metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis(pyridine-2-thiol­ato-κ2N,S)tin(IV): a new polymorph

aBaku State University, Z. Khalilov St 23, Baku AZ-1148, Azerbaijan, bR.E. Alekseev Nizhny Novgorod State Technical University, 24 Minin St, Nizhny Novgorod 603950, Russian Federation, and cX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St, B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: isheydi02@gmail.com

(Received 26 April 2012; accepted 25 May 2012; online 13 June 2012)

The title compound, [SnCl2(C5H4NS)2], is the product of reaction of 2,2′-dipyridyl disulfide with tin tetra­chloride. The SnIV atom adopts a distorted octa­hedral geometry, with the two bidentate pyridine-2-thiol­ate ligands forming two planar four-membered chelate rings. The two Sn—Cl, two Sn—N and two Sn—S bonds are in cis, cis and trans configurations, respectively. The crystal grown from acetonitrile represents a new monoclinic polymorph in space group C2/c with the mol­ecule having twofold rotational symmetry, the SnIV atom lying on the twofold axis. The mol­ecular structure of the monoclinic polymorph is very close to that of the triclinic polymorph studied previously in space group P-1, the mol­ecule occupying a general position [Masaki & Matsunami (1976[Masaki, M. & Matsunami, S. (1976). Bull. Chem. Soc. Jpn, 49, 3274-3279.]). Bull. Chem. Soc. Jpn, 49, 3274–3279; Masaki et al. (1978[Masaki, M., Matsunami, S. & Ueda, H. (1978). Bull. Chem. Soc. Jpn, 51, 3298-3301.]). Bull. Chem. Soc. Jpn, 51, 3298–3301]. Apparently, the formation of the two polymorphs is determined by the different systems of inter­molecular inter­actions. In the crystal of the monoclinic polymorph, mol­ecules are bound into ribbons along the c axis by C—H⋯Cl hydrogen bonds, whereas in the crystal of the triclinic polymorph, mol­ecules form chains along the a axis by attractive S⋯S inter­actions. The crystal studied was a pseudo-merohedral twin; the refined BASF value is 0.221 (1).

Related literature

For metal complexes with 2,2′-dipyridyl dichalcogenides, see: Kadooka et al. (1976a[Kadooka, M. M., Warner, L. G. & Seff, K. (1976a). J. Am. Chem. Soc. 98, 7569-7578.],b[Kadooka, M. M., Warner, L. G. & Seff, K. (1976b). Inorg. Chem. 15, 812-816.]); Cheng et al. (1996[Cheng, Y., Emge, T. J. & Brennan, J. G. (1996). Inorg. Chem. 35, 342-346.]); Kienitz et al. (1996[Kienitz, C. O., Thöne, C. & Jones, P. G. (1996). Inorg. Chem. 35, 3990-3997.]); Bell et al. (2000[Bell, N. A., Gelbrich, T., Hursthouse, M. B., Mark, E., Light, M. E. & Wilson, A. (2000). Polyhedron, 19, 2539-2546.]); Kita et al. (2001[Kita, M., Tamai, H., Ueta, F., Fuyuhiro, A., Yamanari, K., Nakajima, K., Kojima, M., Murata, K. & Yamashita, S. (2001). Inorg. Chim. Acta, 314, 139-146.]); Kedarnath et al. (2009[Kedarnath, G., Jain, V. K., Wadawale, A. & Dey, G. K. (2009). Dalton Trans. 39, 8378-8385.]). For the triclinic polymorph, see: Masaki & Matsunami (1976[Masaki, M. & Matsunami, S. (1976). Bull. Chem. Soc. Jpn, 49, 3274-3279.]); Masaki et al. (1978[Masaki, M., Matsunami, S. & Ueda, H. (1978). Bull. Chem. Soc. Jpn, 51, 3298-3301.]).

[Scheme 1]

Experimental

Crystal data
  • [SnCl2(C5H4NS)2]

  • Mr = 409.93

  • Monoclinic, C 2/c

  • a = 6.3240 (7) Å

  • b = 12.9391 (14) Å

  • c = 16.4240 (18) Å

  • β = 100.922 (2)°

  • V = 1319.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.63 mm−1

  • T = 100 K

  • 0.16 × 0.14 × 0.10 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.678, Tmax = 0.779

  • 6681 measured reflections

  • 1584 independent reflections

  • 1562 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.050

  • S = 1.00

  • 1584 reflections

  • 79 parameters

  • H-atom parameters constrained

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cl1i 0.95 2.80 3.673 (3) 154
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The coordination chemistry of 2,2'-dipyridyl dichalcogenides to metal ions is a topic of current research interest owing to the application of these complexes as potential precursors for the generation of semiconducting materials (Kadooka et al., 1976a, 1976b; Cheng et al., 1996; Kienitz et al., 1996; Bell et al., 2000; Kita et al., 2001; Kedarnath et al., 2009).

This article describes the new monoclinic polymorph of dichlorobis(2-pyridinethiolato)tin(IV), C10H8Cl2N2S2Sn (I), which was obtained by the reaction of 2,2'-dipyridyl disulfide with tin tetrachloride (Fig. 1). The synthesis of the title compound by the reaction of 2,2'-dipyridyl disulfide with tin dichloride and its triclinic polymorph were reported previously (Masaki & Matsunami, 1976; Masaki et al., 1978).

The molecule of I possesses overall intrinsic C2 symmetry. In contrast to the triclinic polymorph (the space group P1, the molecule occupies a common position), this symmetry is realised in the crystal of the monoclinic polymorph (the space group C2/c, the molecule occupies a special position on the twofold axis). The tin atom adopts a distorted octahedral geometry, with the two bidentate 2-pyridinethiolato ligands forming two planar four-membered chelate rings (Fig. 2). The two Sn–Cl, two Sn–N and two Sn–S bonds are in cis-, cis- and trans-configurations, respectively. Generally, the molecular structure of the monoclinic polymorph of I is very close to that of the triclinic polymorph.

Apparently, the formation of the two polymorphs of I is determined by the different systems of intermolecular non-valent interactions. In the crystal of the monoclinic polymorph, the molecules are bound into the ribbons along the c axis by the weak intermolecular C3–H3···Cl1i hydrogen bonds (Fig. 3, Table 1), whereas, in the crystal of the triclinic polymorph, the molecules form the chains along the a axis by the weak attractive intermolecular S···S (3.544 (3)Å) interactions (Fig. 4). Symmetry code: (i) -x+1, -y+1, -z.

Related literature top

For metal complexes with 2,2'-dipyridyl dichalcogenides, see: Kadooka et al. (1976a,b); Cheng et al. (1996); Kienitz et al. (1996); Bell et al. (2000); Kita et al. (2001); Kedarnath et al. (2009). For thetriclinic polymorph, see: Masaki & Matsunami (1976); Masaki et al. (1978).

Experimental top

A solution of SnCl4 (0.13 g, 0.5 mmol) in CH2Cl2 (25 ml) was added to a solution of 2,2'-dipyridyl disulfide (0.11 g, 0.5 mmol) in CH2Cl2 (25 ml) with stirring at room temperature. After 1 h, the powder of complex (C5H4NS)2SnCl6 was separated by filtration. The filtrate was concentrated in vacuo. The solid was re-crystallized from CH3CN to give I as colourless crystals. Yield is 43%. M.p. = 546-548 K. 1H NMR (DMSO-d6, 300 MHz, 302 K): δ = 8.48 (d, 2H, H6, J = 4.4), 7.81 (t, 2H, H4, J = 7.3), 7.62 (d, 2H, H3, J = 7.3), 7.28 (dd, 2H, H5, J = 7.3, J = 4.4). Anal. Calcd. for C10H8Cl2N2S2Sn: C, 29.29; H, 1.97; N, 6.83. Found: C, 29.21; H, 1.92; N, 6.79.

Refinement top

The crystal of I was a pseudo-merohedral twin. The twin matrix is (1 0 0 0 -1 0 -1 0 -1), and BASF is equal to 0.221 (1).

The hydrogen atoms were placed in calculated positions with C–H = 0.95Å and refined in the riding model with fixed isotropic displacement parameters Uiso(H) = 1.2Ueq(C).

Structure description top

The coordination chemistry of 2,2'-dipyridyl dichalcogenides to metal ions is a topic of current research interest owing to the application of these complexes as potential precursors for the generation of semiconducting materials (Kadooka et al., 1976a, 1976b; Cheng et al., 1996; Kienitz et al., 1996; Bell et al., 2000; Kita et al., 2001; Kedarnath et al., 2009).

This article describes the new monoclinic polymorph of dichlorobis(2-pyridinethiolato)tin(IV), C10H8Cl2N2S2Sn (I), which was obtained by the reaction of 2,2'-dipyridyl disulfide with tin tetrachloride (Fig. 1). The synthesis of the title compound by the reaction of 2,2'-dipyridyl disulfide with tin dichloride and its triclinic polymorph were reported previously (Masaki & Matsunami, 1976; Masaki et al., 1978).

The molecule of I possesses overall intrinsic C2 symmetry. In contrast to the triclinic polymorph (the space group P1, the molecule occupies a common position), this symmetry is realised in the crystal of the monoclinic polymorph (the space group C2/c, the molecule occupies a special position on the twofold axis). The tin atom adopts a distorted octahedral geometry, with the two bidentate 2-pyridinethiolato ligands forming two planar four-membered chelate rings (Fig. 2). The two Sn–Cl, two Sn–N and two Sn–S bonds are in cis-, cis- and trans-configurations, respectively. Generally, the molecular structure of the monoclinic polymorph of I is very close to that of the triclinic polymorph.

Apparently, the formation of the two polymorphs of I is determined by the different systems of intermolecular non-valent interactions. In the crystal of the monoclinic polymorph, the molecules are bound into the ribbons along the c axis by the weak intermolecular C3–H3···Cl1i hydrogen bonds (Fig. 3, Table 1), whereas, in the crystal of the triclinic polymorph, the molecules form the chains along the a axis by the weak attractive intermolecular S···S (3.544 (3)Å) interactions (Fig. 4). Symmetry code: (i) -x+1, -y+1, -z.

For metal complexes with 2,2'-dipyridyl dichalcogenides, see: Kadooka et al. (1976a,b); Cheng et al. (1996); Kienitz et al. (1996); Bell et al. (2000); Kita et al. (2001); Kedarnath et al. (2009). For thetriclinic polymorph, see: Masaki & Matsunami (1976); Masaki et al. (1978).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Reaction of 2,2'-dipyridyl disulfide with tin tetrachloride.
[Figure 2] Fig. 2. Molecular structure of I with the atom numbering scheme. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius. Symmetry code: (i) -x+1, y, -z+1/2.
[Figure 3] Fig. 3. The H-bonded ribbons along the c axis in the monoclinic polymorph of I.
[Figure 4] Fig. 4. The S···S bonded chains along the a axis in the triclinic polymorph of I. Dashed lines indicate the intermolecular non-valent interactions.
Dichloridobis(pyridine-2-thiolato-κ2N,S)tin(IV) top
Crystal data top
[SnCl2(C5H4NS)2]F(000) = 792
Mr = 409.93Dx = 2.063 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6340 reflections
a = 6.3240 (7) Åθ = 2.5–30.0°
b = 12.9391 (14) ŵ = 2.63 mm1
c = 16.4240 (18) ÅT = 100 K
β = 100.922 (2)°Prism, colourless
V = 1319.6 (3) Å30.16 × 0.14 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1K CCD
diffractometer
1584 independent reflections
Radiation source: fine-focus sealed tube1562 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ– and ω–scansθmax = 28.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 88
Tmin = 0.678, Tmax = 0.779k = 1616
6681 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.014P)2 + 7.75P]
where P = (Fo2 + 2Fc2)/3
1584 reflections(Δ/σ)max < 0.001
79 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[SnCl2(C5H4NS)2]V = 1319.6 (3) Å3
Mr = 409.93Z = 4
Monoclinic, C2/cMo Kα radiation
a = 6.3240 (7) ŵ = 2.63 mm1
b = 12.9391 (14) ÅT = 100 K
c = 16.4240 (18) Å0.16 × 0.14 × 0.10 mm
β = 100.922 (2)°
Data collection top
Bruker SMART 1K CCD
diffractometer
1584 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
1562 reflections with I > 2σ(I)
Tmin = 0.678, Tmax = 0.779Rint = 0.024
6681 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.050H-atom parameters constrained
S = 1.00Δρmax = 0.81 e Å3
1584 reflectionsΔρmin = 0.53 e Å3
79 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.50000.38034 (2)0.25000.01554 (7)
Cl10.68565 (13)0.25722 (5)0.18092 (4)0.02082 (15)
S10.17981 (13)0.41891 (5)0.14189 (4)0.01907 (14)
N10.5510 (4)0.50833 (19)0.16215 (15)0.0166 (5)
C10.3563 (5)0.5095 (2)0.11252 (18)0.0170 (6)
C20.3100 (5)0.5780 (2)0.04557 (18)0.0201 (6)
H20.17200.57860.01050.024*
C30.4699 (6)0.6444 (2)0.0318 (2)0.0229 (7)
H30.44250.69150.01340.028*
C40.6725 (6)0.6430 (2)0.08400 (17)0.0209 (6)
H40.78360.68840.07490.025*
C50.7064 (5)0.5737 (2)0.14906 (17)0.0190 (5)
H50.84250.57220.18540.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01793 (13)0.01560 (12)0.01225 (12)0.00000.00070 (12)0.0000
Cl10.0251 (4)0.0200 (3)0.0175 (3)0.0044 (3)0.0042 (3)0.0017 (2)
S10.0182 (3)0.0197 (3)0.0179 (3)0.0009 (3)0.0002 (3)0.0007 (2)
N10.0196 (12)0.0165 (12)0.0131 (11)0.0011 (9)0.0018 (9)0.0001 (9)
C10.0209 (14)0.0153 (13)0.0152 (13)0.0005 (10)0.0041 (11)0.0020 (10)
C20.0236 (15)0.0208 (14)0.0150 (13)0.0043 (12)0.0013 (11)0.0019 (11)
C30.0334 (18)0.0190 (14)0.0164 (14)0.0036 (12)0.0046 (13)0.0014 (11)
C40.0250 (15)0.0190 (14)0.0191 (13)0.0032 (13)0.0053 (14)0.0012 (10)
C50.0213 (14)0.0195 (13)0.0161 (12)0.0007 (12)0.0031 (12)0.0028 (10)
Geometric parameters (Å, º) top
Sn1—N12.259 (2)C2—C31.379 (5)
Sn1—Cl12.3892 (8)C2—H20.9500
Sn1—S12.4779 (8)C3—C41.400 (5)
S1—C11.748 (3)C3—H30.9500
N1—C11.342 (4)C4—C51.380 (4)
N1—C51.345 (4)C4—H40.9500
C1—C21.399 (4)C5—H50.9500
N1i—Sn1—N185.72 (12)N1—C1—S1112.7 (2)
N1i—Sn1—Cl1159.13 (7)C2—C1—S1126.3 (2)
N1—Sn1—Cl192.47 (7)C3—C2—C1118.3 (3)
Cl1i—Sn1—Cl196.36 (4)C3—C2—H2120.9
N1i—Sn1—S196.54 (7)C1—C2—H2120.9
N1—Sn1—S165.85 (7)C2—C3—C4120.4 (3)
Cl1i—Sn1—S193.80 (3)C2—C3—H3119.8
Cl1—Sn1—S1101.68 (3)C4—C3—H3119.8
S1i—Sn1—S1156.76 (4)C5—C4—C3118.2 (3)
C1—S1—Sn181.67 (10)C5—C4—H4120.9
C1—N1—C5120.7 (3)C3—C4—H4120.9
C1—N1—Sn199.82 (18)N1—C5—C4121.4 (3)
C5—N1—Sn1139.5 (2)N1—C5—H5119.3
N1—C1—C2121.0 (3)C4—C5—H5119.3
N1i—Sn1—S1—C182.81 (12)S1—Sn1—N1—C5179.8 (3)
N1—Sn1—S1—C10.49 (12)C5—N1—C1—C20.5 (4)
Cl1i—Sn1—S1—C1175.74 (10)Sn1—N1—C1—C2179.2 (2)
Cl1—Sn1—S1—C186.96 (10)C5—N1—C1—S1179.4 (2)
S1i—Sn1—S1—C143.78 (10)Sn1—N1—C1—S10.9 (2)
N1i—Sn1—N1—C199.78 (19)Sn1—S1—C1—N10.82 (19)
Cl1i—Sn1—N1—C114.1 (3)Sn1—S1—C1—C2179.3 (3)
Cl1—Sn1—N1—C1101.05 (17)N1—C1—C2—C30.0 (4)
S1i—Sn1—N1—C1164.84 (16)S1—C1—C2—C3179.9 (2)
S1—Sn1—N1—C10.64 (15)C1—C2—C3—C40.2 (5)
N1i—Sn1—N1—C580.6 (3)C2—C3—C4—C50.1 (5)
Cl1i—Sn1—N1—C5166.3 (2)C1—N1—C5—C40.8 (4)
Cl1—Sn1—N1—C578.5 (3)Sn1—N1—C5—C4178.7 (2)
S1i—Sn1—N1—C515.6 (3)C3—C4—C5—N10.6 (5)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl1ii0.952.803.673 (3)154
Symmetry code: (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[SnCl2(C5H4NS)2]
Mr409.93
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)6.3240 (7), 12.9391 (14), 16.4240 (18)
β (°) 100.922 (2)
V3)1319.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.63
Crystal size (mm)0.16 × 0.14 × 0.10
Data collection
DiffractometerBruker SMART 1K CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.678, 0.779
No. of measured, independent and
observed [I > 2σ(I)] reflections
6681, 1584, 1562
Rint0.024
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.050, 1.00
No. of reflections1584
No. of parameters79
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.53

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl1i0.952.803.673 (3)154
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

We thank Professor Abel M. Maharramov for fruitful discussions and help in this work.

References

First citationBell, N. A., Gelbrich, T., Hursthouse, M. B., Mark, E., Light, M. E. & Wilson, A. (2000). Polyhedron, 19, 2539-2546.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, Y., Emge, T. J. & Brennan, J. G. (1996). Inorg. Chem. 35, 342–346.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationKadooka, M. M., Warner, L. G. & Seff, K. (1976a). J. Am. Chem. Soc. 98, 7569–7578.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationKadooka, M. M., Warner, L. G. & Seff, K. (1976b). Inorg. Chem. 15, 812–816.  CSD CrossRef CAS Web of Science Google Scholar
First citationKedarnath, G., Jain, V. K., Wadawale, A. & Dey, G. K. (2009). Dalton Trans. 39, 8378–8385.  Web of Science CSD CrossRef PubMed Google Scholar
First citationKienitz, C. O., Thöne, C. & Jones, P. G. (1996). Inorg. Chem. 35, 3990–3997.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationKita, M., Tamai, H., Ueta, F., Fuyuhiro, A., Yamanari, K., Nakajima, K., Kojima, M., Murata, K. & Yamashita, S. (2001). Inorg. Chim. Acta, 314, 139–146.  Web of Science CSD CrossRef CAS Google Scholar
First citationMasaki, M. & Matsunami, S. (1976). Bull. Chem. Soc. Jpn, 49, 3274–3279.  CrossRef CAS Web of Science Google Scholar
First citationMasaki, M., Matsunami, S. & Ueda, H. (1978). Bull. Chem. Soc. Jpn, 51, 3298–3301.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds