukka, M., Pavlenko, V. A. & Fritsky, I. O. (2009). *Acta Cryst.* E65, m1396.
- Seredyuk, M., Moroz, Y. S., Znovjyak, K. O., Pavlenko, V. A. & Fritsky, I. O. (2010b). Acta Cryst. E66, m363.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2012). E68, o2068 [https://doi.org/10.1107/S1600536812025640]

# Bis{4-[(3,5-dimethyl-1*H*-pyrazol-4-yl)selanyl]-3,5-dimethyl-1*H*-pyrazol-2-ium} chloride monohydrate

## Maksym Seredyuk, Vadim A. Pavlenko, Kateryna O. Znovjyak, Elzbieta Gumienna-Kontecka and Larysa Penkova

#### S1. Comment

Pyrazole-derived ligands are widely used in molecular magnetism, bioinorganic modelling and supramolecular chemistry due to their bridging nature and possibility for easy functionalization (Krämer *et al.*, 2000; Fritsky *et al.*, 2004; Kovbasyuk *et al.*, 2004; Sachse *et al.*, 2008; Penkova *et al.*, 2009). As a part of our synthetic and structural study of bis-(1*H*-pyrazol-4-yl)selenides (Seredyuk *et al.*, 2010*a*) and their complexes with *d*-metals (Seredyuk *et al.*, 2007, 2009; Seredyuk *et al.*, 2010*b*), we report here the molecular and crystal structures of the title compound (Fig. 1).

In the cation of the title compound, a singly protonated molecule of the organic selenide  $(C_{10}H_{15}N_4Se)^+$  participates in hydrogen bonding  $(d(N \cdots N) = 2.804 \ (4)Å)$  with neighbor molecules forming zigzag chains along [0 0 1] (Fig. 2). The molecule adapts a *cis* mode of bridging with the C–Se–C angle of 102.13  $(15)^\circ$ . Between the closest pyrazole rings of the neighbor chains,  $\pi \cdots \pi$ -stacking interaction is observed (centroid-centroid distance is 3.888 (1)Å) and hydrogen bonding through a bridging chloride anion  $(d(N \cdots Cl) = 3.146 \ (3)Å)$  and a hydroxyde group  $(d(Ow \cdots N) = 2.747 \ (3)Å)$ . Additionally, a hydrogen bond Ow–H…Cl 3.166 (4)Å is found.

In the title compounds, the pyrazole rings exhibits C–C, C–N, N–N bond lengths which are normal for the substituted pyrazole molecules and close to those reported for related compounds.

#### **S2. Experimental**

A solution of a batch of bis(3,5-dimethyl-1*H*-pyrazol-4-yl)selenide (Seredyuk *et al.*, 2007)) in aqueous  $HCl_{conc}$  was disposed in a fridge at 277 K for one week. The obtained well formed colourless crystals were filtered off and air dried.  $C_{10}H_{17}ClN_4OSe$  requires: C, 37.11; H, 5.29; N, 17.31. Found: C, 37.65; H, 5.37; N, 17.03.

#### S3. Refinement

The chlorine ion and the oxygen and hydrogen atoms of the hydroxide anion were found to occupy special positions (2-fold axis) with occupancy factors of 0.5. The H atoms from NH and OH were located from the difference Fourier map. The H atoms lined to N2 and N4 nitrogen atoms were refined freely, while hydrogen atoms of OH group and that linked to N1 nitrogen atom were constrained to ride on their parent atom, with  $U_{iso} = 1.5U_{eq}$  (parent atom). The methyl H atoms were positioned geometrically and refined as riding atoms, with C–H = 0.96Å and  $U_{iso} = 1.5U_{eq}$ (C).



#### Figure 1

The title molecule with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines show hydrogen bonds. Symmetry codes: (i) x, 1-y, -1/2+z; (ii) 1/2+x, 1/2+y, z.



#### Figure 2

Zigzag chains of the organic selenide formed due to hydrogen bonding (dashed lines).

Bis{4-[(3,5-dimethyl-1H-pyrazol-4-yl)selanyl]-3,5-dimethyl-1H-pyrazol-2-ium} chloride monohydrate

| Crystal data                               |                                                       |
|--------------------------------------------|-------------------------------------------------------|
| $2C_{10}H_{15}N_4Se^+\cdot Cl^-\cdot HO^-$ | F(000) = 1200                                         |
| $M_r = 592.90$                             | $D_{\rm x} = 1.561 {\rm ~Mg} {\rm ~m}^{-3}$           |
| Monoclinic, $C2/c$                         | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: -C 2yc                        | Cell parameters from 3236 reflections                 |
| a = 22.805 (2)  Å                          | $\theta = 3.3 - 28.3^{\circ}$                         |
| b = 8.8154 (8) Å                           | $\mu = 3.07 \text{ mm}^{-1}$                          |
| c = 16.7462 (15)  Å                        | T = 100  K                                            |
| $\beta = 131.448 \ (7)^{\circ}$            | Block, colourless                                     |
| V = 2523.4 (5) Å <sup>3</sup>              | $0.25 \times 0.20 \times 0.12 \text{ mm}$             |
| Z = 4                                      |                                                       |

Data collection

| Bruker SMART APEXII CCD<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Flat graphite crystal monochromator<br>Detector resolution: 16 pixels mm <sup>-1</sup><br>$\varphi$ - and $\omega$ -scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2009)<br>$T_{\min} = 0.488, T_{\max} = 0.698$ | 7656 measured reflections<br>2926 independent reflections<br>2211 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.087$<br>$\theta_{max} = 28.5^{\circ}, \theta_{min} = 3.3^{\circ}$<br>$h = -30 \rightarrow 30$<br>$k = -11 \rightarrow 9$<br>$l = -21 \rightarrow 21$                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Refinement                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.044$<br>$wR(F^2) = 0.107$<br>S = 1.01<br>2926 reflections<br>160 parameters<br>0 restraints<br>Primary atom site location: structure-invariant<br>direct methods                                                                                   | Secondary atom site location: difference Fourier<br>map<br>Hydrogen site location: inferred from<br>neighbouring sites<br>H atoms treated by a mixture of independent<br>and constrained refinement<br>$w = 1/[\sigma^2(F_o^2) + (0.0538P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} = 0.001$<br>$\Delta\rho_{max} = 1.15$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.72$ e Å <sup>-3</sup> |

#### Special details

**Geometry**. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|      | x            | у            | Ζ           | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|------|--------------|--------------|-------------|-----------------------------|--|
| Se1  | 0.77024 (2)  | 0.12139 (4)  | 0.23905 (3) | 0.01783 (13)                |  |
| Cl1  | 0.5000       | 0.43772 (14) | 0.2500      | 0.0219 (3)                  |  |
| O1   | 1.0000       | 0.5786 (4)   | 0.2500      | 0.0268 (9)                  |  |
| H1O  | 1.0000       | 0.6625       | 0.2500      | 0.040*                      |  |
| N1   | 0.86540 (17) | 0.4303 (3)   | 0.1726 (2)  | 0.0181 (7)                  |  |
| H1N1 | 0.8971       | 0.4766       | 0.1798      | 0.027*                      |  |
| N2   | 0.78857 (17) | 0.4481 (3)   | 0.0854 (2)  | 0.0161 (6)                  |  |
| N3   | 0.73588 (18) | 0.3657 (3)   | 0.4133 (2)  | 0.0198 (7)                  |  |
| N4   | 0.66123 (19) | 0.3412 (4)   | 0.3203 (3)  | 0.0205 (7)                  |  |
| C1   | 0.9500(2)    | 0.2805 (4)   | 0.3390 (3)  | 0.0252 (9)                  |  |
| H1A  | 0.9760       | 0.2174       | 0.3240      | 0.038*                      |  |
| H1B  | 0.9430       | 0.2250       | 0.3815      | 0.038*                      |  |
| H1C  | 0.9811       | 0.3691       | 0.3772      | 0.038*                      |  |
| C2   | 0.8718 (2)   | 0.3275 (4)   | 0.2366 (3)  | 0.0169 (7)                  |  |
| C3   | 0.7966 (2)   | 0.2779 (4)   | 0.1888 (3)  | 0.0151 (7)                  |  |

| C4   | 0.7459 (2) | 0.3561 (4) | 0.0927 (3) | 0.0155 (7)  |
|------|------------|------------|------------|-------------|
| C5   | 0.6585 (2) | 0.3489 (4) | 0.0064 (3) | 0.0240 (9)  |
| H5A  | 0.6349     | 0.4060     | 0.0277     | 0.036*      |
| H5B  | 0.6417     | 0.2451     | -0.0055    | 0.036*      |
| H5C  | 0.6429     | 0.3909     | -0.0581    | 0.036*      |
| C6   | 0.8690 (2) | 0.3080 (5) | 0.4851 (3) | 0.0251 (9)  |
| H6A  | 0.8830     | 0.3557     | 0.5472     | 0.038*      |
| H6B  | 0.8896     | 0.3660     | 0.4600     | 0.038*      |
| H6C  | 0.8902     | 0.2072     | 0.5027     | 0.038*      |
| C7   | 0.7813 (2) | 0.3004 (4) | 0.3993 (3) | 0.0173 (7)  |
| C8   | 0.7356 (2) | 0.2344 (4) | 0.2981 (3) | 0.0160 (7)  |
| C9   | 0.6587 (2) | 0.2626 (4) | 0.2498 (3) | 0.0182 (8)  |
| C10  | 0.5831 (2) | 0.2243 (4) | 0.1410 (3) | 0.0263 (9)  |
| H10A | 0.5455     | 0.1925     | 0.1463     | 0.039*      |
| H10B | 0.5916     | 0.1439     | 0.1111     | 0.039*      |
| H10C | 0.5638     | 0.3122     | 0.0961     | 0.039*      |
| H1N4 | 0.629 (3)  | 0.372 (5)  | 0.319 (4)  | 0.032 (14)* |
| H1N2 | 0.769 (2)  | 0.513 (5)  | 0.021 (4)  | 0.037 (12)* |
|      |            |            |            |             |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$     | $U^{33}$    | $U^{12}$     | $U^{13}$     | U <sup>23</sup> |
|-----|-------------|--------------|-------------|--------------|--------------|-----------------|
| Se1 | 0.0250 (2)  | 0.01211 (19) | 0.0227 (2)  | 0.00254 (15) | 0.01847 (18) | 0.00275 (15)    |
| Cl1 | 0.0164 (6)  | 0.0200 (6)   | 0.0282 (7)  | 0.000        | 0.0143 (6)   | 0.000           |
| 01  | 0.029 (2)   | 0.0157 (18)  | 0.024 (2)   | 0.000        | 0.0128 (19)  | 0.000           |
| N1  | 0.0165 (15) | 0.0195 (15)  | 0.0183 (16) | 0.0001 (12)  | 0.0115 (14)  | 0.0006 (13)     |
| N2  | 0.0172 (15) | 0.0167 (15)  | 0.0171 (16) | -0.0006 (12) | 0.0125 (14)  | 0.0005 (13)     |
| N3  | 0.0199 (15) | 0.0247 (17)  | 0.0175 (16) | 0.0062 (13)  | 0.0135 (14)  | 0.0053 (13)     |
| N4  | 0.0179 (16) | 0.0260 (18)  | 0.0220 (18) | 0.0056 (13)  | 0.0151 (16)  | 0.0079 (14)     |
| C1  | 0.0207 (19) | 0.031 (2)    | 0.022 (2)   | 0.0051 (16)  | 0.0131 (18)  | 0.0058 (17)     |
| C2  | 0.0171 (18) | 0.0192 (17)  | 0.0178 (19) | 0.0003 (14)  | 0.0129 (16)  | -0.0024 (15)    |
| C3  | 0.0181 (18) | 0.0131 (16)  | 0.0177 (19) | 0.0009 (14)  | 0.0134 (16)  | 0.0007 (14)     |
| C4  | 0.0212 (18) | 0.0115 (17)  | 0.0172 (18) | 0.0001 (14)  | 0.0142 (17)  | -0.0010 (13)    |
| C5  | 0.023 (2)   | 0.023 (2)    | 0.022 (2)   | -0.0016 (16) | 0.0137 (18)  | 0.0037 (16)     |
| C6  | 0.023 (2)   | 0.033 (2)    | 0.018 (2)   | 0.0052 (17)  | 0.0126 (18)  | 0.0010 (17)     |
| C7  | 0.0185 (18) | 0.0176 (18)  | 0.0202 (19) | 0.0046 (14)  | 0.0147 (16)  | 0.0070 (15)     |
| C8  | 0.0215 (18) | 0.0144 (17)  | 0.0195 (18) | 0.0054 (14)  | 0.0167 (17)  | 0.0076 (14)     |
| C9  | 0.0216 (18) | 0.0177 (18)  | 0.023 (2)   | 0.0004 (14)  | 0.0178 (18)  | 0.0035 (15)     |
| C10 | 0.021 (2)   | 0.031 (2)    | 0.028 (2)   | -0.0020 (17) | 0.0162 (19)  | 0.0033 (18)     |
|     |             |              |             |              |              |                 |

#### Geometric parameters (Å, °)

| Se1—C8  | 1.904 (4) | C2—C3  | 1.398 (5) |  |
|---------|-----------|--------|-----------|--|
| Se1—C3  | 1.908 (3) | C3—C4  | 1.393 (5) |  |
| 01—H10  | 0.7393    | C4—C5  | 1.500 (5) |  |
| N1—C2   | 1.336 (5) | C5—H5A | 0.9600    |  |
| N1—N2   | 1.356 (4) | C5—H5B | 0.9600    |  |
| N1—H1N1 | 0.7666    | C5—H5C | 0.9600    |  |
|         |           |        |           |  |

| N2—C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.333 (4)          | C6—C7                            | 1.504 (5) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------|-----------|
| N2—H1N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.03 (5)           | С6—Н6А                           | 0.9600    |
| N3—C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.333 (4)          | С6—Н6В                           | 0.9600    |
| N3—N4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.363 (4)          | С6—Н6С                           | 0.9600    |
| N4—C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.338 (5)          | С7—С8                            | 1.400 (5) |
| N4—H1N4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.77 (4)           | С8—С9                            | 1.384 (5) |
| C1—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.498 (5)          | C9—C10                           | 1.499 (5) |
| C1—H1A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9600             | C10—H10A                         | 0.9600    |
| C1—H1B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9600             | C10—H10B                         | 0.9600    |
| C1—H1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.9600             | C10—H10C                         | 0.9600    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.9000             |                                  | 0.9000    |
| C8—Se1—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 102 13 (15)        | C4—C5—H5B                        | 109 5     |
| $C_2 = N_1 = N_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 108.6 (3)          | H5A—C5—H5B                       | 109.5     |
| $C_2 = N_1 = H_1 N_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 130.1              | C4-C5-H5C                        | 109.5     |
| N2—N1—H1N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.3              | H5A-C5-H5C                       | 109.5     |
| C4—N2—N1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1094(3)            | H5B-C5-H5C                       | 109.5     |
| C4—N2—H1N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107.1(3)<br>127(2) | C7 - C6 - H6A                    | 109.5     |
| N1 N2 H1N2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 127(2)<br>124(2)   | C7 = C6 = H6R                    | 109.5     |
| C7 N3 N4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 124(2)<br>1050(3)  | C/-CO-HOB                        | 109.5     |
| $C_{1} = N_{1} = N_{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 103.0(3)           | C7 C6 H6C                        | 109.5     |
| $C_{9} = N_{4} = N_{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 112.4(5)<br>122(4) |                                  | 109.5     |
| $C_{9}$ $N_{4}$ $M_{1}$ $N_{1}$ $N_{4}$ $M_{1}$ $N_{1}$ $N_{1}$ $N_{1}$ $N_{2}$ $N_{1}$ $M_{1}$ $N_{1}$ $N_{2}$ $N_{1}$ $N_{1$ | 132(4)             |                                  | 109.5     |
| $N_{3}$ $N_{4}$ $H_{1}N_{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 113 (4)            | H0D - C0 - H0C                   | 109.3     |
| $C_2 = C_1 = HIA$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 109.5              | $N_3 = C_7 = C_8$                | 110.3(3)  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5              | $N_3 - C_7 - C_6$                | 120.6 (3) |
| HIA—CI—HIB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5              | C8 - C7 - C6                     | 128.9 (3) |
| C2—CI—HIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5              | C9—C8—C7                         | 105.7 (3) |
| HIA—CI—HIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5              | C9—C8—Sel                        | 126.3 (3) |
| H1B—C1—H1C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 109.5              | C7—C8—Sel                        | 127.9 (3) |
| N1—C2—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 108.2 (3)          | N4—C9—C8                         | 106.3 (3) |
| N1—C2—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.4 (3)          | N4—C9—C10                        | 122.1 (3) |
| C3—C2—C1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 130.4 (3)          | C8—C9—C10                        | 131.5 (3) |
| C4—C3—C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 105.8 (3)          | C9—C10—H10A                      | 109.5     |
| C4—C3—Se1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 127.2 (3)          | C9—C10—H10B                      | 109.5     |
| C2—C3—Se1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 126.8 (3)          | H10A—C10—H10B                    | 109.5     |
| N2—C4—C3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 108.0 (3)          | C9—C10—H10C                      | 109.5     |
| N2—C4—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 121.5 (3)          | H10A—C10—H10C                    | 109.5     |
| C3—C4—C5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 130.5 (3)          | H10B—C10—H10C                    | 109.5     |
| C4—C5—H5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 109.5              |                                  |           |
| C2-N1-N2-C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.7(4)            | Se1—C3—C4—C5                     | 4.3 (6)   |
| C7 - N3 - N4 - C9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.4(4)             | N4—N3—C7—C8                      | -0.2(4)   |
| $N_{2} = N_{1} = C_{2} = C_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0(4)             | N4 - N3 - C7 - C6                | 1782(1)   |
| $N_2 = N_1 = C_2 = C_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 178 8 (3)          | $N_{3}$ $C_{7}$ $C_{8}$ $C_{9}$  | -0.1(4)   |
| N1 - C2 - C3 - C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.7(4)             | C6 - C7 - C8 - C9                | -1783(4)  |
| C1 - C2 - C3 - C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1780(4)           | $N_{3}$ $C_{7}$ $C_{8}$ $S_{e1}$ | -1777(2)  |
| N1 - C2 - C3 - Se1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1753(3)            | C6-C7-C8-Se1                     | 41(6)     |
| C1 = C2 = C3 = Sc1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -33(6)             | $C_{3}$ $S_{e1}$ $C_{8}$ $C_{9}$ | 90 0 (3)  |
| C8 = Se1 = C3 = C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -827(3)            | $C_{3}$ Sel $C_{8}$ $C_{7}$      | -830(3)   |
| 00000100-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 04.7 (5)           | 0 $0$ $0$ $0$                    | 05.0 (5)  |

| C8—Se1—C3—C2 | 103.8 (3)  | N3—N4—C9—C8   | -0.5 (4)   |
|--------------|------------|---------------|------------|
| N1—N2—C4—C3  | 1.1 (4)    | N3—N4—C9—C10  | -178.8 (3) |
| N1—N2—C4—C5  | -178.9 (3) | C7—C8—C9—N4   | 0.3 (4)    |
| C2—C3—C4—N2  | -1.1 (4)   | Se1-C8-C9-N4  | 178.0 (3)  |
| Se1—C3—C4—N2 | -175.7 (2) | C7—C8—C9—C10  | 178.5 (4)  |
| C2—C3—C4—C5  | 178.9 (4)  | Se1—C8—C9—C10 | -3.9 (6)   |

#### Hydrogen-bond geometry (Å, °)

| D—H···A                              | <i>D</i> —Н | H···A    | D····A    | <i>D</i> —H··· <i>A</i> |
|--------------------------------------|-------------|----------|-----------|-------------------------|
| N1—H1 <i>N</i> 1…O1                  | 0.77        | 2.01     | 2.747 (3) | 161                     |
| N4—H1 <i>N</i> 4…Cl1                 | 0.77 (4)    | 2.42 (5) | 3.146 (3) | 160 (5)                 |
| O1—H1O····Cl1 <sup>i</sup>           | 0.74        | 2.43     | 3.166 (4) | 180                     |
| N2—H1 <i>N</i> 2····N3 <sup>ii</sup> | 1.03 (5)    | 1.78 (5) | 2.804 (4) | 177 (4)                 |

Symmetry codes: (i) *x*+1/2, *y*+1/2, *z*; (ii) *x*, -*y*+1, *z*-1/2.