organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,6-Tri­nitro­phenyl 3-methyl­benzoate

aDepartamento de Química – Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bInstituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es

(Received 12 June 2012; accepted 16 June 2012; online 23 June 2012)

In the title benzoate derivative, C14H9N3O8, the benzene rings form a dihedral angle of 87.48 (5)°. The central ester unit forms an angle of 19.42 (7)° with the methyl­benzene ring, indicating a significant twist. In the crystal, the mol­ecules are linked by weak C—H⋯O inter­actions forming a helical chain along [010].

Related literature

For synthesis of picric acid with charge-transfer complexes, see: Siddaraju et al. (2012[Siddaraju, B. P., Dutkiewicz, G., Yathirajan, H. S. & Kubicki, M. (2012). Acta Cryst. E68, o600.]); Refat et al. (2010[Refat, M. S., El-Zayata, L. A. & Yesilel, O. Z. (2010). Spectrochim. Acta Part A, 75, 745-752.]); El-Medania et al. (2003[El-Medania, S. M., Youssef, T. A. & Ramadan, R. M. (2003). J. Mol. Struct. 644, 77-87.]). For the pharmacological and biochemical activity of picric acid, see: Khan & Ovesb (2010[Khan, I. M. & Ovesb, M. (2010). Spectrochim. Acta Part A, 77, 1059-1064.]); Khan et al. (2011[Khan, I. M., Ahmad, A. & Ullah, M. F. (2011). J. Photochem. Photobiol. B, 103, 42-49.]). For the non-linear optical properties of picric acid, see: Zaderenko et al. (1997[Zaderenko, P., Gil, M. S., López, P., Ballesteros, P., Fonseca, I. & Albert, A. (1997). Acta Cryst. B53, 961-967.]). For the synthesis of nitro­aromatic compounds with industrial use, see: Ju & Parales (2010[Ju, K. S. & Parales, R. E. (2010). Microbiol. Mol. Biol. Rev. 74(2), 250-272.]). For similar structures, see: Adams & Morsi (1976[Adams, J. M. & Morsi, S. E. (1976). Acta Cryst. B32, 1345-1347.]); Gowda et al. (2007[Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o3756.], 2008[Gowda, B. T., Tokarčík, M., Kožíšek, J., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1280.], 2009[Gowda, B. T., Tokarčík, M., Kožíšek, J., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o915.]). For hydrogen bonding, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]). For hydrogen-bond graph-set motifs, see: Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9N3O8

  • Mr = 347.24

  • Monoclinic, P 21 /c

  • a = 7.4947 (1) Å

  • b = 8.4366 (2) Å

  • c = 23.8574 (6) Å

  • β = 99.365 (1)°

  • V = 1488.39 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 295 K

  • 0.38 × 0.34 × 0.28 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 5874 measured reflections

  • 3043 independent reflections

  • 2373 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.126

  • S = 1.04

  • 3043 reflections

  • 226 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O8i 0.93 2.50 3.4276 (19) 176
C13—H13⋯O3ii 0.93 2.70 3.346 (2) 127
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The structure determination of 2,4,6-trinitrophenyl 3-methylbenzoate, (I), is part of a series of studies on novel nitro aryl benzoates, carried out in our research group. This molecular system is strongly defined by the presence of the phenyl moiety coming from picric acid (TNP), which has not been employed previously in the synthesis of the title ester. TNP is interesting because of its widespread use in the synthesis of charge transfer complexes, which often tend to have significant crystalline properties (Siddaraju et al., 2012; Refat et al., 2010; El-Medania et al., 2003), pharmacological activity as anti-microbial agents and DNA-binding systems (Khan & Ovesb, 2010; Khan et al., 2011) and good non-linear optical (NLO) properties (Zaderenko et al., 1997). However, the properties of esters having the TNP moiety remain largely unknown. Therefore, this research will present a new compound, (I), with the aim to understand its properties. Moreover, is well known that nitroaromatics and their derivatives constitute a main class of industrial chemicals and are widely used as intermediates in the synthesis of many varied products, ranging from drugs, pigments, pesticides and plant growth regulators to the explosives (Ju & Parales, 2010).

The molecular structure of (I) is shown in Fig. 1. Bond lengths and bond angles of (I) show marked similarity with other aryl benzoates reported in the literature such as phenyl benzoate (PBA) (Adams & Morsi, 1976), 3-methylphenyl benzoate (3MePBA) (Gowda et al., 2007), 2,4-dimethylphenyl benzoate (24DMPBA) (Gowda et al., 2008), 2.5-dimethylphenyl benzoate (25DMPBA) (Gowda et al., 2009), among others. The benzene rings of (I) form a dihedral angle of 87.48 (5)°, a value which is quite consistent with other aryl benzoate systems such as 25DMPBA, 3MePBA and 24DMPBA which present dihedral angles of 87.4 (1), 80.3 (1) and 79.61 (6)°, respectively. The central ester moiety forms an angle of 19.42 (7)° with the methylbenzene ring to which it is attached. The nitro groups form dihedral angles with the benzene ring to which they are attached of 43.15 (10), 7.72 (14) and 13.56 (18)° for O1—N1—O2, O3—N2—O4 and O5—N3—O6, respectively.

The molecules are packed through weak C—H···O interactions forming one-dimensional helical chains along [010] (see Table 1, Nardelli, 1995). These intermolecular contacts are explained in terms of the substructure shown in Fig. 2. The C3 atom of the phenyl ring at (x,y,z) acts as a hydrogen-bond donor to carbonyl atom O8 at (-x-1, +y-1/2, -z-1/2). Growth in this direction is reinforced by the weak C13—H13···O3 interaction, in which the C13 atom of the benzoate ring at (x,y,z) acts as hydrogen-bond donor to atom O3 from one of the nitro groups at (-x-1, +y+1/2, -z-1/2). The combination of these two contacts generate edge-fused rings R22(10) (Etter, 1990), along [010].

Related literature top

For synthesis of picric acid with charge-transfer complexes, see: Siddaraju et al. (2012); Refat et al. (2010); El-Medania et al. (2003). For the pharmacological and biochemical activity of picric acid, see: Khan & Ovesb (2010); Khan et al. (2011). For the non-linear optical properties of picric acid, see: Zaderenko et al. (1997). For the synthesis of nitroaromatic compounds with industrial use, see: Ju & Parales (2010). For similar structures, see: Adams & Morsi (1976); Gowda et al. (2007, 2008, 2009). For hydrogen bonding, see: Nardelli (1995). For hydrogen-bond graph-set motifs, see: Etter (1990).

Experimental top

The reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co., and were used without additional purification. The title molecule was obtained through a two-step reaction. First, 3-methylbenzoic acid (0.25 g, 1.838 mmol) was refluxed in excess thionyl chloride (10 ml) for an hour. Then, the thionyl chloride was distilled off under reduced pressure to purify the 3-methylbenzoyl chloride obtained as a pale-yellow translucent liquid. The same reaction flask was rearranged and a solution of picric acid (0.42 g, 1.835 mmol) in acetonitrile was dropped inside it with constant stirring. The reaction mixture was taken to reflux for about an hour. A pale-yellow solid was obtained after leaving the solvent to evaporate. This was washed with distilled water and cold methanol to eliminate impurities. Crystals of good quality and suitable for single-crystal X-ray diffraction were grown in acetonitrile. IR spectra was recorded on a FT—IR SHIMADZU IR-Affinity-1 spectrophotometer. Pale-yellow crystals; yield 73%; M.pt: 425 (1) K. IR (KBr, cm-1) 3114.37, 3086.94 (aromatic C—H); 2957.26, 2920.94 (methyl C—H); 1752.24 (ester CO); 1613.04 (C); 1547.90, 1343.62 (–NO2); 1234.22 (C(O)—O).

Refinement top

All H-atoms were positioned at geometrically idealized positions with C—H distance of 0.93 Å and Uiso(H) = 1.2 times Ueq of the C-atoms to which they were bonded.

Structure description top

The structure determination of 2,4,6-trinitrophenyl 3-methylbenzoate, (I), is part of a series of studies on novel nitro aryl benzoates, carried out in our research group. This molecular system is strongly defined by the presence of the phenyl moiety coming from picric acid (TNP), which has not been employed previously in the synthesis of the title ester. TNP is interesting because of its widespread use in the synthesis of charge transfer complexes, which often tend to have significant crystalline properties (Siddaraju et al., 2012; Refat et al., 2010; El-Medania et al., 2003), pharmacological activity as anti-microbial agents and DNA-binding systems (Khan & Ovesb, 2010; Khan et al., 2011) and good non-linear optical (NLO) properties (Zaderenko et al., 1997). However, the properties of esters having the TNP moiety remain largely unknown. Therefore, this research will present a new compound, (I), with the aim to understand its properties. Moreover, is well known that nitroaromatics and their derivatives constitute a main class of industrial chemicals and are widely used as intermediates in the synthesis of many varied products, ranging from drugs, pigments, pesticides and plant growth regulators to the explosives (Ju & Parales, 2010).

The molecular structure of (I) is shown in Fig. 1. Bond lengths and bond angles of (I) show marked similarity with other aryl benzoates reported in the literature such as phenyl benzoate (PBA) (Adams & Morsi, 1976), 3-methylphenyl benzoate (3MePBA) (Gowda et al., 2007), 2,4-dimethylphenyl benzoate (24DMPBA) (Gowda et al., 2008), 2.5-dimethylphenyl benzoate (25DMPBA) (Gowda et al., 2009), among others. The benzene rings of (I) form a dihedral angle of 87.48 (5)°, a value which is quite consistent with other aryl benzoate systems such as 25DMPBA, 3MePBA and 24DMPBA which present dihedral angles of 87.4 (1), 80.3 (1) and 79.61 (6)°, respectively. The central ester moiety forms an angle of 19.42 (7)° with the methylbenzene ring to which it is attached. The nitro groups form dihedral angles with the benzene ring to which they are attached of 43.15 (10), 7.72 (14) and 13.56 (18)° for O1—N1—O2, O3—N2—O4 and O5—N3—O6, respectively.

The molecules are packed through weak C—H···O interactions forming one-dimensional helical chains along [010] (see Table 1, Nardelli, 1995). These intermolecular contacts are explained in terms of the substructure shown in Fig. 2. The C3 atom of the phenyl ring at (x,y,z) acts as a hydrogen-bond donor to carbonyl atom O8 at (-x-1, +y-1/2, -z-1/2). Growth in this direction is reinforced by the weak C13—H13···O3 interaction, in which the C13 atom of the benzoate ring at (x,y,z) acts as hydrogen-bond donor to atom O3 from one of the nitro groups at (-x-1, +y+1/2, -z-1/2). The combination of these two contacts generate edge-fused rings R22(10) (Etter, 1990), along [010].

For synthesis of picric acid with charge-transfer complexes, see: Siddaraju et al. (2012); Refat et al. (2010); El-Medania et al. (2003). For the pharmacological and biochemical activity of picric acid, see: Khan & Ovesb (2010); Khan et al. (2011). For the non-linear optical properties of picric acid, see: Zaderenko et al. (1997). For the synthesis of nitroaromatic compounds with industrial use, see: Ju & Parales (2010). For similar structures, see: Adams & Morsi (1976); Gowda et al. (2007, 2008, 2009). For hydrogen bonding, see: Nardelli (1995). For hydrogen-bond graph-set motifs, see: Etter (1990).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme for the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of chains running along [010]. Symmetry code: (i) -x - 1,+y - 1/2,-z - 1/2; (ii) -x - 1,+y + 1/2,-z - 1/2.
2,4,6-Trinitrophenyl 3-methylbenzoate top
Crystal data top
C14H9N3O8F(000) = 712
Mr = 347.24Dx = 1.550 Mg m3
Monoclinic, P21/cMelting point: 425(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.4947 (1) ÅCell parameters from 5756 reflections
b = 8.4366 (2) Åθ = 3.0–26.4°
c = 23.8574 (6) ŵ = 0.13 mm1
β = 99.365 (1)°T = 295 K
V = 1488.39 (6) Å3Block, pale-yellow
Z = 40.38 × 0.34 × 0.28 mm
Data collection top
Nonius KappaCCD
diffractometer
2373 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 26.4°, θmin = 3.0°
CCD rotation images, thick slices scansh = 99
5874 measured reflectionsk = 1010
3043 independent reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.2831P]
where P = (Fo2 + 2Fc2)/3
3043 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.22 e Å3
Crystal data top
C14H9N3O8V = 1488.39 (6) Å3
Mr = 347.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4947 (1) ŵ = 0.13 mm1
b = 8.4366 (2) ÅT = 295 K
c = 23.8574 (6) Å0.38 × 0.34 × 0.28 mm
β = 99.365 (1)°
Data collection top
Nonius KappaCCD
diffractometer
2373 reflections with I > 2σ(I)
5874 measured reflectionsRint = 0.016
3043 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.126H-atom parameters constrained
S = 1.04Δρmax = 0.19 e Å3
3043 reflectionsΔρmin = 0.22 e Å3
226 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O70.90799 (14)0.93604 (12)0.81583 (5)0.0483 (3)
O80.89917 (15)1.20129 (13)0.81861 (5)0.0505 (3)
C10.80954 (19)0.93669 (16)0.76227 (6)0.0391 (3)
C50.7782 (2)0.95541 (18)0.66027 (7)0.0454 (4)
H50.82530.98330.62790.054*
C30.5283 (2)0.85846 (18)0.70267 (6)0.0420 (4)
H30.41170.81760.69890.050*
C70.95268 (19)1.08060 (17)0.84158 (6)0.0394 (3)
C20.63119 (19)0.88363 (17)0.75520 (6)0.0392 (3)
O61.17307 (17)1.0163 (2)0.75989 (6)0.0837 (5)
C40.6059 (2)0.89658 (18)0.65603 (6)0.0440 (4)
N10.54579 (18)0.85492 (17)0.80541 (6)0.0503 (4)
C81.0651 (2)1.05927 (19)0.89762 (6)0.0440 (4)
C60.88038 (19)0.97246 (17)0.71349 (7)0.0423 (4)
O20.45102 (19)0.73845 (17)0.80489 (6)0.0738 (4)
N31.06867 (19)1.02766 (17)0.71553 (7)0.0549 (4)
N20.4983 (2)0.8763 (2)0.59912 (6)0.0605 (4)
O10.5703 (2)0.95298 (19)0.84340 (5)0.0800 (5)
C131.0733 (2)1.1822 (2)0.93617 (7)0.0534 (4)
H131.01001.27540.92600.064*
O40.5610 (2)0.9263 (2)0.55895 (6)0.0926 (5)
C91.1597 (2)0.9197 (2)0.91180 (8)0.0561 (4)
H91.15500.83730.88570.067*
O51.1103 (2)1.07925 (18)0.67223 (7)0.0818 (5)
O30.3529 (2)0.8124 (2)0.59560 (6)0.0989 (6)
C101.2612 (3)0.9054 (3)0.96550 (9)0.0725 (6)
H101.32600.81290.97560.087*
C121.1757 (3)1.1678 (3)0.99043 (7)0.0637 (5)
C111.2666 (3)1.0267 (3)1.00373 (8)0.0739 (6)
H111.33351.01391.03980.089*
C141.1835 (4)1.3021 (3)1.03270 (9)0.0947 (8)
H14A1.11211.38931.01560.142*
H14B1.30661.33581.04360.142*
H14C1.13671.26671.06570.142*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O70.0535 (6)0.0349 (6)0.0487 (6)0.0045 (4)0.0147 (5)0.0028 (5)
O80.0610 (7)0.0369 (6)0.0502 (6)0.0019 (5)0.0013 (5)0.0013 (5)
C10.0426 (8)0.0275 (7)0.0432 (8)0.0017 (6)0.0056 (6)0.0010 (6)
C50.0509 (9)0.0403 (8)0.0461 (9)0.0085 (7)0.0115 (7)0.0015 (7)
C30.0398 (7)0.0385 (8)0.0444 (8)0.0002 (6)0.0028 (6)0.0039 (6)
C70.0369 (7)0.0375 (8)0.0425 (8)0.0071 (6)0.0030 (6)0.0001 (6)
C20.0439 (8)0.0318 (7)0.0397 (8)0.0014 (6)0.0002 (6)0.0002 (6)
O60.0411 (7)0.1268 (14)0.0802 (10)0.0085 (7)0.0011 (7)0.0216 (9)
C40.0473 (8)0.0421 (8)0.0395 (8)0.0081 (6)0.0020 (6)0.0064 (6)
N10.0515 (8)0.0516 (8)0.0451 (8)0.0095 (7)0.0002 (6)0.0054 (6)
C80.0380 (7)0.0521 (9)0.0402 (8)0.0120 (7)0.0011 (6)0.0028 (7)
C60.0386 (7)0.0328 (7)0.0543 (9)0.0026 (6)0.0040 (7)0.0036 (6)
O20.0792 (9)0.0595 (8)0.0852 (10)0.0265 (7)0.0204 (7)0.0087 (7)
N30.0453 (8)0.0413 (8)0.0786 (11)0.0013 (6)0.0114 (8)0.0086 (7)
N20.0637 (10)0.0724 (10)0.0417 (8)0.0131 (8)0.0023 (7)0.0065 (7)
O10.0935 (10)0.1009 (12)0.0478 (7)0.0366 (9)0.0178 (7)0.0204 (8)
C130.0520 (9)0.0604 (10)0.0471 (9)0.0178 (8)0.0060 (7)0.0026 (8)
O40.0837 (10)0.1518 (16)0.0412 (7)0.0160 (10)0.0066 (7)0.0088 (9)
C90.0489 (9)0.0654 (11)0.0502 (9)0.0012 (8)0.0035 (7)0.0051 (8)
O50.0700 (9)0.0748 (10)0.1047 (12)0.0148 (7)0.0267 (8)0.0253 (8)
O30.0843 (11)0.1433 (16)0.0592 (9)0.0384 (11)0.0183 (7)0.0077 (9)
C100.0568 (11)0.0928 (16)0.0612 (12)0.0017 (10)0.0103 (9)0.0176 (11)
C120.0622 (11)0.0871 (14)0.0417 (9)0.0342 (11)0.0078 (8)0.0066 (9)
C110.0560 (11)0.1151 (18)0.0453 (10)0.0233 (12)0.0081 (8)0.0099 (11)
C140.1136 (18)0.118 (2)0.0529 (12)0.0513 (16)0.0130 (11)0.0233 (12)
Geometric parameters (Å, º) top
O7—C11.3676 (17)C8—C91.388 (2)
O7—C71.3820 (18)C6—N31.479 (2)
O8—C71.1942 (18)N3—O51.208 (2)
C1—C61.389 (2)N2—O31.207 (2)
C1—C21.394 (2)N2—O41.210 (2)
C5—C41.372 (2)C13—C121.399 (2)
C5—C61.379 (2)C13—H130.9300
C5—H50.9300C9—C101.385 (2)
C3—C41.375 (2)C9—H90.9300
C3—C21.377 (2)C10—C111.367 (3)
C3—H30.9300C10—H100.9300
C7—C81.471 (2)C12—C111.382 (3)
C2—N11.467 (2)C12—C141.512 (3)
O6—N31.2132 (19)C11—H110.9300
C4—N21.472 (2)C14—H14A0.9600
N1—O21.2113 (18)C14—H14B0.9600
N1—O11.2188 (19)C14—H14C0.9600
C8—C131.381 (2)
C1—O7—C7117.82 (11)O5—N3—O6123.69 (16)
O7—C1—C6124.20 (13)O5—N3—C6117.60 (15)
O7—C1—C2118.21 (14)O6—N3—C6118.70 (15)
C6—C1—C2117.29 (13)O3—N2—O4124.29 (16)
C4—C5—C6118.72 (15)O3—N2—C4117.98 (16)
C4—C5—H5120.6O4—N2—C4117.73 (16)
C6—C5—H5120.6C8—C13—C12120.63 (18)
C4—C3—C2116.89 (14)C8—C13—H13119.7
C4—C3—H3121.6C12—C13—H13119.7
C2—C3—H3121.6C10—C9—C8118.80 (18)
O8—C7—O7120.62 (13)C10—C9—H9120.6
O8—C7—C8128.42 (14)C8—C9—H9120.6
O7—C7—C8110.95 (12)C11—C10—C9120.3 (2)
C3—C2—C1122.95 (14)C11—C10—H10119.9
C3—C2—N1117.60 (13)C9—C10—H10119.9
C1—C2—N1119.44 (13)C11—C12—C13117.58 (18)
C5—C4—C3122.82 (14)C11—C12—C14121.89 (19)
C5—C4—N2118.55 (15)C13—C12—C14120.5 (2)
C3—C4—N2118.61 (14)C10—C11—C12122.12 (17)
O2—N1—O1125.12 (15)C10—C11—H11118.9
O2—N1—C2117.30 (14)C12—C11—H11118.9
O1—N1—C2117.52 (13)C12—C14—H14A109.5
C13—C8—C9120.61 (15)C12—C14—H14B109.5
C13—C8—C7118.07 (15)H14A—C14—H14B109.5
C9—C8—C7121.32 (15)C12—C14—H14C109.5
C5—C6—C1121.20 (14)H14A—C14—H14C109.5
C5—C6—N3116.54 (15)H14B—C14—H14C109.5
C1—C6—N3122.25 (14)
C7—O7—C1—C675.78 (19)C4—C5—C6—N3176.60 (13)
C7—O7—C1—C2110.65 (15)O7—C1—C6—C5173.36 (13)
C1—O7—C7—O83.5 (2)C2—C1—C6—C50.3 (2)
C1—O7—C7—C8177.40 (13)O7—C1—C6—N35.5 (2)
C4—C3—C2—C13.5 (2)C2—C1—C6—N3179.14 (13)
C4—C3—C2—N1175.52 (13)C5—C6—N3—O512.3 (2)
O7—C1—C2—C3170.71 (13)C1—C6—N3—O5168.75 (15)
C6—C1—C2—C33.3 (2)C5—C6—N3—O6166.39 (15)
O7—C1—C2—N110.3 (2)C1—C6—N3—O612.5 (2)
C6—C1—C2—N1175.72 (13)C5—C4—N2—O3173.96 (18)
C6—C5—C4—C32.1 (2)C3—C4—N2—O37.2 (2)
C6—C5—C4—N2179.10 (13)C5—C4—N2—O46.7 (2)
C2—C3—C4—C50.7 (2)C3—C4—N2—O4172.15 (16)
C2—C3—C4—N2178.05 (13)C9—C8—C13—C120.6 (2)
C3—C2—N1—O241.7 (2)C7—C8—C13—C12179.01 (15)
C1—C2—N1—O2139.18 (15)C13—C8—C9—C100.5 (3)
C3—C2—N1—O1135.63 (16)C7—C8—C9—C10179.05 (16)
C1—C2—N1—O143.4 (2)C8—C9—C10—C110.4 (3)
O8—C7—C8—C1319.5 (2)C8—C13—C12—C110.3 (3)
O7—C7—C8—C13159.49 (14)C8—C13—C12—C14179.62 (17)
O8—C7—C8—C9160.88 (17)C9—C10—C11—C121.3 (3)
O7—C7—C8—C920.1 (2)C13—C12—C11—C101.3 (3)
C4—C5—C6—C12.3 (2)C14—C12—C11—C10179.43 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O8i0.932.503.4276 (19)176
C13—H13···O3ii0.932.703.346 (2)127
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H9N3O8
Mr347.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)7.4947 (1), 8.4366 (2), 23.8574 (6)
β (°) 99.365 (1)
V3)1488.39 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.38 × 0.34 × 0.28
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5874, 3043, 2373
Rint0.016
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.126, 1.04
No. of reflections3043
No. of parameters226
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.22

Computer programs: COLLECT (Nonius, 2000), SCALEPACK (Otwinowski & Minor, 1997), DENZO and SCALEPACK (Otwinowski & Minor, 1997, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O8i0.932.503.4276 (19)176
C13—H13···O3ii0.932.703.346 (2)127
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2.
 

Acknowledgements

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database. RMF also thanks the Universidad del Valle, Colombia, for partial financial support.

References

First citationAdams, J. M. & Morsi, S. E. (1976). Acta Cryst. B32, 1345–1347.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEl-Medania, S. M., Youssef, T. A. & Ramadan, R. M. (2003). J. Mol. Struct. 644, 77–87.  Google Scholar
First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2007). Acta Cryst. E63, o3756.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1280.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o915.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJu, K. S. & Parales, R. E. (2010). Microbiol. Mol. Biol. Rev. 74(2), 250–272.  Web of Science CrossRef Google Scholar
First citationKhan, I. M., Ahmad, A. & Ullah, M. F. (2011). J. Photochem. Photobiol. B, 103, 42–49.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKhan, I. M. & Ovesb, M. (2010). Spectrochim. Acta Part A, 77, 1059–1064.  CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRefat, M. S., El-Zayata, L. A. & Yesilel, O. Z. (2010). Spectrochim. Acta Part A, 75, 745–752.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddaraju, B. P., Dutkiewicz, G., Yathirajan, H. S. & Kubicki, M. (2012). Acta Cryst. E68, o600.  CSD CrossRef IUCr Journals Google Scholar
First citationZaderenko, P., Gil, M. S., López, P., Ballesteros, P., Fonseca, I. & Albert, A. (1997). Acta Cryst. B53, 961–967.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds