metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[{μ3-4,4′,6,6′-tetra­bromo-2,2′-[butane-1,4-diylbis(nitrilo­methan­ylyl­­idene)]diphenolato}{μ2-4,4′,6,6′-tetra­bromo-2,2′-[butane-1,4-diylbis(nitrilo­methanylyl­­idene)]dipheno­lato}dicopper(II)]

aDepartment of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, I. R. of IRAN, bDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, cStructural Dynamics of (Bio)Chemical Systems, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany, and dDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: zsrkk@yahoo.com, dmntahir_uos@yahoo.com

(Received 17 June 2012; accepted 27 June 2012; online 30 June 2012)

The asymmetric unit of the title coordination polymer consists of a dinuclear neutral complex mol­ecule of formula [Cu2(C18H14Br4N2O2)2]n. One of the CuII ions is coordinated in a distorted square-planar geometry, whereas the other is coordinated in a distorted square-pyramidal geometry, the long apical Cu—O bond [2.885 (4) Å] of the square-pyramidal coordination being provided by a symmetry-related O atom creating a one-dimensional polymer along [010]. ππ stacking inter­actions [centroid–centroid distance = 3.783 (4) Å] and short inter­chain Br⋯Br inter­actions [3.6142 (12)–3.6797 (12) Å] are observed.

Related literature

For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). For background to coordination polymers, see: Kido & Okamoto (2002[Kido, J. & Okamoto, Y. (2002). Chem. Rev. 102, 2357-2368.]); Li et al. (2006[Li, Y., Zheng, F.-K., Liu, X., Zou, W.-Q., Guo, G.-C., Lu, C.-Z. & Huang, J.-S. (2006). Inorg. Chem. 45, 6308-6316.]). For background to bis-bidentate Schiff base complexes, see: Hannon et al. (1999[Hannon, M. J., Painting, L. C. & Alcock, N. W. (1999). Chem. Commun. pp. 2023-2024.]); Lavalette et al. (2003[Lavalette, A., Tuna, F., Clarkson, G., Alcock, N. W. & Hannon, M. J. (2003). Chem. Commun. pp. 2666-2667.]). For the synthesis and structural variations of Schiff base complexes, see: Granovski et al. (1993[Granovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Elmali et al. (2000[Elmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302-1304.]). For related structures, see: Kargar & Kia (2011a[Kargar, H. & Kia, R. (2011a). Acta Cryst. E67, m497-m498.],b[Kargar, H. & Kia, R. (2011b). Acta Cryst. E67, m499-m500.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C18H14Br4N2O2)2]

  • Mr = 1345.98

  • Orthorhombic, P c a 21

  • a = 27.4100 (11) Å

  • b = 7.9055 (4) Å

  • c = 18.8291 (7) Å

  • V = 4080.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.92 mm−1

  • T = 291 K

  • 0.36 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.142, Tmax = 0.329

  • 33878 measured reflections

  • 8854 independent reflections

  • 5887 reflections with I > 2σ(I)

  • Rint = 0.071

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.068

  • S = 1.00

  • 8854 reflections

  • 487 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.45 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4178 Friedel pairs

  • Flack parameter: 0.069 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O3 0.97 2.50 3.099 (7) 120
C27—H27B⋯O2 0.97 2.54 3.129 (7) 119

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The design and construction of metal-organic coordination polymers (MOCPs) have attracted considerable attention, not only for their novel topologies but also for their potential in the area of magnetic applications and functional materials (Kido & Okamoto, 2002; Li et al., 2006). One of the key strategies in the construction of metal-organic coordination polymers is to select suitable bi- or multi-dentate bridging ligands. Among these, bis-bidentate NN- or NO-donor Schiff base ligands with aliphatic and aromatic spacers (Hannon et al., 1999; Lavalette et al., 2003) have attracted much attention because of the flexibility in their coordination modes and the resulting intermolecular interactions. The long chain aliphatic spacers or rigid aromatic spacers with large bite angles in these ligands favour the bis-bidentate coordination mode and allow the ligands to accomodate metal centers in one unit of the ligand. On the other hand, Schiff bases are one of the most prevalent ligands in coordination chemistry and their complexes are some of the most important stereochemical models in transition metal-organic chemistry, with their ease of preparation and structural variations (Granovski et al., 1993; Elmali et al., 2000).

The molecular structure of the title complex (Fig. 1) consists of dinuclear units in which the Schiff base ligands are twisted around copper(II) metal centres in a bis-bidentate coordination mode. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those reported for related structures (Kargar & Kia, 2011a,b). Both metal atoms show a tetrahedrally distorted square-planar coordination geometry provided by two nitrogen and two oxygen atoms of the Schiff-base ligands. Two C—H···O hydrogen bonds (Table 1) stabilize the conformation of the complex molecule. A fifth coordination site is provided for atom Cu2 by the O4 oxygen atom of a neighbouring complex forming one-dimensional coordination polymeric chains along the b axis (Fig. 2). The length of the Cu2—O4i bond [2.885 (4)Å; symmetry code: (i) x, 1 + y, z] is shorter than the sum of the van der Waals radii of these atoms [Cu, 1.43Å and O, 1.52 Å; Bondi, 1964]. The chains are further stabilized π-π stacking interactions [Cg1···Cg2ii = 3.736 (2) Å; symmetry code (ii) x, -1 + y, z; Cg1 and Cg2 are the centroids of the C1–C6 and C19–C24 rings, respectively]. In the crystal structure, short interchain Br···Br contacts are observed [Br(1)···Br(7)iii = 3.6797 (12) Å; Br(2)···Br(4)iv = 3.6142 (12) Å; Br(4)···Br(6)v = 3.6142 (12) Å; Br(6)···Br(8)vi = 3.6401 (12) Å; symmetry codes: (iii) -1/2 + x, 1 - y, z; (iv) 1/2 - x, y, 1/2 + z; (v) 1/2 - x, y, -1/2 + z; (vi) -1/2 + x, 2 - y, z]. A Br(8)···C(12)ii [3.447 (6) Å] interaction is also present in the crystal structure which is shorter than sum of the van der Waals radii of Br [3.70Å] and C [1.70 Å] atoms (Bondi, 1964).

Related literature top

For standard bond lengths, see: Allen et al., (1987). For van der Waals radii, see: Bondi (1964). For background to coordination polymers, see: Kido & Okamoto (2002); Li et al. (2006). For background to bis-bidentate Schiff base complexes, see: Hannon et al. (1999); Lavalette et al. (2003). For the synthesis and structural variations of Schiff base complexes, see: Granovski et al. (1993); Elmali et al. (2000). For related structures, see: Kargar & Kia (2011a,b).

Experimental top

The title complex was synthesized by the reaction of an methanolic solution (50 ml) of bis(3,5-bromosalicylaldeyde)-1,4-butanediimine (2 mmol) and CuCl2.4H2O (2 mmol). After stirring at reflux conditions for 2 h, the solution was filtered and the resulting dark-brown powder was crystallized from DMF, giving single crystals suitable for X-ray diffraction.

Refinement top

All H atoms were positioned geometrically and constrained to refine with their parent atoms using a riding-model approximation, with C—H = 0.93-0.97 Å and Uiso(H) = 1.2 Ueq(C).

Structure description top

The design and construction of metal-organic coordination polymers (MOCPs) have attracted considerable attention, not only for their novel topologies but also for their potential in the area of magnetic applications and functional materials (Kido & Okamoto, 2002; Li et al., 2006). One of the key strategies in the construction of metal-organic coordination polymers is to select suitable bi- or multi-dentate bridging ligands. Among these, bis-bidentate NN- or NO-donor Schiff base ligands with aliphatic and aromatic spacers (Hannon et al., 1999; Lavalette et al., 2003) have attracted much attention because of the flexibility in their coordination modes and the resulting intermolecular interactions. The long chain aliphatic spacers or rigid aromatic spacers with large bite angles in these ligands favour the bis-bidentate coordination mode and allow the ligands to accomodate metal centers in one unit of the ligand. On the other hand, Schiff bases are one of the most prevalent ligands in coordination chemistry and their complexes are some of the most important stereochemical models in transition metal-organic chemistry, with their ease of preparation and structural variations (Granovski et al., 1993; Elmali et al., 2000).

The molecular structure of the title complex (Fig. 1) consists of dinuclear units in which the Schiff base ligands are twisted around copper(II) metal centres in a bis-bidentate coordination mode. The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those reported for related structures (Kargar & Kia, 2011a,b). Both metal atoms show a tetrahedrally distorted square-planar coordination geometry provided by two nitrogen and two oxygen atoms of the Schiff-base ligands. Two C—H···O hydrogen bonds (Table 1) stabilize the conformation of the complex molecule. A fifth coordination site is provided for atom Cu2 by the O4 oxygen atom of a neighbouring complex forming one-dimensional coordination polymeric chains along the b axis (Fig. 2). The length of the Cu2—O4i bond [2.885 (4)Å; symmetry code: (i) x, 1 + y, z] is shorter than the sum of the van der Waals radii of these atoms [Cu, 1.43Å and O, 1.52 Å; Bondi, 1964]. The chains are further stabilized π-π stacking interactions [Cg1···Cg2ii = 3.736 (2) Å; symmetry code (ii) x, -1 + y, z; Cg1 and Cg2 are the centroids of the C1–C6 and C19–C24 rings, respectively]. In the crystal structure, short interchain Br···Br contacts are observed [Br(1)···Br(7)iii = 3.6797 (12) Å; Br(2)···Br(4)iv = 3.6142 (12) Å; Br(4)···Br(6)v = 3.6142 (12) Å; Br(6)···Br(8)vi = 3.6401 (12) Å; symmetry codes: (iii) -1/2 + x, 1 - y, z; (iv) 1/2 - x, y, 1/2 + z; (v) 1/2 - x, y, -1/2 + z; (vi) -1/2 + x, 2 - y, z]. A Br(8)···C(12)ii [3.447 (6) Å] interaction is also present in the crystal structure which is shorter than sum of the van der Waals radii of Br [3.70Å] and C [1.70 Å] atoms (Bondi, 1964).

For standard bond lengths, see: Allen et al., (1987). For van der Waals radii, see: Bondi (1964). For background to coordination polymers, see: Kido & Okamoto (2002); Li et al. (2006). For background to bis-bidentate Schiff base complexes, see: Hannon et al. (1999); Lavalette et al. (2003). For the synthesis and structural variations of Schiff base complexes, see: Granovski et al. (1993); Elmali et al. (2000). For related structures, see: Kargar & Kia (2011a,b).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing 40% probability displacement ellipsoids. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Partial crystal packing, viewed down the c axis, of the title complex showing the one-dimensional coordination chain propagating along the b axis. Br···Br interactions are shown as dashed lines. H atoms have been omitted for clarity.
catena-Poly[{µ3-4,4',6,6'-tetrabromo-2,2'-[butane-1,4- diylbis(nitrilomethanylylidene)]diphenolato}{µ2-4,4',6,6'-tetrabromo- 2,2'-[butane-1,4-diylbis(nitrilomethanylylidene)]diphenolato}dicopper(II)] top
Crystal data top
[Cu2(C18H14Br4N2O2)2]F(000) = 2564
Mr = 1345.98Dx = 2.191 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2567 reflections
a = 27.4100 (11) Åθ = 2.5–27.7°
b = 7.9055 (4) ŵ = 8.92 mm1
c = 18.8291 (7) ÅT = 291 K
V = 4080.1 (3) Å3Needle, dark-brown
Z = 40.36 × 0.18 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8854 independent reflections
Radiation source: fine-focus sealed tube5887 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
φ and ω scansθmax = 27.2°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 3535
Tmin = 0.142, Tmax = 0.329k = 107
33878 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0125P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
8854 reflectionsΔρmax = 0.55 e Å3
487 parametersΔρmin = 0.45 e Å3
1 restraintAbsolute structure: Flack (1983), 4178 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.069 (8)
Crystal data top
[Cu2(C18H14Br4N2O2)2]V = 4080.1 (3) Å3
Mr = 1345.98Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 27.4100 (11) ŵ = 8.92 mm1
b = 7.9055 (4) ÅT = 291 K
c = 18.8291 (7) Å0.36 × 0.18 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8854 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5887 reflections with I > 2σ(I)
Tmin = 0.142, Tmax = 0.329Rint = 0.071
33878 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.068Δρmax = 0.55 e Å3
S = 1.00Δρmin = 0.45 e Å3
8854 reflectionsAbsolute structure: Flack (1983), 4178 Friedel pairs
487 parametersAbsolute structure parameter: 0.069 (8)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.33709 (3)0.59065 (10)0.49527 (4)0.03293 (19)
Cu20.37343 (2)1.17409 (10)0.50858 (4)0.03289 (19)
Br10.17168 (3)0.56192 (11)0.40823 (4)0.0593 (2)
Br20.10462 (3)0.83048 (10)0.66708 (4)0.0541 (2)
Br30.62640 (3)0.96666 (13)0.39602 (5)0.0732 (3)
Br40.44790 (3)1.16280 (11)0.27446 (4)0.0561 (2)
Br50.30469 (3)1.27351 (11)0.74365 (4)0.0578 (2)
Br60.11632 (3)1.30310 (11)0.62177 (5)0.0632 (2)
Br70.56876 (3)0.57140 (14)0.29593 (4)0.0761 (3)
Br80.50186 (2)0.48746 (10)0.57844 (4)0.05028 (19)
O10.26874 (14)0.5837 (6)0.4829 (2)0.0381 (11)
O20.41492 (15)1.1542 (6)0.4276 (2)0.0405 (12)
O30.33343 (14)1.2315 (5)0.5877 (2)0.0404 (11)
O40.40368 (14)0.5235 (5)0.5055 (2)0.0402 (11)
N10.32999 (17)0.6362 (6)0.5991 (2)0.0308 (13)
N20.42674 (17)1.1050 (6)0.5741 (2)0.0310 (12)
N30.31486 (19)1.1816 (7)0.4438 (3)0.0368 (14)
N40.34345 (17)0.6214 (6)0.3909 (2)0.0306 (12)
C10.2344 (2)0.6384 (8)0.5247 (3)0.0339 (16)
C20.1857 (2)0.6452 (8)0.5005 (3)0.0377 (16)
C30.1483 (2)0.7013 (8)0.5410 (3)0.0390 (17)
H30.11670.70310.52300.047*
C40.1575 (2)0.7563 (8)0.6100 (3)0.0356 (16)
C50.2036 (2)0.7512 (8)0.6359 (3)0.0398 (17)
H50.20930.78680.68220.048*
C60.24245 (19)0.6945 (8)0.5954 (3)0.0300 (15)
C70.2895 (2)0.6784 (8)0.6279 (3)0.0354 (16)
H70.29080.70150.67630.042*
C80.3727 (2)0.6193 (8)0.6465 (3)0.0338 (16)
H8A0.39040.51680.63460.041*
H8B0.36160.60940.69520.041*
C90.4068 (2)0.7694 (8)0.6403 (3)0.0349 (17)
H9A0.43580.74750.66840.042*
H9B0.41690.78100.59120.042*
C100.3844 (2)0.9332 (8)0.6645 (3)0.0367 (16)
H10A0.37770.92630.71490.044*
H10B0.35360.94950.64000.044*
C110.4172 (2)1.0860 (9)0.6505 (3)0.0391 (17)
H11A0.40161.18740.66840.047*
H11B0.44791.07170.67550.047*
C120.4703 (2)1.0696 (8)0.5534 (3)0.0372 (17)
H120.49221.04140.58920.045*
C130.4896 (2)1.0676 (8)0.4826 (3)0.0334 (16)
C140.5388 (2)1.0243 (9)0.4740 (3)0.0440 (18)
H140.55740.99500.51350.053*
C150.5599 (2)1.0248 (9)0.4078 (4)0.0479 (19)
C160.5327 (2)1.0691 (9)0.3491 (3)0.0452 (19)
H160.54701.07140.30430.054*
C170.4846 (2)1.1095 (8)0.3570 (3)0.0354 (17)
C180.4607 (2)1.1130 (8)0.4237 (3)0.0334 (16)
C190.2864 (2)1.2337 (8)0.5952 (3)0.0315 (15)
C200.2645 (2)1.2575 (8)0.6626 (3)0.0388 (17)
C210.2150 (2)1.2745 (8)0.6710 (4)0.0444 (18)
H210.20211.29310.71600.053*
C220.1841 (2)1.2639 (9)0.6129 (4)0.0408 (18)
C230.2034 (2)1.2353 (8)0.5477 (4)0.0389 (17)
H230.18261.22610.50880.047*
C240.2540 (2)1.2192 (8)0.5373 (3)0.0331 (16)
C250.2710 (2)1.2002 (9)0.4655 (3)0.0407 (18)
H250.24711.20170.43040.049*
C260.3207 (2)1.1622 (8)0.3660 (3)0.0369 (17)
H26A0.34781.23100.34990.044*
H26B0.29141.20190.34230.044*
C270.3299 (2)0.9758 (9)0.3458 (3)0.0408 (18)
H27A0.33690.97040.29540.049*
H27B0.35880.93730.37080.049*
C280.2886 (2)0.8547 (9)0.3619 (4)0.0417 (18)
H28A0.27960.86660.41140.050*
H28B0.26050.88590.33340.050*
C290.3009 (2)0.6721 (8)0.3476 (3)0.0370 (17)
H290.28410.60190.31630.044*
C300.3837 (2)0.6062 (8)0.3574 (3)0.0363 (17)
H300.38210.61660.30830.044*
C310.4315 (2)0.5745 (8)0.3870 (3)0.0362 (16)
C320.4705 (2)0.5838 (8)0.3391 (3)0.0404 (17)
H320.46470.60300.29110.048*
C330.5173 (2)0.5642 (10)0.3635 (4)0.049 (2)
C340.5266 (2)0.5366 (8)0.4343 (4)0.0432 (18)
H340.55860.52530.45010.052*
C350.4886 (2)0.5256 (8)0.4817 (3)0.0365 (17)
C360.4388 (2)0.5406 (8)0.4602 (3)0.0361 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0269 (4)0.0410 (5)0.0308 (4)0.0002 (4)0.0004 (3)0.0006 (4)
Cu20.0310 (4)0.0391 (5)0.0286 (4)0.0032 (4)0.0009 (3)0.0020 (4)
Br10.0431 (4)0.0917 (7)0.0429 (4)0.0022 (4)0.0096 (3)0.0238 (4)
Br20.0415 (4)0.0759 (6)0.0448 (4)0.0152 (4)0.0078 (3)0.0095 (4)
Br30.0422 (5)0.1092 (8)0.0683 (5)0.0223 (5)0.0063 (4)0.0097 (5)
Br40.0487 (4)0.0878 (7)0.0318 (4)0.0031 (4)0.0042 (3)0.0035 (4)
Br50.0506 (5)0.0907 (7)0.0321 (4)0.0025 (4)0.0023 (3)0.0020 (4)
Br60.0347 (4)0.0777 (7)0.0770 (5)0.0032 (4)0.0163 (4)0.0150 (5)
Br70.0415 (5)0.1278 (9)0.0589 (5)0.0105 (5)0.0207 (4)0.0162 (5)
Br80.0361 (4)0.0671 (6)0.0476 (4)0.0007 (4)0.0064 (3)0.0057 (4)
O10.025 (2)0.057 (3)0.033 (2)0.001 (2)0.0020 (18)0.012 (2)
O20.036 (3)0.058 (4)0.028 (2)0.005 (2)0.0009 (19)0.001 (2)
O30.030 (3)0.056 (3)0.035 (2)0.005 (2)0.002 (2)0.008 (2)
O40.027 (2)0.058 (3)0.035 (3)0.002 (2)0.005 (2)0.007 (2)
N10.029 (3)0.027 (4)0.036 (3)0.008 (2)0.001 (2)0.001 (2)
N20.033 (3)0.032 (3)0.028 (3)0.008 (3)0.002 (2)0.002 (2)
N30.037 (3)0.046 (4)0.027 (3)0.003 (3)0.001 (2)0.001 (3)
N40.026 (3)0.036 (4)0.030 (3)0.006 (2)0.003 (2)0.002 (2)
C10.035 (4)0.031 (5)0.036 (4)0.007 (3)0.001 (3)0.004 (3)
C20.033 (4)0.047 (5)0.033 (4)0.003 (3)0.001 (3)0.005 (3)
C30.029 (4)0.045 (5)0.044 (4)0.002 (3)0.004 (3)0.000 (3)
C40.034 (4)0.047 (5)0.027 (4)0.008 (3)0.005 (3)0.004 (3)
C50.040 (4)0.058 (5)0.022 (3)0.001 (3)0.005 (3)0.001 (3)
C60.023 (3)0.038 (4)0.029 (3)0.005 (3)0.002 (3)0.001 (3)
C70.037 (4)0.041 (5)0.028 (3)0.003 (3)0.004 (3)0.000 (3)
C80.032 (4)0.032 (5)0.038 (4)0.001 (3)0.010 (3)0.004 (3)
C90.025 (3)0.040 (5)0.040 (4)0.003 (3)0.000 (3)0.000 (3)
C100.039 (4)0.041 (5)0.030 (3)0.003 (3)0.001 (3)0.003 (3)
C110.040 (4)0.054 (5)0.024 (3)0.001 (4)0.001 (3)0.006 (3)
C120.042 (4)0.040 (5)0.030 (4)0.004 (3)0.003 (3)0.002 (3)
C130.033 (4)0.032 (5)0.035 (4)0.005 (3)0.004 (3)0.003 (3)
C140.039 (4)0.051 (5)0.042 (4)0.006 (4)0.010 (3)0.003 (3)
C150.042 (4)0.063 (6)0.039 (4)0.007 (4)0.008 (4)0.005 (4)
C160.035 (4)0.068 (6)0.033 (4)0.000 (4)0.011 (3)0.014 (4)
C170.034 (4)0.041 (5)0.032 (3)0.001 (3)0.001 (3)0.006 (3)
C180.032 (4)0.033 (5)0.035 (4)0.003 (3)0.003 (3)0.008 (3)
C190.036 (4)0.026 (4)0.032 (4)0.002 (3)0.001 (3)0.002 (3)
C200.041 (4)0.045 (5)0.031 (3)0.006 (3)0.008 (3)0.002 (3)
C210.052 (5)0.037 (5)0.044 (4)0.002 (3)0.017 (4)0.003 (4)
C220.027 (4)0.039 (5)0.056 (5)0.003 (3)0.014 (3)0.004 (4)
C230.034 (4)0.039 (5)0.044 (4)0.000 (3)0.005 (3)0.006 (3)
C240.040 (4)0.032 (5)0.027 (3)0.004 (3)0.001 (3)0.004 (3)
C250.033 (4)0.056 (5)0.033 (4)0.001 (4)0.008 (3)0.004 (3)
C260.033 (4)0.052 (5)0.026 (3)0.004 (3)0.006 (3)0.001 (3)
C270.041 (4)0.049 (5)0.032 (4)0.003 (4)0.001 (3)0.007 (3)
C280.033 (4)0.049 (5)0.043 (4)0.004 (3)0.005 (3)0.009 (4)
C290.037 (4)0.039 (5)0.035 (4)0.001 (3)0.015 (3)0.011 (3)
C300.039 (4)0.044 (5)0.026 (3)0.005 (3)0.005 (3)0.004 (3)
C310.032 (4)0.038 (5)0.038 (4)0.003 (3)0.006 (3)0.002 (3)
C320.031 (4)0.055 (5)0.035 (4)0.007 (3)0.007 (3)0.009 (4)
C330.030 (4)0.065 (6)0.050 (4)0.009 (4)0.019 (3)0.006 (4)
C340.032 (4)0.039 (5)0.059 (5)0.002 (3)0.004 (3)0.008 (4)
C350.030 (4)0.031 (5)0.049 (4)0.011 (3)0.002 (3)0.001 (3)
C360.026 (4)0.035 (5)0.047 (4)0.003 (3)0.009 (3)0.000 (3)
Geometric parameters (Å, º) top
Cu1—O11.889 (4)C10—H10A0.9700
Cu1—O41.911 (4)C10—H10B0.9700
Cu1—N41.989 (5)C11—H11A0.9700
Cu1—N11.997 (5)C11—H11B0.9700
Cu2—O31.905 (4)C12—C131.435 (8)
Cu2—O21.909 (4)C12—H120.9300
Cu2—N21.989 (5)C13—C141.402 (8)
Cu2—N32.016 (5)C13—C181.409 (8)
Br1—C21.897 (6)C14—C151.373 (8)
Br2—C41.899 (6)C14—H140.9300
Br3—C151.892 (6)C15—C161.380 (9)
Br4—C171.899 (6)C16—C171.363 (8)
Br5—C201.887 (6)C16—H160.9300
Br6—C221.890 (6)C17—C181.417 (8)
Br7—C331.901 (6)C19—C241.411 (8)
Br8—C351.882 (6)C19—C201.416 (8)
O1—C11.301 (7)C20—C211.374 (8)
O2—C181.299 (7)C21—C221.387 (9)
O3—C191.297 (7)C21—H210.9300
O4—C361.293 (7)C22—C231.356 (8)
N1—C71.279 (7)C23—C241.406 (8)
N1—C81.479 (6)C23—H230.9300
N2—C121.286 (7)C24—C251.437 (8)
N2—C111.469 (7)C25—H250.9300
N3—C251.279 (7)C26—C271.543 (9)
N3—C261.482 (7)C26—H26A0.9700
N4—C301.277 (7)C26—H26B0.9700
N4—C291.479 (7)C27—C281.513 (8)
C1—C21.411 (8)C27—H27A0.9700
C1—C61.421 (8)C27—H27B0.9700
C2—C31.352 (8)C28—C291.506 (9)
C3—C41.393 (8)C28—H28A0.9700
C3—H30.9300C28—H28B0.9700
C4—C51.355 (8)C29—H290.9300
C5—C61.383 (7)C30—C311.444 (8)
C5—H50.9300C30—H300.9300
C6—C71.434 (7)C31—C321.401 (8)
C7—H70.9300C31—C361.418 (9)
C8—C91.514 (8)C32—C331.372 (8)
C8—H8A0.9700C32—H320.9300
C8—H8B0.9700C33—C341.374 (9)
C9—C101.503 (8)C34—C351.374 (8)
C9—H9A0.9700C34—H340.9300
C9—H9B0.9700C35—C361.429 (8)
C10—C111.528 (8)
O1—Cu1—O4162.17 (19)C15—C14—C13120.6 (6)
O1—Cu1—N488.22 (18)C15—C14—H14119.7
O4—Cu1—N492.86 (18)C13—C14—H14119.7
O1—Cu1—N191.66 (18)C14—C15—C16120.0 (6)
O4—Cu1—N192.55 (18)C14—C15—Br3120.8 (5)
N4—Cu1—N1162.58 (19)C16—C15—Br3119.3 (5)
O3—Cu2—O2170.95 (19)C17—C16—C15119.7 (6)
O3—Cu2—N290.16 (19)C17—C16—H16120.2
O2—Cu2—N292.04 (18)C15—C16—H16120.2
O3—Cu2—N390.44 (19)C16—C17—C18123.3 (6)
O2—Cu2—N389.63 (19)C16—C17—Br4118.4 (5)
N2—Cu2—N3165.5 (2)C18—C17—Br4118.3 (5)
C1—O1—Cu1129.4 (4)O2—C18—C13124.2 (5)
C18—O2—Cu2129.9 (4)O2—C18—C17120.2 (5)
C19—O3—Cu2131.3 (4)C13—C18—C17115.6 (6)
C36—O4—Cu1128.0 (4)O3—C19—C24122.8 (5)
C7—N1—C8117.0 (5)O3—C19—C20121.3 (5)
C7—N1—Cu1123.2 (4)C24—C19—C20115.9 (5)
C8—N1—Cu1119.9 (4)C21—C20—C19122.4 (6)
C12—N2—C11116.1 (5)C21—C20—Br5118.5 (5)
C12—N2—Cu2123.6 (4)C19—C20—Br5119.1 (4)
C11—N2—Cu2120.3 (4)C20—C21—C22120.4 (6)
C25—N3—C26115.3 (5)C20—C21—H21119.8
C25—N3—Cu2124.0 (4)C22—C21—H21119.8
C26—N3—Cu2120.6 (4)C23—C22—C21119.1 (6)
C30—N4—C29115.9 (5)C23—C22—Br6119.4 (5)
C30—N4—Cu1123.5 (4)C21—C22—Br6121.4 (5)
C29—N4—Cu1120.6 (4)C22—C23—C24121.8 (6)
O1—C1—C2120.2 (5)C22—C23—H23119.1
O1—C1—C6123.8 (5)C24—C23—H23119.1
C2—C1—C6116.0 (5)C23—C24—C19120.4 (6)
C3—C2—C1123.2 (6)C23—C24—C25117.4 (6)
C3—C2—Br1118.5 (5)C19—C24—C25122.0 (6)
C1—C2—Br1118.2 (5)N3—C25—C24128.1 (6)
C2—C3—C4119.4 (6)N3—C25—H25115.9
C2—C3—H3120.3C24—C25—H25115.9
C4—C3—H3120.3N3—C26—C27111.1 (5)
C5—C4—C3119.8 (6)N3—C26—H26A109.4
C5—C4—Br2121.2 (4)C27—C26—H26A109.4
C3—C4—Br2119.0 (5)N3—C26—H26B109.4
C4—C5—C6121.9 (5)C27—C26—H26B109.4
C4—C5—H5119.1H26A—C26—H26B108.0
C6—C5—H5119.1C28—C27—C26115.6 (5)
C5—C6—C1119.8 (5)C28—C27—H27A108.4
C5—C6—C7119.0 (5)C26—C27—H27A108.4
C1—C6—C7120.9 (5)C28—C27—H27B108.4
N1—C7—C6128.5 (5)C26—C27—H27B108.4
N1—C7—H7115.8H27A—C27—H27B107.4
C6—C7—H7115.8C29—C28—C27113.8 (5)
N1—C8—C9111.8 (5)C29—C28—H28A108.8
N1—C8—H8A109.3C27—C28—H28A108.8
C9—C8—H8A109.3C29—C28—H28B108.8
N1—C8—H8B109.3C27—C28—H28B108.8
C9—C8—H8B109.3H28A—C28—H28B107.7
H8A—C8—H8B107.9N4—C29—C28109.7 (5)
C10—C9—C8113.6 (5)N4—C29—H29125.1
C10—C9—H9A108.8C28—C29—H29125.1
C8—C9—H9A108.8N4—C30—C31127.5 (6)
C10—C9—H9B108.8N4—C30—H30116.2
C8—C9—H9B108.8C31—C30—H30116.2
H9A—C9—H9B107.7C32—C31—C36121.9 (6)
C9—C10—C11112.9 (5)C32—C31—C30115.7 (6)
C9—C10—H10A109.0C36—C31—C30122.4 (5)
C11—C10—H10A109.0C33—C32—C31119.4 (6)
C9—C10—H10B109.0C33—C32—H32120.3
C11—C10—H10B109.0C31—C32—H32120.3
H10A—C10—H10B107.8C32—C33—C34121.1 (6)
N2—C11—C10110.7 (5)C32—C33—Br7117.8 (5)
N2—C11—H11A109.5C34—C33—Br7121.1 (5)
C10—C11—H11A109.5C33—C34—C35120.0 (6)
N2—C11—H11B109.5C33—C34—H34120.0
C10—C11—H11B109.5C35—C34—H34120.0
H11A—C11—H11B108.1C34—C35—C36122.3 (6)
N2—C12—C13128.8 (6)C34—C35—Br8119.6 (5)
N2—C12—H12115.6C36—C35—Br8118.1 (5)
C13—C12—H12115.6O4—C36—C31123.7 (6)
C14—C13—C18120.8 (6)O4—C36—C35121.0 (6)
C14—C13—C12117.7 (6)C31—C36—C35115.2 (5)
C18—C13—C12121.4 (6)
O4—Cu1—O1—C1120.3 (6)C12—C13—C14—C15178.1 (6)
N4—Cu1—O1—C1145.9 (5)C13—C14—C15—C160.3 (11)
N1—Cu1—O1—C116.7 (5)C13—C14—C15—Br3179.9 (5)
N2—Cu2—O2—C181.2 (5)C14—C15—C16—C171.1 (11)
N3—Cu2—O2—C18166.7 (5)Br3—C15—C16—C17179.3 (5)
N2—Cu2—O3—C19152.3 (5)C15—C16—C17—C181.7 (11)
N3—Cu2—O3—C1913.2 (5)C15—C16—C17—Br4178.1 (5)
O1—Cu1—O4—C36108.0 (7)Cu2—O2—C18—C132.1 (9)
N4—Cu1—O4—C3614.9 (5)Cu2—O2—C18—C17178.7 (4)
N1—Cu1—O4—C36148.6 (5)C14—C13—C18—O2179.9 (6)
O1—Cu1—N1—C712.7 (5)C12—C13—C18—O22.2 (10)
O4—Cu1—N1—C7175.4 (5)C14—C13—C18—C170.6 (9)
N4—Cu1—N1—C776.6 (8)C12—C13—C18—C17178.5 (6)
O1—Cu1—N1—C8166.4 (4)C16—C17—C18—O2179.3 (6)
O4—Cu1—N1—C83.8 (4)Br4—C17—C18—O20.9 (8)
N4—Cu1—N1—C8104.2 (7)C16—C17—C18—C131.4 (10)
O3—Cu2—N2—C12170.4 (5)Br4—C17—C18—C13178.3 (5)
O2—Cu2—N2—C120.8 (5)Cu2—O3—C19—C2411.7 (9)
N3—Cu2—N2—C1297.2 (9)Cu2—O3—C19—C20170.7 (5)
O3—Cu2—N2—C1111.8 (4)O3—C19—C20—C21174.4 (6)
O2—Cu2—N2—C11177.0 (4)C24—C19—C20—C213.4 (9)
N3—Cu2—N2—C1180.6 (9)O3—C19—C20—Br53.6 (8)
O3—Cu2—N3—C257.0 (6)C24—C19—C20—Br5178.7 (5)
O2—Cu2—N3—C25177.9 (5)C19—C20—C21—C221.9 (10)
N2—Cu2—N3—C2585.3 (10)Br5—C20—C21—C22179.9 (5)
O3—Cu2—N3—C26174.2 (5)C20—C21—C22—C230.5 (10)
O2—Cu2—N3—C263.2 (5)C20—C21—C22—Br6175.3 (5)
N2—Cu2—N3—C2693.5 (9)C21—C22—C23—C241.2 (10)
O1—Cu1—N4—C30166.8 (5)Br6—C22—C23—C24174.7 (5)
O4—Cu1—N4—C304.6 (5)C22—C23—C24—C190.4 (10)
N1—Cu1—N4—C30103.3 (8)C22—C23—C24—C25176.0 (6)
O1—Cu1—N4—C2916.1 (4)O3—C19—C24—C23175.1 (6)
O4—Cu1—N4—C29178.2 (4)C20—C19—C24—C232.6 (9)
N1—Cu1—N4—C2973.8 (8)O3—C19—C24—C250.2 (10)
Cu1—O1—C1—C2169.9 (4)C20—C19—C24—C25177.9 (6)
Cu1—O1—C1—C69.9 (9)C26—N3—C25—C24178.9 (6)
O1—C1—C2—C3179.7 (6)Cu2—N3—C25—C240.0 (10)
C6—C1—C2—C30.1 (10)C23—C24—C25—N3179.1 (7)
O1—C1—C2—Br13.2 (8)C19—C24—C25—N35.5 (11)
C6—C1—C2—Br1177.0 (4)C25—N3—C26—C27103.0 (6)
C1—C2—C3—C40.3 (10)Cu2—N3—C26—C2776.0 (6)
Br1—C2—C3—C4177.3 (5)N3—C26—C27—C2864.1 (7)
C2—C3—C4—C50.7 (10)C26—C27—C28—C29174.7 (5)
C2—C3—C4—Br2178.7 (5)C30—N4—C29—C28105.3 (6)
C3—C4—C5—C60.8 (10)Cu1—N4—C29—C2872.0 (6)
Br2—C4—C5—C6178.8 (5)C27—C28—C29—N458.9 (7)
C4—C5—C6—C10.5 (10)C29—N4—C30—C31173.5 (6)
C4—C5—C6—C7174.6 (6)Cu1—N4—C30—C313.7 (9)
O1—C1—C6—C5179.8 (6)N4—C30—C31—C32172.6 (6)
C2—C1—C6—C50.0 (9)N4—C30—C31—C365.8 (11)
O1—C1—C6—C76.2 (9)C36—C31—C32—C331.8 (10)
C2—C1—C6—C7174.0 (6)C30—C31—C32—C33176.6 (6)
C8—N1—C7—C6176.3 (6)C31—C32—C33—C340.4 (11)
Cu1—N1—C7—C62.9 (9)C31—C32—C33—Br7178.2 (5)
C5—C6—C7—N1176.5 (6)C32—C33—C34—C351.0 (11)
C1—C6—C7—N19.5 (10)Br7—C33—C34—C35177.6 (5)
C7—N1—C8—C9103.6 (6)C33—C34—C35—C360.5 (10)
Cu1—N1—C8—C977.2 (6)C33—C34—C35—Br8179.9 (6)
N1—C8—C9—C1064.5 (7)Cu1—O4—C36—C3116.8 (9)
C8—C9—C10—C11173.8 (5)Cu1—O4—C36—C35163.3 (5)
C12—N2—C11—C10108.8 (6)C32—C31—C36—O4176.7 (6)
Cu2—N2—C11—C1069.2 (6)C30—C31—C36—O45.0 (10)
C9—C10—C11—N261.0 (7)C32—C31—C36—C353.1 (9)
C11—N2—C12—C13176.4 (6)C30—C31—C36—C35175.2 (6)
Cu2—N2—C12—C131.4 (10)C34—C35—C36—O4177.4 (6)
N2—C12—C13—C14180.0 (6)Br8—C35—C36—O42.0 (8)
N2—C12—C13—C182.0 (11)C34—C35—C36—C312.5 (10)
C18—C13—C14—C150.1 (10)Br8—C35—C36—C31178.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O30.972.503.099 (7)120
C27—H27B···O20.972.543.129 (7)119

Experimental details

Crystal data
Chemical formula[Cu2(C18H14Br4N2O2)2]
Mr1345.98
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)291
a, b, c (Å)27.4100 (11), 7.9055 (4), 18.8291 (7)
V3)4080.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)8.92
Crystal size (mm)0.36 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.142, 0.329
No. of measured, independent and
observed [I > 2σ(I)] reflections
33878, 8854, 5887
Rint0.071
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.068, 1.00
No. of reflections8854
No. of parameters487
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.45
Absolute structureFlack (1983), 4178 Friedel pairs
Absolute structure parameter0.069 (8)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O30.972.503.099 (7)120
C27—H27B···O20.972.543.129 (7)119
 

Acknowledgements

HK and AAA thank PNU for the support of this work. RK thanks the Science and Research Branch, Islamic Azad University. MNT thanks GC University of Sargodha, Pakistan for the research facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302–1304.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGranovski, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  Google Scholar
First citationHannon, M. J., Painting, L. C. & Alcock, N. W. (1999). Chem. Commun. pp. 2023–2024.  Web of Science CSD CrossRef Google Scholar
First citationKargar, H. & Kia, R. (2011a). Acta Cryst. E67, m497–m498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKargar, H. & Kia, R. (2011b). Acta Cryst. E67, m499–m500.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKido, J. & Okamoto, Y. (2002). Chem. Rev. 102, 2357–2368.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLavalette, A., Tuna, F., Clarkson, G., Alcock, N. W. & Hannon, M. J. (2003). Chem. Commun. pp. 2666–2667.  Web of Science CSD CrossRef Google Scholar
First citationLi, Y., Zheng, F.-K., Liu, X., Zou, W.-Q., Guo, G.-C., Lu, C.-Z. & Huang, J.-S. (2006). Inorg. Chem. 45, 6308–6316.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds