organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 4-[3-(4-meth­­oxy­phen­yl)-1-phenyl-1H-pyrazol-4-yl]-2,6-di­methyl-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate dihydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bMedicinal Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025, India, and cSchulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa 32000, Israel
*Correspondence e-mail: hkfun@usm.my

(Received 18 June 2012; accepted 20 June 2012; online 27 June 2012)

In the title compound, C27H27N3O5·2H2O, the dihydro­pyridine ring adopts a flattened boat conformation. The central pyrazole ring is essentially planar [maximum deviation of 0.003 (1) Å] and makes dihedral angles of 50.42 (6) and 26.44 (6)° with the benzene rings. In the crystal, mol­ecules are linked via N—H⋯O, O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds into two-dimensional networks parallel to the bc plane. The crystal structure is further consolidated by weak C—H⋯π inter­actions.

Related literature

For details and applications of pyrazoles, see: Buhler & Kiowski (1987[Buhler, F. R. & Kiowski, W. (1987). J. Hypertens. 5, S3-S10.]); Isloor et al. (2000[Isloor, A. M., Kalluraya, B. & Rao, M. (2000). J. Saudi Chem. Soc. 4, 265-270.], 2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]); Isloor (2011[Isloor, N. A. (2011). Eur. J. Med. Chem. 46, 5591-5597.]); Vijesh et al. (2011[Vijesh, A. M., Isloor, A. M., Peethambar, S. K., Shivananda, K. N., Arulmoli, T. & Isloor, N. A. (2011). Eur. J. Med. Chem. 46, 5591-5597.]); Vo et al. (1995[Vo, D., Matowe, W. C., Ramesh, M., Iqbal, N., Wolowyk, M. W., Howlett, S. E. & Knaus, E. E. (1995). J. Med. Chem. 38, 2851-2859.]). For the preparation of the compound, see: Trivedi et al. (2011[Trivedi, A., Dodiya, D., Dholariya, B., Kataria, V., Bhuva, V. & Shah, V. (2011). Chem. Biol. Drug Des. 78, 881-886.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see: Fun et al. (2011[Fun, H.-K., Hemamalini, M., Vijesh, A. M., Isloor, A. M. & Malladi, S. (2011). Acta Cryst. E67, o1417-o1418.], 2012[Fun, H.-K., Ooi, C. W., Malladi, S., Shivananda, K. N. & Isloor, A. M. (2012). Acta Cryst. E68, o892-o893.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C27H27N3O5·2H2O

  • Mr = 509.55

  • Monoclinic, P 21 /c

  • a = 14.1279 (9) Å

  • b = 11.6313 (7) Å

  • c = 15.3780 (9) Å

  • β = 93.358 (1)°

  • V = 2522.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.34 × 0.17 × 0.14 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.968, Tmax = 0.987

  • 28375 measured reflections

  • 7347 independent reflections

  • 5683 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.131

  • S = 1.04

  • 7347 reflections

  • 359 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the pyrazole (N2/N3/C6–C8) and benzene (C15–C20) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2W 0.904 (18) 2.001 (18) 2.9020 (14) 175.2 (15)
O1W—H2W1⋯N3 0.90 (2) 2.05 (2) 2.9449 (14) 174 (2)
O2W—H2W2⋯O1Wi 0.98 (3) 1.84 (3) 2.7986 (15) 166 (2)
O2W—H1W2⋯O3ii 0.90 (3) 1.91 (3) 2.8074 (14) 174 (2)
O1W—H1W1⋯O2Wiii 0.87 (3) 2.06 (3) 2.9274 (15) 178 (2)
C20—H20A⋯O1Wiv 0.95 2.44 3.2980 (16) 151
C13—H13ACg2v 0.95 2.90 3.6957 (14) 142
C18—H18ACg1vi 0.95 2.63 3.3682 (15) 135
C25—H25ACg2i 0.98 2.87 3.7231 (14) 146
C27—H27CCg1v 0.98 2.62 3.5720 (17) 164
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z-{\script{3\over 2}}]; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the recent years, pyrazoles and their derivatives have attracted medicinal chemists because of their varied biological properties such as anti-microbial (Isloor et al., 2009), analgesic (Isloor et al., 2000; Isloor, 2011) and anti-inflammatory (Vijesh et al., 2011) activities. They are used most frequently as cardiovascular agents for the treatment of hypertension (Buhler & Kiowski, 1987). A number of dihydropyridine (DHP) derivatives are employed as potential drug candidates for the treatment of congestive heart failure (Vo et al., 1995). In view of this potential biological importance, we have synthesised the title DHP compound and report its structure here.

The asymmetric unit of the title compound (Fig. 1), contains one dimethyl 4-[3-(4-methoxyphenyl)-1-phenyl-1H-pyrazol-4-yl]-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate molecule and two water molecules. The dihydropyridine (N1/C1–C5) ring adopts a flattened boat conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.3369 (12) Å, θ = 107.1 (2)°, and φ = 1.5 (2)°. The central pyrazole ring (N2/N3/C6–C8) is essentially planar [maximum deviation of 0.003 (1) Å at atoms N2 and C8] and makes dihedral angles of 50.42 (6)° and 26.44 (6)°, respectively, with the benzene rings (C9–C14 & C15–C20). The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those found in related structures (Fun et al., 2011, 2012).

In the crystal structure (Fig. 2), the molecules are linked via intermolecular N1—H1N1···O2W, O1W—H1W1···O2W, O1W—H2W1···N3, O2W—H1W2···O3, O2W—H2W2···O1W and C20—H20A···O1W hydrogen bonds (Table 1) into two-dimensional networks parallel to the bc plane. The crystal structure is further consolidated by weak C—H···π interactions (Table 1), involving the centroids of the pyrazole ring (N2/N3/C6–C8; Cg1) and benzene ring (C15–C20; Cg2).

Related literature top

For details and applications of pyrazoles, see: Buhler & Kiowski (1987); Isloor et al. (2000, 2009); Isloor (2011); Vijesh et al. (2011); Vo et al. (1995). For the preparation of the compound, see: Trivedi et al. (2011). For ring conformations, see: Cremer & Pople (1975). For related structures, see: Fun et al. (2011, 2012). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

3-(4-Methoxyphenyl)-1-phenyl-1H-pyrazole-4-carbaldehyde (0.20 g, 0.0007 mol), acetyl acetone (0.17 g, 0.0015 mol) and ammonium acetate (0.064 g, 0.00084 mol) in ethanol (10 ml) were refluxed for 5 h. After the completion of the reaction, the reaction mixture was concentrated and poured into crushed ice. The precipitated product was filtered and washed with water. The resulting solid was recrystallized from ethanol. Yield: 0.28 g, 82.3%; M.p. 393–395 K. (Trivedi et al., 2011).

Refinement top

All N and O bound H atoms were located from the difference map and were refined freely [N–H = 0.904 (18) Å and O–H = 0.87 (3)–0.98 (2) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C) (C–H = 0.9500, 0.9800 and 1.0000 Å). A rotating group model was applied to the methyl groups.

Structure description top

In the recent years, pyrazoles and their derivatives have attracted medicinal chemists because of their varied biological properties such as anti-microbial (Isloor et al., 2009), analgesic (Isloor et al., 2000; Isloor, 2011) and anti-inflammatory (Vijesh et al., 2011) activities. They are used most frequently as cardiovascular agents for the treatment of hypertension (Buhler & Kiowski, 1987). A number of dihydropyridine (DHP) derivatives are employed as potential drug candidates for the treatment of congestive heart failure (Vo et al., 1995). In view of this potential biological importance, we have synthesised the title DHP compound and report its structure here.

The asymmetric unit of the title compound (Fig. 1), contains one dimethyl 4-[3-(4-methoxyphenyl)-1-phenyl-1H-pyrazol-4-yl]-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate molecule and two water molecules. The dihydropyridine (N1/C1–C5) ring adopts a flattened boat conformation with puckering parameters (Cremer & Pople, 1975) Q = 0.3369 (12) Å, θ = 107.1 (2)°, and φ = 1.5 (2)°. The central pyrazole ring (N2/N3/C6–C8) is essentially planar [maximum deviation of 0.003 (1) Å at atoms N2 and C8] and makes dihedral angles of 50.42 (6)° and 26.44 (6)°, respectively, with the benzene rings (C9–C14 & C15–C20). The bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to those found in related structures (Fun et al., 2011, 2012).

In the crystal structure (Fig. 2), the molecules are linked via intermolecular N1—H1N1···O2W, O1W—H1W1···O2W, O1W—H2W1···N3, O2W—H1W2···O3, O2W—H2W2···O1W and C20—H20A···O1W hydrogen bonds (Table 1) into two-dimensional networks parallel to the bc plane. The crystal structure is further consolidated by weak C—H···π interactions (Table 1), involving the centroids of the pyrazole ring (N2/N3/C6–C8; Cg1) and benzene ring (C15–C20; Cg2).

For details and applications of pyrazoles, see: Buhler & Kiowski (1987); Isloor et al. (2000, 2009); Isloor (2011); Vijesh et al. (2011); Vo et al. (1995). For the preparation of the compound, see: Trivedi et al. (2011). For ring conformations, see: Cremer & Pople (1975). For related structures, see: Fun et al. (2011, 2012). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
Dimethyl 4-[3-(4-methoxyphenyl)-1-phenyl-1H-pyrazol-4-yl]- 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate dihydrate top
Crystal data top
C27H27N3O5·2H2OF(000) = 1080
Mr = 509.55Dx = 1.342 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7658 reflections
a = 14.1279 (9) Åθ = 2.3–30.0°
b = 11.6313 (7) ŵ = 0.10 mm1
c = 15.3780 (9) ÅT = 100 K
β = 93.358 (1)°Block, yellow
V = 2522.7 (3) Å30.34 × 0.17 × 0.14 mm
Z = 4
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
7347 independent reflections
Radiation source: fine-focus sealed tube5683 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 30.1°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1919
Tmin = 0.968, Tmax = 0.987k = 1613
28375 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0713P)2 + 0.6924P]
where P = (Fo2 + 2Fc2)/3
7347 reflections(Δ/σ)max < 0.001
359 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C27H27N3O5·2H2OV = 2522.7 (3) Å3
Mr = 509.55Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.1279 (9) ŵ = 0.10 mm1
b = 11.6313 (7) ÅT = 100 K
c = 15.3780 (9) Å0.34 × 0.17 × 0.14 mm
β = 93.358 (1)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
7347 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5683 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.987Rint = 0.036
28375 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.43 e Å3
7347 reflectionsΔρmin = 0.24 e Å3
359 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.00103 (7)0.62548 (9)0.37770 (6)0.0226 (2)
O1W0.41969 (8)0.86761 (10)0.00494 (6)0.0234 (2)
O20.03130 (6)0.66323 (8)0.23892 (6)0.01912 (19)
O2W0.38758 (7)0.38977 (8)0.53450 (6)0.0195 (2)
O30.28443 (7)0.24426 (8)0.14770 (6)0.0219 (2)
O40.18314 (7)0.37519 (8)0.08778 (6)0.0200 (2)
O50.08804 (7)0.56032 (9)0.20791 (6)0.0225 (2)
N10.25743 (8)0.42928 (9)0.38442 (6)0.0156 (2)
N20.34896 (7)0.74941 (9)0.22034 (6)0.01294 (19)
N30.32317 (7)0.74721 (9)0.13320 (6)0.0136 (2)
C10.13336 (8)0.53784 (10)0.31548 (7)0.0133 (2)
C20.17983 (8)0.50147 (11)0.39019 (7)0.0144 (2)
C30.27622 (8)0.36991 (10)0.30988 (7)0.0141 (2)
C40.23111 (8)0.40222 (10)0.23297 (7)0.0129 (2)
C50.17563 (8)0.51489 (10)0.22856 (7)0.0120 (2)
H5A0.12310.50840.18240.014*
C60.23963 (8)0.61354 (10)0.20620 (7)0.0123 (2)
C70.25677 (8)0.66432 (10)0.12467 (7)0.0125 (2)
C80.29982 (8)0.67097 (10)0.26530 (7)0.0132 (2)
H8A0.30580.65800.32640.016*
C90.21375 (9)0.63618 (10)0.03755 (7)0.0141 (2)
C100.11507 (9)0.62914 (11)0.02224 (8)0.0162 (2)
H10A0.07510.64200.06880.019*
C110.07515 (9)0.60366 (12)0.05989 (8)0.0182 (2)
H11A0.00820.59940.06940.022*
C120.13333 (9)0.58421 (11)0.12869 (7)0.0172 (2)
C130.23124 (9)0.58855 (12)0.11424 (8)0.0186 (3)
H13A0.27120.57360.16060.022*
C140.27062 (9)0.61488 (11)0.03141 (8)0.0167 (2)
H14A0.33760.61830.02190.020*
C150.41077 (8)0.83539 (10)0.25672 (7)0.0134 (2)
C160.42022 (9)0.93974 (11)0.21407 (8)0.0175 (2)
H16A0.38770.95290.15910.021*
C170.47758 (10)1.02438 (12)0.25260 (9)0.0223 (3)
H17A0.48491.09550.22340.027*
C180.52447 (10)1.00658 (12)0.33343 (9)0.0226 (3)
H18A0.56311.06540.35960.027*
C190.51448 (9)0.90238 (12)0.37554 (8)0.0190 (3)
H19A0.54640.88990.43080.023*
C200.45806 (9)0.81588 (11)0.33746 (7)0.0155 (2)
H20A0.45180.74420.36620.019*
C210.23800 (9)0.33188 (11)0.15483 (7)0.0150 (2)
C220.17954 (12)0.30966 (13)0.00848 (9)0.0288 (3)
H22A0.14120.35080.03670.043*
H22B0.15100.23440.01860.043*
H22C0.24390.29910.01060.043*
C230.04876 (9)0.61105 (11)0.31701 (8)0.0158 (2)
C240.05368 (10)0.73192 (13)0.23212 (9)0.0244 (3)
H24A0.05860.77050.17540.037*
H24B0.05120.78970.27860.037*
H24C0.10910.68230.23780.037*
C250.34522 (9)0.27246 (12)0.32367 (8)0.0195 (3)
H25A0.39370.27750.28070.029*
H25B0.31140.19920.31670.029*
H25C0.37560.27720.38250.029*
C260.15698 (10)0.53149 (12)0.48159 (8)0.0204 (3)
H26A0.13510.61140.48350.031*
H26B0.21390.52240.52050.031*
H26C0.10700.48030.50040.031*
C270.14331 (11)0.56823 (14)0.28286 (8)0.0267 (3)
H27A0.10170.56060.33580.040*
H27B0.19070.50660.28100.040*
H27C0.17540.64290.28300.040*
H1N10.2957 (13)0.4137 (15)0.4321 (12)0.027 (4)*
H2W10.3944 (16)0.828 (2)0.0380 (14)0.047 (6)*
H2W20.4530 (18)0.3690 (19)0.5247 (14)0.052 (6)*
H1W10.4089 (18)0.939 (2)0.0070 (16)0.063 (7)*
H1W20.3581 (17)0.345 (2)0.5726 (15)0.053 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0199 (5)0.0257 (5)0.0230 (4)0.0020 (4)0.0086 (4)0.0036 (4)
O1W0.0300 (5)0.0186 (5)0.0229 (5)0.0027 (4)0.0110 (4)0.0019 (4)
O20.0167 (4)0.0197 (5)0.0212 (4)0.0060 (4)0.0028 (3)0.0014 (3)
O2W0.0218 (5)0.0177 (5)0.0190 (4)0.0011 (4)0.0007 (3)0.0042 (3)
O30.0258 (5)0.0186 (5)0.0216 (4)0.0060 (4)0.0035 (4)0.0049 (3)
O40.0297 (5)0.0170 (5)0.0133 (4)0.0042 (4)0.0004 (3)0.0036 (3)
O50.0245 (5)0.0303 (5)0.0126 (4)0.0096 (4)0.0004 (3)0.0005 (3)
N10.0166 (5)0.0170 (5)0.0132 (4)0.0014 (4)0.0010 (4)0.0005 (4)
N20.0147 (5)0.0121 (5)0.0119 (4)0.0009 (4)0.0005 (3)0.0001 (3)
N30.0153 (5)0.0141 (5)0.0115 (4)0.0002 (4)0.0010 (3)0.0005 (3)
C10.0135 (5)0.0126 (5)0.0142 (5)0.0020 (4)0.0048 (4)0.0015 (4)
C20.0155 (5)0.0134 (6)0.0146 (5)0.0026 (4)0.0044 (4)0.0006 (4)
C30.0140 (5)0.0124 (6)0.0162 (5)0.0012 (4)0.0033 (4)0.0000 (4)
C40.0130 (5)0.0114 (5)0.0147 (5)0.0010 (4)0.0035 (4)0.0011 (4)
C50.0123 (5)0.0117 (5)0.0123 (5)0.0005 (4)0.0022 (4)0.0001 (4)
C60.0131 (5)0.0114 (5)0.0126 (5)0.0008 (4)0.0023 (4)0.0000 (4)
C70.0128 (5)0.0113 (5)0.0134 (5)0.0008 (4)0.0022 (4)0.0001 (4)
C80.0150 (5)0.0119 (5)0.0130 (5)0.0005 (4)0.0025 (4)0.0004 (4)
C90.0165 (5)0.0129 (6)0.0130 (5)0.0013 (4)0.0009 (4)0.0016 (4)
C100.0154 (6)0.0186 (6)0.0148 (5)0.0006 (5)0.0027 (4)0.0015 (4)
C110.0164 (6)0.0206 (6)0.0175 (5)0.0022 (5)0.0000 (4)0.0016 (4)
C120.0208 (6)0.0173 (6)0.0133 (5)0.0050 (5)0.0002 (4)0.0010 (4)
C130.0196 (6)0.0229 (7)0.0138 (5)0.0044 (5)0.0044 (4)0.0016 (4)
C140.0150 (5)0.0196 (6)0.0155 (5)0.0034 (5)0.0026 (4)0.0003 (4)
C150.0126 (5)0.0124 (6)0.0153 (5)0.0008 (4)0.0030 (4)0.0016 (4)
C160.0205 (6)0.0156 (6)0.0166 (5)0.0027 (5)0.0027 (4)0.0014 (4)
C170.0265 (7)0.0173 (6)0.0235 (6)0.0076 (5)0.0037 (5)0.0009 (5)
C180.0218 (6)0.0218 (7)0.0243 (6)0.0091 (5)0.0023 (5)0.0043 (5)
C190.0155 (6)0.0227 (7)0.0187 (5)0.0025 (5)0.0005 (4)0.0021 (5)
C200.0147 (5)0.0151 (6)0.0168 (5)0.0001 (4)0.0020 (4)0.0001 (4)
C210.0152 (5)0.0141 (6)0.0161 (5)0.0024 (4)0.0042 (4)0.0006 (4)
C220.0461 (9)0.0240 (7)0.0158 (6)0.0082 (6)0.0015 (5)0.0069 (5)
C230.0149 (5)0.0143 (6)0.0183 (5)0.0019 (4)0.0033 (4)0.0018 (4)
C240.0187 (6)0.0235 (7)0.0307 (7)0.0075 (5)0.0007 (5)0.0011 (5)
C250.0203 (6)0.0180 (6)0.0203 (6)0.0050 (5)0.0023 (4)0.0015 (4)
C260.0243 (6)0.0227 (7)0.0146 (5)0.0020 (5)0.0048 (4)0.0013 (4)
C270.0315 (7)0.0350 (8)0.0139 (5)0.0139 (6)0.0034 (5)0.0020 (5)
Geometric parameters (Å, º) top
O1—C231.2129 (15)C10—C111.3848 (16)
O1W—H2W10.89 (2)C10—H10A0.9500
O1W—H1W10.87 (3)C11—C121.3957 (18)
O2—C231.3553 (15)C11—H11A0.9500
O2—C241.4408 (15)C12—C131.3890 (18)
O2W—H2W20.98 (2)C13—C141.3939 (16)
O2W—H1W20.90 (3)C13—H13A0.9500
O3—C211.2204 (16)C14—H14A0.9500
O4—C211.3507 (14)C15—C161.3897 (17)
O4—C221.4364 (15)C15—C201.3936 (15)
O5—C121.3709 (14)C16—C171.3859 (18)
O5—C271.4324 (16)C16—H16A0.9500
N1—C31.3773 (15)C17—C181.3894 (18)
N1—C21.3879 (16)C17—H17A0.9500
N1—H1N10.904 (18)C18—C191.3853 (19)
N2—C81.3596 (15)C18—H18A0.9500
N2—N31.3683 (13)C19—C201.3915 (17)
N2—C151.4207 (15)C19—H19A0.9500
N3—C71.3463 (15)C20—H20A0.9500
C1—C21.3570 (15)C22—H22A0.9800
C1—C231.4688 (17)C22—H22B0.9800
C1—C51.5192 (15)C22—H22C0.9800
C2—C261.5015 (16)C24—H24A0.9800
C3—C41.3630 (15)C24—H24B0.9800
C3—C251.5018 (17)C24—H24C0.9800
C4—C211.4616 (16)C25—H25A0.9800
C4—C51.5266 (16)C25—H25B0.9800
C5—C61.5129 (16)C25—H25C0.9800
C5—H5A1.0000C26—H26A0.9800
C6—C81.3801 (15)C26—H26B0.9800
C6—C71.4194 (15)C26—H26C0.9800
C7—C91.4751 (15)C27—H27A0.9800
C8—H8A0.9500C27—H27B0.9800
C9—C141.3897 (17)C27—H27C0.9800
C9—C101.4026 (17)
H2W1—O1W—H1W1105 (2)C13—C14—H14A119.4
C23—O2—C24114.85 (10)C16—C15—C20120.56 (11)
H2W2—O2W—H1W2116 (2)C16—C15—N2120.19 (10)
C21—O4—C22116.13 (10)C20—C15—N2119.19 (11)
C12—O5—C27117.00 (10)C17—C16—C15119.25 (11)
C3—N1—C2123.24 (10)C17—C16—H16A120.4
C3—N1—H1N1116.1 (11)C15—C16—H16A120.4
C2—N1—H1N1120.4 (11)C16—C17—C18120.85 (12)
C8—N2—N3111.77 (9)C16—C17—H17A119.6
C8—N2—C15126.34 (10)C18—C17—H17A119.6
N3—N2—C15121.40 (10)C19—C18—C17119.50 (12)
C7—N3—N2104.64 (9)C19—C18—H18A120.3
C2—C1—C23121.39 (11)C17—C18—H18A120.3
C2—C1—C5119.64 (10)C18—C19—C20120.49 (11)
C23—C1—C5118.56 (10)C18—C19—H19A119.8
C1—C2—N1118.63 (10)C20—C19—H19A119.8
C1—C2—C26126.88 (11)C19—C20—C15119.35 (12)
N1—C2—C26114.48 (10)C19—C20—H20A120.3
C4—C3—N1118.73 (11)C15—C20—H20A120.3
C4—C3—C25126.67 (11)O3—C21—O4122.02 (11)
N1—C3—C25114.59 (10)O3—C21—C4127.11 (11)
C3—C4—C21120.58 (11)O4—C21—C4110.86 (10)
C3—C4—C5119.21 (10)O4—C22—H22A109.5
C21—C4—C5120.18 (10)O4—C22—H22B109.5
C6—C5—C1109.73 (9)H22A—C22—H22B109.5
C6—C5—C4110.43 (9)O4—C22—H22C109.5
C1—C5—C4109.81 (9)H22A—C22—H22C109.5
C6—C5—H5A108.9H22B—C22—H22C109.5
C1—C5—H5A108.9O1—C23—O2122.43 (11)
C4—C5—H5A108.9O1—C23—C1127.00 (11)
C8—C6—C7104.47 (10)O2—C23—C1110.58 (10)
C8—C6—C5124.81 (10)O2—C24—H24A109.5
C7—C6—C5130.65 (10)O2—C24—H24B109.5
N3—C7—C6111.46 (10)H24A—C24—H24B109.5
N3—C7—C9119.67 (10)O2—C24—H24C109.5
C6—C7—C9128.86 (11)H24A—C24—H24C109.5
N2—C8—C6107.65 (10)H24B—C24—H24C109.5
N2—C8—H8A126.2C3—C25—H25A109.5
C6—C8—H8A126.2C3—C25—H25B109.5
C14—C9—C10118.35 (10)H25A—C25—H25B109.5
C14—C9—C7120.45 (11)C3—C25—H25C109.5
C10—C9—C7121.20 (11)H25A—C25—H25C109.5
C11—C10—C9120.89 (11)H25B—C25—H25C109.5
C11—C10—H10A119.6C2—C26—H26A109.5
C9—C10—H10A119.6C2—C26—H26B109.5
C10—C11—C12119.97 (11)H26A—C26—H26B109.5
C10—C11—H11A120.0C2—C26—H26C109.5
C12—C11—H11A120.0H26A—C26—H26C109.5
O5—C12—C13123.92 (11)H26B—C26—H26C109.5
O5—C12—C11116.20 (11)O5—C27—H27A109.5
C13—C12—C11119.87 (11)O5—C27—H27B109.5
C12—C13—C14119.64 (11)H27A—C27—H27B109.5
C12—C13—H13A120.2O5—C27—H27C109.5
C14—C13—H13A120.2H27A—C27—H27C109.5
C9—C14—C13121.26 (11)H27B—C27—H27C109.5
C9—C14—H14A119.4
C8—N2—N3—C70.45 (13)N3—C7—C9—C10130.42 (13)
C15—N2—N3—C7172.90 (10)C6—C7—C9—C1050.89 (18)
C23—C1—C2—N1177.85 (11)C14—C9—C10—C111.15 (19)
C5—C1—C2—N19.57 (17)C7—C9—C10—C11179.43 (12)
C23—C1—C2—C262.5 (2)C9—C10—C11—C120.2 (2)
C5—C1—C2—C26170.03 (12)C27—O5—C12—C1315.73 (19)
C3—N1—C2—C116.56 (18)C27—O5—C12—C11164.95 (12)
C3—N1—C2—C26163.79 (11)C10—C11—C12—O5179.56 (12)
C2—N1—C3—C415.78 (18)C10—C11—C12—C131.1 (2)
C2—N1—C3—C25163.19 (11)O5—C12—C13—C14179.27 (12)
N1—C3—C4—C21171.01 (11)C11—C12—C13—C141.4 (2)
C25—C3—C4—C217.82 (19)C10—C9—C14—C130.80 (19)
N1—C3—C4—C510.87 (17)C7—C9—C14—C13179.78 (12)
C25—C3—C4—C5170.29 (11)C12—C13—C14—C90.5 (2)
C2—C1—C5—C689.71 (13)C8—N2—C15—C16148.56 (12)
C23—C1—C5—C683.08 (12)N3—N2—C15—C1622.74 (17)
C2—C1—C5—C431.85 (15)C8—N2—C15—C2028.37 (18)
C23—C1—C5—C4155.36 (10)N3—N2—C15—C20160.34 (11)
C3—C4—C5—C688.64 (13)C20—C15—C16—C170.22 (19)
C21—C4—C5—C689.49 (12)N2—C15—C16—C17177.11 (12)
C3—C4—C5—C132.51 (14)C15—C16—C17—C180.8 (2)
C21—C4—C5—C1149.37 (11)C16—C17—C18—C190.7 (2)
C1—C5—C6—C839.26 (15)C17—C18—C19—C200.0 (2)
C4—C5—C6—C881.93 (14)C18—C19—C20—C150.63 (19)
C1—C5—C6—C7144.34 (12)C16—C15—C20—C190.50 (18)
C4—C5—C6—C794.47 (14)N2—C15—C20—C19176.42 (11)
N2—N3—C7—C60.19 (13)C22—O4—C21—O32.43 (18)
N2—N3—C7—C9178.72 (10)C22—O4—C21—C4176.47 (12)
C8—C6—C7—N30.11 (14)C3—C4—C21—O33.0 (2)
C5—C6—C7—N3176.84 (11)C5—C4—C21—O3175.14 (12)
C8—C6—C7—C9178.90 (12)C3—C4—C21—O4175.88 (11)
C5—C6—C7—C91.9 (2)C5—C4—C21—O46.03 (15)
N3—N2—C8—C60.53 (14)C24—O2—C23—O13.27 (17)
C15—N2—C8—C6172.54 (11)C24—O2—C23—C1176.54 (10)
C7—C6—C8—N20.38 (13)C2—C1—C23—O118.1 (2)
C5—C6—C8—N2176.81 (11)C5—C1—C23—O1169.29 (12)
N3—C7—C9—C1450.18 (17)C2—C1—C23—O2162.14 (11)
C6—C7—C9—C14128.52 (14)C5—C1—C23—O210.52 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the pyrazole (N2/N3/C6–C8) and benzene (C15–C20) rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2W0.904 (18)2.001 (18)2.9020 (14)175.2 (15)
O1W—H2W1···N30.90 (2)2.05 (2)2.9449 (14)174 (2)
O2W—H2W2···O1Wi0.98 (3)1.84 (3)2.7986 (15)166 (2)
O2W—H1W2···O3ii0.90 (3)1.91 (3)2.8074 (14)174 (2)
O1W—H1W1···O2Wiii0.87 (3)2.06 (3)2.9274 (15)178 (2)
C20—H20A···O1Wiv0.952.443.2980 (16)151
C13—H13A···Cg2v0.952.903.6957 (14)142
C18—H18A···Cg1vi0.952.633.3682 (15)135
C25—H25A···Cg2i0.982.873.7231 (14)146
C27—H27C···Cg1v0.982.623.5720 (17)164
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x, y+3/2, z+1/2; (v) x, y+1/2, z3/2; (vi) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC27H27N3O5·2H2O
Mr509.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.1279 (9), 11.6313 (7), 15.3780 (9)
β (°) 93.358 (1)
V3)2522.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.34 × 0.17 × 0.14
Data collection
DiffractometerBruker APEX DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.968, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
28375, 7347, 5683
Rint0.036
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.131, 1.04
No. of reflections7347
No. of parameters359
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the pyrazole (N2/N3/C6–C8) and benzene (C15–C20) rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2W0.904 (18)2.001 (18)2.9020 (14)175.2 (15)
O1W—H2W1···N30.90 (2)2.05 (2)2.9449 (14)174 (2)
O2W—H2W2···O1Wi0.98 (3)1.84 (3)2.7986 (15)166 (2)
O2W—H1W2···O3ii0.90 (3)1.91 (3)2.8074 (14)174 (2)
O1W—H1W1···O2Wiii0.87 (3)2.06 (3)2.9274 (15)178 (2)
C20—H20A···O1Wiv0.952.443.2980 (16)150.9
C13—H13A···Cg2v0.95002.903.6957 (14)142
C18—H18A···Cg1vi0.95002.633.3682 (15)135
C25—H25A···Cg2i0.98002.873.7231 (14)146
C27—H27C···Cg1v0.98002.623.5720 (17)164
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x, y+3/2, z+1/2; (v) x, y+1/2, z3/2; (vi) x+1, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and CWO thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). CWO also thanks the Malaysian Goverment and USM for the award of the post of Research Officer under Research University Grant No. 1001/PFIZIK/811160. AMI is thankful to the Board of Research in Nuclear Sciences, Government of India, for a Young Scientist award. AMI also thanks the Vision Group on Science & Technology, Government of Karnataka, India, for the best research paper award.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuhler, F. R. & Kiowski, W. (1987). J. Hypertens. 5, S3–S10.  CrossRef CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Hemamalini, M., Vijesh, A. M., Isloor, A. M. & Malladi, S. (2011). Acta Cryst. E67, o1417–o1418.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Ooi, C. W., Malladi, S., Shivananda, K. N. & Isloor, A. M. (2012). Acta Cryst. E68, o892–o893.  CSD CrossRef IUCr Journals Google Scholar
First citationIsloor, N. A. (2011). Eur. J. Med. Chem. 46, 5591–5597.  Web of Science PubMed Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Rao, M. (2000). J. Saudi Chem. Soc. 4, 265–270.  CAS Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrivedi, A., Dodiya, D., Dholariya, B., Kataria, V., Bhuva, V. & Shah, V. (2011). Chem. Biol. Drug Des. 78, 881–886.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVijesh, A. M., Isloor, A. M., Peethambar, S. K., Shivananda, K. N., Arulmoli, T. & Isloor, N. A. (2011). Eur. J. Med. Chem. 46, 5591–5597.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVo, D., Matowe, W. C., Ramesh, M., Iqbal, N., Wolowyk, M. W., Howlett, S. E. & Knaus, E. E. (1995). J. Med. Chem. 38, 2851–2859.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds