organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-sec-Butyl-1-(2-hy­dr­oxy­eth­yl)-1H-benzimidazole-5-carboxylic acid

aKulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia, and bSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
*Correspondence e-mail: shafida@iium.edu.my

(Received 18 May 2012; accepted 25 May 2012; online 2 June 2012)

In the title compound, C14H18N2O3, the carb­oxy­lic group is tilted by 12.00 (4)° with respect to the mean plane throught the benzimidazole ring system. The alcohol and carboxyl hydroxy groups are involved in intermolecular O—H⋯O and O—H⋯N hydrogen bonds, forming a two-dimensional network extending parallel the ab plane. The network is further stabilized by weak C—H⋯O inter­actions. The sec-butyl group is disordered over two sets of sites with refined occupancies of 0.484 (4) and 0.516 (4).

Related literature

For related structures, see: Arumugam et al. (2011[Arumugam, N., Ngah, N., Abd Hamid, S. & Abdul Rahim, A. S. (2011). Acta Cryst. E67, o2938.]); Hamzah et al. (2012[Hamzah, N., Ngah, N., Abd Hamid, S. & Abdul Rahim, A. S. (2012). Acta Cryst. E68, o197-o198.]). For therapeutic properties of benzimidazole derivatives, see: Xue et al. (2011[Xue, F., Luo, X., Ye, C., Ye, W. & Wang, Y. (2011). Bioorg. Med. Chem. 19, 2641-2649.]); Gellis et al. (2008[Gellis, A., Kovaic, H., Boufatah, N. & Vanelle, P. (2008). Eur. J. Med. Chem. 43, 1858-1864.]); Boiani et al. (2009[Boiani, M., Boiani, L., Merlino, A., Hernandez, P., Chidichimo, A., Cazzulo, J. J., Cerecetto, H. & Gonzalez, M. (2009). Eur. J. Med. Chem. 44, 4426-4433.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the low-temperature device used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18N2O3

  • Mr = 262.30

  • Monoclinic, P 21 /n

  • a = 8.9427 (2) Å

  • b = 8.2067 (2) Å

  • c = 18.3536 (3) Å

  • β = 94.415 (1)°

  • V = 1342.97 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.50 × 0.36 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.955, Tmax = 0.986

  • 11481 measured reflections

  • 2491 independent reflections

  • 2190 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.088

  • S = 1.03

  • 2491 reflections

  • 200 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.92 (2) 1.71 (2) 2.6227 (13) 175.8 (16)
O3—H3⋯N1ii 0.94 (2) 1.801 (19) 2.7193 (13) 165.1 (17)
C9—H9B⋯O1iii 0.99 2.43 3.2925 (15) 145
C12X—H12E⋯O1iv 0.98 2.55 3.517 (18) 167
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The synthesis and biological evaluation of benzimidazole derivatives is an active area of research in medicinal chemistry. Several papers reported some biological effects of benzimidazole derivatives against enteroviruses (Xue et al., 2011), as anticancer agents (Gellis et al., 2008) and anti-trypanosomatid agents (Boiani et al., 2009). In continuation of our study in this field (Arumugam et al., 2011; Hamzah et al., 2012), the crystal structure of the title compound is described herein.

The title molecule (Fig. 1) is benzimidazole carboxylic acid derivative and is similar to other benzimidazole ethyl ester (Arumugam et al., 2011; Hamzah et al., 2012) derivatives. The benzimidazole ring system is essentially planar, with atom C2 deviating 0.040 (1) Å from its mean plane. The dihedral angle it forms with the carboxylic group is 12.00 (4)°. The bond lengths (Allen et al., 1987) and angles are in normal ranges. The atoms of the sec-butyl group (C12/C13/C14) are disordered over two sets of sites, with refined occupancies of 0.484 (4) and 0.516 (4).

In the crystal structure, both hydroxy groups are involved in intermolecular O2—H2···O3 and O3—H3···N1 hydrogen bonds (Table 1) to form a two-dimensional network propagating parallel to the ab plane (Fig. 2). The network is further stabilized by weak C9—H9B···O1 and, C12X—H12E···O1 contacts.

Related literature top

For related structures, see: Arumugam et al. (2011); Hamzah et al. (2012). For therapeutic properties of benzimidazole derivatives, see: Xue et al. (2011); Gellis et al. (2008); Boiani et al. (2009). For standard bond lengths, see: Allen et al. (1987). For the low-temperature device used in the data collection, see: Cosier & Glazer (1986).

Experimental top

To a solution of 2-sec-butyl-1-(2-hydroxy-ethyl)-1H-benzimidazole-5-carboxylic acid ethyl ester (136 mg, 0.47 mmol) in THF (2 ml) was added NaOH (4 N, 0.5 ml). The mixture was refluxed at 66 °C untill all reactants fully converted to the desired acid. The progress of the reaction was monitored by TLC (EtOAc/hexane 4:1 v/v). Upon completion, THF was removed under pressure and the mixture acidified using 2 M HCl to raise pH to 6–7. Removal of excess water in vacuo gave a white precipitate which was later dissolved in butanol to separate the carboxylic acid and the salt. The filtrate was again evaporated under reduced pressure to obtain the crude product. The title compound was recrystallized using MeOH to afford colourless single crystals.

Refinement top

X-ray data were collected at 100 K (Cosier & Glazer, 1986). Hydroxyl H-atom [O2—H2 = 0.92 (2) Å and O3—H3 = 0.94 (4) Å] were located in a difference Fourier map and refined freely. The remaining H atoms attached to C atoms were fixed geometrically and refined as riding model with C—H= 0.95–1.00 Å and with Uiso(H)=1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups. The C12, C13 and C14 atoms of the sec-butyl group are disordered over two sites and refined with site occupancies of 0.484 (4) and 0.516 (4). The disordered atoms were refined with the C—C distances restrained to be 1.54 (1) Å.

Structure description top

The synthesis and biological evaluation of benzimidazole derivatives is an active area of research in medicinal chemistry. Several papers reported some biological effects of benzimidazole derivatives against enteroviruses (Xue et al., 2011), as anticancer agents (Gellis et al., 2008) and anti-trypanosomatid agents (Boiani et al., 2009). In continuation of our study in this field (Arumugam et al., 2011; Hamzah et al., 2012), the crystal structure of the title compound is described herein.

The title molecule (Fig. 1) is benzimidazole carboxylic acid derivative and is similar to other benzimidazole ethyl ester (Arumugam et al., 2011; Hamzah et al., 2012) derivatives. The benzimidazole ring system is essentially planar, with atom C2 deviating 0.040 (1) Å from its mean plane. The dihedral angle it forms with the carboxylic group is 12.00 (4)°. The bond lengths (Allen et al., 1987) and angles are in normal ranges. The atoms of the sec-butyl group (C12/C13/C14) are disordered over two sets of sites, with refined occupancies of 0.484 (4) and 0.516 (4).

In the crystal structure, both hydroxy groups are involved in intermolecular O2—H2···O3 and O3—H3···N1 hydrogen bonds (Table 1) to form a two-dimensional network propagating parallel to the ab plane (Fig. 2). The network is further stabilized by weak C9—H9B···O1 and, C12X—H12E···O1 contacts.

For related structures, see: Arumugam et al. (2011); Hamzah et al. (2012). For therapeutic properties of benzimidazole derivatives, see: Xue et al. (2011); Gellis et al. (2008); Boiani et al. (2009). For standard bond lengths, see: Allen et al. (1987). For the low-temperature device used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsods drawn at the 50% probability level. Both disorder component are shown. Atoms labelled with suffix X denote the major component of disorder.
[Figure 2] Fig. 2. The molecular packing of the title compound viewed down the c axis. The minor disorder components have been omited for clarity.
2-sec-Butyl-1-(2-hydroxyethyl)-1H-benzimidazole-5-carboxylic acid top
Crystal data top
C14H18N2O3F(000) = 560
Mr = 262.30Dx = 1.297 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6388 reflections
a = 8.9427 (2) Åθ = 2.4–25.5°
b = 8.2067 (2) ŵ = 0.09 mm1
c = 18.3536 (3) ÅT = 100 K
β = 94.415 (1)°Block, colourless
V = 1342.97 (5) Å30.50 × 0.36 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2491 independent reflections
Radiation source: fine-focus sealed tube2190 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 83.66 pixels mm-1θmax = 25.5°, θmin = 2.4°
φ and ω scanh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 99
Tmin = 0.955, Tmax = 0.986l = 2222
11481 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.5356P]
where P = (Fo2 + 2Fc2)/3
2491 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.20 e Å3
6 restraintsΔρmin = 0.19 e Å3
Crystal data top
C14H18N2O3V = 1342.97 (5) Å3
Mr = 262.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.9427 (2) ŵ = 0.09 mm1
b = 8.2067 (2) ÅT = 100 K
c = 18.3536 (3) Å0.50 × 0.36 × 0.16 mm
β = 94.415 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2491 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2190 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.986Rint = 0.021
11481 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0346 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.20 e Å3
2491 reflectionsΔρmin = 0.19 e Å3
200 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open=flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.34306 (10)0.27634 (12)0.46443 (5)0.0256 (2)
O20.18373 (11)0.07220 (12)0.49284 (5)0.0287 (2)
O30.20151 (10)0.42060 (11)0.12007 (5)0.0219 (2)
N10.12053 (11)0.03383 (12)0.26410 (5)0.0190 (2)
N20.00305 (11)0.18127 (12)0.17645 (5)0.0180 (2)
C10.00646 (13)0.10204 (14)0.29170 (6)0.0170 (3)
C20.05883 (13)0.09255 (15)0.36115 (6)0.0180 (3)
H2A0.00870.02820.39850.022*
C30.18717 (13)0.18066 (15)0.37392 (7)0.0186 (3)
C40.26332 (14)0.27436 (16)0.31848 (7)0.0211 (3)
H4A0.35070.33300.32900.025*
C50.21368 (14)0.28282 (16)0.24910 (7)0.0214 (3)
H5A0.26530.34500.21140.026*
C60.08397 (13)0.19556 (15)0.23719 (6)0.0176 (3)
C70.11917 (13)0.08457 (15)0.19581 (6)0.0181 (3)
C80.24608 (13)0.18323 (15)0.44752 (7)0.0194 (3)
C90.03388 (14)0.27534 (16)0.10911 (6)0.0205 (3)
H9A0.14350.29110.10000.025*
H9B0.00170.21360.06740.025*
C100.04292 (14)0.44020 (16)0.11404 (7)0.0217 (3)
H10A0.01240.50500.06990.026*
H10B0.01160.50000.15720.026*
C110.23294 (13)0.03938 (15)0.14321 (6)0.0212 (3)
H11A0.22170.11640.10090.025*0.484 (4)
H11B0.21490.11120.09940.025*0.516 (4)
C120.3911 (9)0.061 (4)0.1808 (11)0.0279 (10)0.484 (4)
H12A0.46560.04390.14510.042*0.484 (4)
H12B0.40700.01890.22040.042*0.484 (4)
H12C0.40150.17120.20100.042*0.484 (4)
C130.208 (3)0.135 (2)0.1137 (10)0.0288 (5)0.484 (4)
H13A0.24410.21490.15130.035*0.484 (4)
H13B0.09980.15390.10120.035*0.484 (4)
C140.2951 (4)0.1541 (4)0.04528 (15)0.0302 (8)0.484 (4)
H14A0.27660.26280.02440.045*0.484 (4)
H14B0.40260.14060.05860.045*0.484 (4)
H14C0.26160.07130.00920.045*0.484 (4)
C12X0.202 (2)0.1350 (18)0.1179 (9)0.0288 (5)0.516 (4)
H12D0.27700.16820.08470.043*0.516 (4)
H12E0.10170.14120.09240.043*0.516 (4)
H12F0.20710.20770.16040.043*0.516 (4)
C13X0.3932 (8)0.068 (4)0.1744 (10)0.0279 (10)0.516 (4)
H13C0.42470.02210.20810.033*0.516 (4)
H13D0.39860.17090.20250.033*0.516 (4)
C14X0.4982 (3)0.0770 (3)0.11315 (15)0.0282 (8)0.516 (4)
H14D0.60150.09080.13410.042*0.516 (4)
H14E0.47020.16980.08140.042*0.516 (4)
H14F0.49050.02380.08450.042*0.516 (4)
H30.248 (2)0.459 (2)0.1644 (11)0.055 (5)*
H20.224 (2)0.080 (2)0.5373 (11)0.057 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0245 (5)0.0349 (5)0.0183 (5)0.0060 (4)0.0066 (4)0.0005 (4)
O20.0299 (5)0.0407 (6)0.0167 (5)0.0106 (4)0.0103 (4)0.0073 (4)
O30.0202 (5)0.0288 (5)0.0172 (5)0.0024 (4)0.0056 (4)0.0024 (4)
N10.0204 (5)0.0202 (5)0.0170 (5)0.0017 (4)0.0062 (4)0.0013 (4)
N20.0179 (5)0.0223 (5)0.0143 (5)0.0006 (4)0.0046 (4)0.0019 (4)
C10.0165 (6)0.0178 (6)0.0169 (6)0.0027 (5)0.0034 (4)0.0007 (5)
C20.0187 (6)0.0193 (6)0.0162 (6)0.0019 (5)0.0024 (5)0.0008 (5)
C30.0179 (6)0.0218 (6)0.0166 (6)0.0036 (5)0.0035 (5)0.0015 (5)
C40.0172 (6)0.0264 (7)0.0203 (6)0.0016 (5)0.0050 (5)0.0005 (5)
C50.0184 (6)0.0273 (7)0.0185 (6)0.0016 (5)0.0023 (5)0.0030 (5)
C60.0177 (6)0.0204 (6)0.0150 (6)0.0034 (5)0.0038 (5)0.0005 (5)
C70.0191 (6)0.0186 (6)0.0171 (6)0.0006 (5)0.0043 (5)0.0008 (5)
C80.0164 (6)0.0249 (6)0.0170 (6)0.0026 (5)0.0019 (5)0.0012 (5)
C90.0184 (6)0.0294 (7)0.0139 (6)0.0021 (5)0.0026 (5)0.0038 (5)
C100.0227 (6)0.0254 (7)0.0177 (6)0.0047 (5)0.0059 (5)0.0042 (5)
C110.0235 (6)0.0243 (6)0.0168 (6)0.0051 (5)0.0077 (5)0.0030 (5)
C120.0227 (7)0.033 (2)0.029 (2)0.0012 (6)0.0104 (7)0.006 (2)
C130.0250 (15)0.0337 (8)0.0282 (15)0.0024 (7)0.0053 (10)0.0113 (9)
C140.0394 (17)0.0299 (16)0.0210 (15)0.0092 (13)0.0008 (12)0.0061 (12)
C12X0.0250 (15)0.0337 (8)0.0282 (15)0.0024 (7)0.0053 (10)0.0113 (9)
C13X0.0227 (7)0.033 (2)0.029 (2)0.0012 (6)0.0104 (7)0.006 (2)
C14X0.0217 (14)0.0327 (15)0.0313 (15)0.0008 (11)0.0089 (11)0.0010 (12)
Geometric parameters (Å, º) top
O1—C81.2140 (15)C10—H10B0.9900
O2—C81.3273 (16)C11—C13X1.520 (11)
O2—H20.92 (2)C11—C12X1.523 (11)
O3—C101.4231 (15)C11—C121.535 (12)
O3—H30.94 (2)C11—C131.537 (12)
N1—C71.3199 (16)C11—H11A1.0000
N1—C11.3958 (15)C11—H11B1.0000
N2—C71.3750 (16)C12—H12A0.9800
N2—C61.3799 (15)C12—H12B0.9800
N2—C91.4653 (15)C12—H12C0.9800
C1—C21.3936 (17)C13—C141.536 (12)
C1—C61.4013 (17)C13—H13A0.9900
C2—C31.3916 (17)C13—H13B0.9900
C2—H2A0.9500C14—H14A0.9800
C3—C41.4084 (18)C14—H14B0.9800
C3—C81.4873 (16)C14—H14C0.9800
C4—C51.3822 (17)C12X—H12D0.9800
C4—H4A0.9500C12X—H12E0.9800
C5—C61.3947 (17)C12X—H12F0.9800
C5—H5A0.9500C13X—C14X1.521 (11)
C7—C111.5019 (16)C13X—H13C0.9900
C9—C101.5169 (18)C13X—H13D0.9900
C9—H9A0.9900C14X—H14D0.9800
C9—H9B0.9900C14X—H14E0.9800
C10—H10A0.9900C14X—H14F0.9800
C8—O2—H2109.3 (12)C13X—C11—C12X113.8 (16)
C10—O3—H3113.7 (12)C7—C11—C12109.2 (7)
C7—N1—C1105.66 (10)C12X—C11—C12112.6 (16)
C7—N2—C6107.23 (9)C7—C11—C13111.6 (6)
C7—N2—C9128.04 (10)C13X—C11—C13112.5 (15)
C6—N2—C9124.07 (10)C12—C11—C13111.6 (16)
C2—C1—N1130.52 (11)C7—C11—H11A108.1
C2—C1—C6120.07 (11)C13X—C11—H11A103.3
N1—C1—C6109.39 (10)C12X—C11—H11A110.6
C3—C2—C1117.68 (11)C12—C11—H11A108.1
C3—C2—H2A121.2C13—C11—H11A108.1
C1—C2—H2A121.2C7—C11—H11B107.2
C2—C3—C4121.41 (11)C13X—C11—H11B107.5
C2—C3—C8120.98 (11)C12X—C11—H11B107.1
C4—C3—C8117.58 (11)C12—C11—H11B112.3
C5—C4—C3121.42 (11)C13—C11—H11B104.7
C5—C4—H4A119.3C11—C12—H12A109.5
C3—C4—H4A119.3C11—C12—H12B109.5
C4—C5—C6116.65 (11)C11—C12—H12C109.5
C4—C5—H5A121.7C14—C13—C11108.4 (12)
C6—C5—H5A121.7C14—C13—H13A110.0
N2—C6—C5131.64 (11)C11—C13—H13A110.0
N2—C6—C1105.60 (10)C14—C13—H13B110.0
C5—C6—C1122.75 (11)C11—C13—H13B110.0
N1—C7—N2112.11 (10)H13A—C13—H13B108.4
N1—C7—C11125.12 (11)C11—C12X—H12D109.5
N2—C7—C11122.74 (10)C11—C12X—H12E109.5
O1—C8—O2123.08 (11)H12D—C12X—H12E109.5
O1—C8—C3123.44 (11)C11—C12X—H12F109.5
O2—C8—C3113.48 (10)H12D—C12X—H12F109.5
N2—C9—C10111.39 (10)H12E—C12X—H12F109.5
N2—C9—H9A109.3C11—C13X—C14X110.3 (11)
C10—C9—H9A109.3C11—C13X—H13C109.6
N2—C9—H9B109.3C14X—C13X—H13C109.6
C10—C9—H9B109.3C11—C13X—H13D109.6
H9A—C9—H9B108.0C14X—C13X—H13D109.6
O3—C10—C9110.35 (10)H13C—C13X—H13D108.1
O3—C10—H10A109.6C13X—C14X—H14D109.5
C9—C10—H10A109.6C13X—C14X—H14E109.5
O3—C10—H10B109.6H14D—C14X—H14E109.5
C9—C10—H10B109.6C13X—C14X—H14F109.5
H10A—C10—H10B108.1H14D—C14X—H14F109.5
C7—C11—C13X112.7 (7)H14E—C14X—H14F109.5
C7—C11—C12X108.1 (6)
C7—N1—C1—C2178.32 (12)C9—N2—C7—C1110.00 (19)
C7—N1—C1—C60.04 (13)C2—C3—C8—O1168.54 (12)
N1—C1—C2—C3177.08 (12)C4—C3—C8—O19.59 (18)
C6—C1—C2—C31.13 (17)C2—C3—C8—O212.30 (16)
C1—C2—C3—C40.97 (18)C4—C3—C8—O2169.57 (11)
C1—C2—C3—C8177.09 (11)C7—N2—C9—C1084.32 (15)
C2—C3—C4—C50.06 (19)C6—N2—C9—C1085.16 (14)
C8—C3—C4—C5178.06 (11)N2—C9—C10—O364.65 (12)
C3—C4—C5—C60.67 (18)N1—C7—C11—C13X51.4 (13)
C7—N2—C6—C5177.59 (13)N2—C7—C11—C13X130.8 (13)
C9—N2—C6—C56.3 (2)N1—C7—C11—C12X75.2 (10)
C7—N2—C6—C11.03 (13)N2—C7—C11—C12X102.5 (10)
C9—N2—C6—C1172.36 (11)N1—C7—C11—C1247.6 (13)
C4—C5—C6—N2177.92 (12)N2—C7—C11—C12134.7 (13)
C4—C5—C6—C10.50 (18)N1—C7—C11—C1376.3 (11)
C2—C1—C6—N2179.18 (11)N2—C7—C11—C13101.4 (11)
N1—C1—C6—N20.62 (13)C7—C11—C13—C14163.5 (10)
C2—C1—C6—C50.41 (18)C13X—C11—C13—C1468.6 (16)
N1—C1—C6—C5178.15 (11)C12X—C11—C13—C14179 (100)
C1—N1—C7—N20.72 (14)C12—C11—C13—C1473.9 (18)
C1—N1—C7—C11178.65 (11)C7—C11—C13X—C14X160.6 (13)
C6—N2—C7—N11.13 (14)C12X—C11—C13X—C14X76 (2)
C9—N2—C7—N1172.02 (11)C12—C11—C13X—C14X153 (29)
C6—N2—C7—C11179.12 (11)C13—C11—C13X—C14X72 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.92 (2)1.71 (2)2.6227 (13)175.8 (16)
O3—H3···N1ii0.94 (2)1.801 (19)2.7193 (13)165.1 (17)
C9—H9B···O1iii0.992.433.2925 (15)145
C12X—H12E···O1iv0.982.553.517 (18)167
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H18N2O3
Mr262.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.9427 (2), 8.2067 (2), 18.3536 (3)
β (°) 94.415 (1)
V3)1342.97 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.36 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.955, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
11481, 2491, 2190
Rint0.021
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 1.03
No. of reflections2491
No. of parameters200
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.19

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.92 (2)1.71 (2)2.6227 (13)175.8 (16)
O3—H3···N1ii0.94 (2)1.801 (19)2.7193 (13)165.1 (17)
C9—H9B···O1iii0.992.433.2925 (15)145
C12X—H12E···O1iv0.982.553.517 (18)167
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x1/2, y1/2, z+1/2.
 

Acknowledgements

NH, SAH and ASAR gratefully acknowledge the Inter­national Islamic University Malaysia (IIUM) for IIUM Endownment Grant EDWB 12–358-0836, USM Research Grant (304/PFARMASI/650544/I121) and MOSTI (09–05-lfn-med-004) for funding the synthetic chemistry work.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationArumugam, N., Ngah, N., Abd Hamid, S. & Abdul Rahim, A. S. (2011). Acta Cryst. E67, o2938.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBoiani, M., Boiani, L., Merlino, A., Hernandez, P., Chidichimo, A., Cazzulo, J. J., Cerecetto, H. & Gonzalez, M. (2009). Eur. J. Med. Chem. 44, 4426–4433.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGellis, A., Kovaic, H., Boufatah, N. & Vanelle, P. (2008). Eur. J. Med. Chem. 43, 1858–1864.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHamzah, N., Ngah, N., Abd Hamid, S. & Abdul Rahim, A. S. (2012). Acta Cryst. E68, o197–o198.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, F., Luo, X., Ye, C., Ye, W. & Wang, Y. (2011). Bioorg. Med. Chem. 19, 2641–2649.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds