organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-(4-meth­­oxy­phen­yl)-5-oxo-5,6,7,8-tetra­hydro-4H-chromene-3-carbo­nitrile 1,4-dioxane hemisolvate

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and dChemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 18 June 2012; accepted 19 June 2012; online 23 June 2012)

In the crystal structure of the title compound, C17H16N2O3·0.5C4H8O2, pairs of N—H⋯N hydrogen bonds link mol­ecules into dimers with R22(12) motifs, which are connected by N—H⋯O hydrogen bonds, forming a supra­molecular array in the ab plane. The 1,4-dioxane ring, which lies about an inversion center, adopts a chair conformation.

Related literature

For the biological activity of pyran and fused-pyran mol­ecules, see: Bargagna et al. (1992[Bargagna, A., Longobardi, M., Mariani, E., Schenone, P. & Falzarano, C. (1992). Il Farmaco, 47, 345-355.]); Symeonidis et al. (2009[Symeonidis, T., Chamilos, M., Hadjipavlou-Litina, D. J., Kallitsakis, M. & Litinas, K. E. (2009). Bioorg. Med. Chem. Lett. 19, 1139-1142.]); Narender & Gupta (2009[Narender, T. & Gupta, S. (2009). Bioorg. Med. Chem. Lett. 14, 3913-3916.]); Alvey et al. (2009[Alvey, L., Prado, S., Saint-Joanis, B., Michel, S., Koch, M., Cole, S. T., Tillequin, F. & Janin, Y. L. (2009). Eur. J. Med. Chem. 44, 2497-2505.]); Gorlitzer et al. (1984[Gorlitzer, K., Dehre, A. & Engler, E. (1984). Arch. Pharm. Weinheim Ger. 317, 526-530.]); Han et al. (2008[Han, Q.-B., Yang, N.-Y., Tian, H.-L., Qiao, C.-F., Song, J.-Z., Chang, D. C., Chen, S.-L., Luo, K. Q. & Xu, H.-X. (2008). Phytochemistry, 69, 2187-2192.]); Martinez & Marco (1997[Martinez, A. G. & Marco, L. J. (1997). Bioorg. Med. Chem. Lett. 7, 3165-3170.]); Smith et al. (1998[Smith, W. P., Sollis, L. S., Howes, D. P., Cherry, C. P., Starkey, D. I. & Cobley, N. K. (1998). J. Med. Chem. 41, 787-797.]); Taylor et al. (1998[Taylor, R. N., Cleasby, A., Singh, O., Sharzynski, T., Wonacott, J. A., Smith, W. P., Sollis, L. S., Howes, D. P., Cherry, C. P., Bethell, R., Colman, P. & Varghese, J. (1998). J. Med. Chem. 41, 798-807.]). For related structures, see: Gourdeau et al. (2004[Gourdeau, H., Leblond, L., Hamelin, B., Desputeau, C., Dong, K., Kianicka, I., Custeau, D., Boudreau, C., Geerts, L., Cai, S.-X., Drewe, J., Labrecque, D., Kasibhatla, S. & Tseng, B. (2004). Mol. Cancer Ther. 3, 1375-1384.]); Foroumadi et al. (2007[Foroumadi, A., Dehghan, G., Samzadeh-Kermani, A., Arabsorkhi, F., Sorkhi, M., Shafiee, A. & Abodollahi, M. (2007). Asian J. Chem. 19, 1391-1396.]); Mohamed et al. (2012[Mohamed, S. K., Akkurt, M., Tahir, M. N., Abdelhamid, A. A. & Albayati, M. R. (2012). Acta Cryst. E68, o1965-o1966.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16N2O3·0.5C4H8O2

  • Mr = 340.37

  • Triclinic, [P \overline 1]

  • a = 8.0876 (4) Å

  • b = 9.2013 (4) Å

  • c = 12.1613 (6) Å

  • α = 94.376 (2)°

  • β = 102.827 (1)°

  • γ = 95.972 (2)°

  • V = 873.01 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.35 × 0.25 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.980

  • 14186 measured reflections

  • 4108 independent reflections

  • 3134 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.194

  • S = 1.07

  • 4108 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.86 2.27 3.123 (3) 171
N1—H1B⋯O3ii 0.86 2.10 2.945 (2) 167
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Pyran and fused pyran ring systems are biologically interesting compounds known for their antimicrobial and antifungal (Alvey, et al., 2009), antioxidant (Symeonidis et al., 2009), antileishmanial (Narender et al., 2009), antitumor (Han et al., 2008). In addition, fused chromene ring systems have platelet antiaggregating, local anesthetic (Bargagna et al. 1992) and antihistaminic activities (Gorlitzer et al. 1984). They also exhibit inhibitory effects on influenza virus sialidases (Smith et al. 1998; Taylor et al. 1998) and antiviral activities (Martinez & Marco, 1997). Such observations prompted us to report the synthesis and crystal structure of the title compound (I).

In (I), Fig. 1, the O2/C8—C10/C12/C13 4H-pyran and C12–C17 cyclohexene rings are puckered with puckering parameters (Cremer & Pople, 1975) of QT = 0.187 (2) Å, θ = 72.2 (5) °, φ = 175.7 (6) ° and QT = 0.455 (2) ° A, θ = 122.9 (3) °, φ = 48.5 (3) °, respectively. The centroid of the solvent 1,4-dioxane ring (O4/C18/C19/O4a/C18a/C19a) lies about an inversion center. The 1,4-dioxane ring adopts a chair conformation [puckering parameters QT = 0.560 (5) Å, θ = 3.46 (3) °, φ = 0.00 °]. The values of the bond lengths and angles in (I) are in normal ranges and are comparable with those of related structures (Gourdeau et al., 2004; Foroumadi et al., 2007; Mohamed et al., 2012).

In the crystal, molecules are linked by the pairs of N—H···N hydrogen bonds, forming dimers, with an R22(12) motif (Bernstein et al., 1995; Table 1, Fig. 2). These dimers are connected through the N—H···O hydrogen bonds with each other (Table 1, Fig. 2).

Related literature top

For the biological activity of pyran and fused-pyran molecules, see: Bargagna et al. (1992); Symeonidis et al. (2009); Narender & Gupta (2009); Alvey et al. (2009); Gorlitzer et al. (1984); Han et al. (2008); Martinez & Marco (1997); Smith et al. (1998); Taylor et al. (1998). For related structures, see: Gourdeau et al. (2004); Foroumadi et al. (2007); Mohamed et al. (2012). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of (4-methoxybenzylidene)propanedinitrile (184 mg, 1 mmol), cyclohexane-1,3-dione (112 mg, 1 mmol) in presence of ethanolamine (61 mg) as catalyst was refluxed in ethanol (50 ml). The reaction mixture was monitored by TLC until completion after 7 h. A solid product was deposited on cooling at ambient temperature and collected by filtration. The crude product was washed with dioxane and recrystallized from ethanol/drops of dioxane to afford the title compound in 78% yield. Single crystals suitable for X-ray analysis were grown up on slow evaporation of its mixed solvent ethanol/dioxane (9:1) solution at room temperature over three days. M.pt: 435 K.

Refinement top

All H atoms were positioned geometrically and refined by using a riding model, with N—H = 0.86 Å and C—H = 0.93 Å (aromatic), 0.96 Å (methyl), 0.97 Å (methylene) and 0.98 Å (methine), with Uiso(H) = 1.5Ueq(C) for methyl-H and Uiso(H) = 1.2Ueq(C, N) for other H-atoms.

Structure description top

Pyran and fused pyran ring systems are biologically interesting compounds known for their antimicrobial and antifungal (Alvey, et al., 2009), antioxidant (Symeonidis et al., 2009), antileishmanial (Narender et al., 2009), antitumor (Han et al., 2008). In addition, fused chromene ring systems have platelet antiaggregating, local anesthetic (Bargagna et al. 1992) and antihistaminic activities (Gorlitzer et al. 1984). They also exhibit inhibitory effects on influenza virus sialidases (Smith et al. 1998; Taylor et al. 1998) and antiviral activities (Martinez & Marco, 1997). Such observations prompted us to report the synthesis and crystal structure of the title compound (I).

In (I), Fig. 1, the O2/C8—C10/C12/C13 4H-pyran and C12–C17 cyclohexene rings are puckered with puckering parameters (Cremer & Pople, 1975) of QT = 0.187 (2) Å, θ = 72.2 (5) °, φ = 175.7 (6) ° and QT = 0.455 (2) ° A, θ = 122.9 (3) °, φ = 48.5 (3) °, respectively. The centroid of the solvent 1,4-dioxane ring (O4/C18/C19/O4a/C18a/C19a) lies about an inversion center. The 1,4-dioxane ring adopts a chair conformation [puckering parameters QT = 0.560 (5) Å, θ = 3.46 (3) °, φ = 0.00 °]. The values of the bond lengths and angles in (I) are in normal ranges and are comparable with those of related structures (Gourdeau et al., 2004; Foroumadi et al., 2007; Mohamed et al., 2012).

In the crystal, molecules are linked by the pairs of N—H···N hydrogen bonds, forming dimers, with an R22(12) motif (Bernstein et al., 1995; Table 1, Fig. 2). These dimers are connected through the N—H···O hydrogen bonds with each other (Table 1, Fig. 2).

For the biological activity of pyran and fused-pyran molecules, see: Bargagna et al. (1992); Symeonidis et al. (2009); Narender & Gupta (2009); Alvey et al. (2009); Gorlitzer et al. (1984); Han et al. (2008); Martinez & Marco (1997); Smith et al. (1998); Taylor et al. (1998). For related structures, see: Gourdeau et al. (2004); Foroumadi et al. (2007); Mohamed et al. (2012). For puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. View of the dimers formed by pairs of N—H···N hydrogen bonds (dashed lines), with an R22(12) motif, and the N—H···O hydrogen bonds (dashed lines) which connect the dimers with each other, forming a two-dimensional array. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (a) 2 - x, 2 - y, 2 - z].
2-Amino-4-(4-methoxyphenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3- carbonitrile 1,4-dioxane hemisolvate top
Crystal data top
C17H16N2O3·0.5C4H8O2Z = 2
Mr = 340.37F(000) = 360
Triclinic, P1Dx = 1.295 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0876 (4) ÅCell parameters from 420 reflections
b = 9.2013 (4) Åθ = 3.6–22.5°
c = 12.1613 (6) ŵ = 0.09 mm1
α = 94.376 (2)°T = 293 K
β = 102.827 (1)°Prism, light-yellow
γ = 95.972 (2)°0.35 × 0.25 × 0.22 mm
V = 873.01 (7) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4108 independent reflections
Radiation source: fine-focus sealed tube3134 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 0.81 pixels mm-1θmax = 27.9°, θmin = 1.7°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 128
Tmin = 0.973, Tmax = 0.980l = 1615
14186 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0997P)2 + 0.273P]
where P = (Fo2 + 2Fc2)/3
4108 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C17H16N2O3·0.5C4H8O2γ = 95.972 (2)°
Mr = 340.37V = 873.01 (7) Å3
Triclinic, P1Z = 2
a = 8.0876 (4) ÅMo Kα radiation
b = 9.2013 (4) ŵ = 0.09 mm1
c = 12.1613 (6) ÅT = 293 K
α = 94.376 (2)°0.35 × 0.25 × 0.22 mm
β = 102.827 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4108 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3134 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.980Rint = 0.021
14186 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.194H-atom parameters constrained
S = 1.07Δρmax = 0.60 e Å3
4108 reflectionsΔρmin = 0.39 e Å3
227 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1813 (2)0.42680 (19)0.00491 (15)0.0760 (6)
O20.93204 (16)0.95097 (14)0.33842 (12)0.0512 (4)
O30.36871 (18)0.99158 (15)0.37001 (14)0.0595 (5)
N11.0877 (2)0.77420 (19)0.39337 (15)0.0563 (6)
N20.8057 (3)0.5088 (2)0.49805 (19)0.0712 (7)
C10.5009 (2)0.70436 (17)0.26984 (14)0.0389 (5)
C20.4984 (3)0.7302 (2)0.15944 (17)0.0531 (6)
C30.3939 (3)0.6405 (2)0.06812 (18)0.0583 (7)
C40.2893 (3)0.5219 (2)0.08782 (18)0.0537 (6)
C50.2917 (3)0.4941 (2)0.19793 (19)0.0563 (7)
C60.3951 (2)0.58441 (19)0.28771 (17)0.0476 (6)
C70.1568 (4)0.4634 (3)0.1082 (2)0.0809 (9)
C80.6180 (2)0.79962 (17)0.37058 (14)0.0387 (5)
C90.7912 (2)0.74660 (18)0.40311 (14)0.0405 (5)
C100.9333 (2)0.81758 (19)0.38054 (14)0.0420 (5)
C110.8019 (2)0.6148 (2)0.45477 (17)0.0487 (6)
C120.7895 (2)1.02140 (18)0.33096 (14)0.0422 (5)
C130.6429 (2)0.95783 (18)0.34927 (14)0.0403 (5)
C140.5022 (2)1.04491 (19)0.35100 (15)0.0461 (6)
C150.5308 (3)1.2042 (2)0.3328 (2)0.0634 (8)
C160.6528 (3)1.2323 (2)0.2563 (2)0.0660 (8)
C170.8203 (3)1.1737 (2)0.29963 (18)0.0537 (6)
O40.8992 (4)0.9746 (4)1.0758 (2)0.1475 (16)
C180.8279 (5)0.9756 (5)0.9615 (4)0.1243 (19)
C190.9322 (6)1.0707 (6)0.9113 (4)0.138 (2)
H1A1.106200.691400.419000.0680*
H1B1.169000.829000.376100.0680*
H20.568700.810000.145700.0640*
H30.394500.660200.005700.0700*
H50.222700.413400.211700.0680*
H60.393900.564700.361400.0570*
H7A0.118600.558600.112400.1210*
H7B0.072400.391700.157100.1210*
H7C0.262700.464800.131500.1210*
H80.564800.793800.435300.0460*
H15A0.576601.261700.405500.0760*
H15B0.422101.236500.299300.0760*
H16A0.600401.185700.180500.0790*
H16B0.674201.337100.251700.0790*
H17A0.885301.173800.241500.0640*
H17B0.886701.237000.365400.0640*
H18A0.715501.007800.951700.1500*
H18B0.814500.876900.923900.1500*
H19A0.941601.170200.946800.1660*
H19B0.879701.070000.831400.1660*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0761 (11)0.0640 (10)0.0702 (10)0.0133 (8)0.0058 (8)0.0056 (8)
O20.0475 (7)0.0467 (7)0.0657 (8)0.0030 (5)0.0229 (6)0.0207 (6)
O30.0480 (8)0.0506 (8)0.0832 (10)0.0060 (6)0.0217 (7)0.0084 (7)
N10.0429 (9)0.0552 (10)0.0748 (11)0.0057 (7)0.0169 (8)0.0229 (8)
N20.0600 (11)0.0595 (11)0.1025 (16)0.0096 (8)0.0244 (10)0.0413 (11)
C10.0359 (8)0.0347 (8)0.0472 (9)0.0047 (6)0.0112 (7)0.0063 (6)
C20.0594 (12)0.0473 (10)0.0514 (10)0.0082 (8)0.0170 (9)0.0062 (8)
C30.0649 (13)0.0591 (12)0.0475 (10)0.0043 (10)0.0117 (9)0.0042 (9)
C40.0487 (11)0.0441 (10)0.0612 (12)0.0022 (8)0.0016 (9)0.0009 (8)
C50.0505 (11)0.0417 (10)0.0702 (13)0.0070 (8)0.0040 (9)0.0124 (9)
C60.0454 (10)0.0423 (9)0.0543 (10)0.0002 (7)0.0091 (8)0.0148 (8)
C70.0762 (17)0.0896 (18)0.0618 (14)0.0016 (13)0.0056 (12)0.0107 (13)
C80.0407 (8)0.0354 (8)0.0418 (8)0.0004 (6)0.0145 (7)0.0071 (6)
C90.0423 (9)0.0372 (8)0.0413 (8)0.0004 (6)0.0085 (7)0.0087 (6)
C100.0443 (9)0.0398 (8)0.0414 (8)0.0015 (7)0.0092 (7)0.0082 (7)
C110.0413 (9)0.0462 (10)0.0586 (11)0.0016 (7)0.0104 (8)0.0144 (8)
C120.0499 (10)0.0354 (8)0.0420 (9)0.0005 (7)0.0133 (7)0.0070 (7)
C130.0460 (9)0.0341 (8)0.0407 (8)0.0008 (7)0.0114 (7)0.0049 (6)
C140.0494 (10)0.0393 (9)0.0481 (10)0.0031 (7)0.0091 (8)0.0041 (7)
C150.0664 (13)0.0403 (10)0.0882 (16)0.0107 (9)0.0234 (12)0.0150 (10)
C160.0820 (16)0.0462 (11)0.0748 (14)0.0089 (10)0.0219 (12)0.0245 (10)
C170.0659 (12)0.0391 (9)0.0605 (11)0.0019 (8)0.0251 (10)0.0135 (8)
O40.125 (2)0.236 (4)0.0879 (17)0.028 (2)0.0352 (16)0.018 (2)
C180.105 (3)0.152 (4)0.107 (3)0.002 (3)0.010 (2)0.020 (3)
C190.114 (3)0.200 (5)0.111 (3)0.038 (3)0.022 (2)0.069 (3)
Geometric parameters (Å, º) top
O1—C41.364 (3)C13—C141.461 (2)
O1—C71.417 (3)C14—C151.501 (3)
O2—C101.366 (2)C15—C161.516 (3)
O2—C121.369 (2)C16—C171.511 (3)
O3—C141.216 (2)C2—H20.9300
O4—C181.383 (5)C3—H30.9300
O4—C19i1.446 (6)C5—H50.9300
N1—C101.330 (2)C6—H60.9300
N2—C111.143 (3)C7—H7C0.9600
N1—H1B0.8600C7—H7A0.9600
N1—H1A0.8600C7—H7B0.9600
C1—C21.377 (3)C8—H80.9800
C1—C81.521 (2)C15—H15B0.9700
C1—C61.386 (2)C15—H15A0.9700
C2—C31.388 (3)C16—H16A0.9700
C3—C41.379 (3)C16—H16B0.9700
C4—C51.379 (3)C17—H17B0.9700
C5—C61.376 (3)C17—H17A0.9700
C8—C131.499 (2)C18—C191.417 (7)
C8—C91.511 (2)C18—H18A0.9700
C9—C101.354 (2)C18—H18B0.9700
C9—C111.410 (3)C19—H19A0.9700
C12—C131.338 (2)C19—H19B0.9700
C12—C171.491 (3)
C4—O1—C7117.78 (19)C2—C3—H3120.00
C10—O2—C12118.91 (14)C6—C5—H5120.00
C18—O4—C19i108.6 (3)C4—C5—H5120.00
H1A—N1—H1B120.00C1—C6—H6120.00
C10—N1—H1B120.00C5—C6—H6120.00
C10—N1—H1A120.00O1—C7—H7A109.00
C2—C1—C6117.77 (17)O1—C7—H7B109.00
C6—C1—C8119.84 (15)H7A—C7—H7B109.00
C2—C1—C8122.37 (15)H7A—C7—H7C109.00
C1—C2—C3121.88 (19)H7B—C7—H7C110.00
C2—C3—C4119.41 (19)O1—C7—H7C109.00
O1—C4—C5116.23 (19)C9—C8—H8108.00
C3—C4—C5119.3 (2)C13—C8—H8108.00
O1—C4—C3124.49 (19)C1—C8—H8108.00
C4—C5—C6120.73 (19)C14—C15—H15B109.00
C1—C6—C5120.93 (18)C16—C15—H15A109.00
C9—C8—C13108.63 (14)C16—C15—H15B109.00
C1—C8—C13112.38 (14)H15A—C15—H15B108.00
C1—C8—C9111.95 (13)C14—C15—H15A109.00
C8—C9—C10122.54 (15)C15—C16—H16B109.00
C10—C9—C11119.42 (16)C17—C16—H16A109.00
C8—C9—C11118.00 (14)C15—C16—H16A109.00
O2—C10—N1110.30 (15)H16A—C16—H16B108.00
N1—C10—C9128.22 (17)C17—C16—H16B109.00
O2—C10—C9121.48 (15)C12—C17—H17A110.00
N2—C11—C9177.6 (2)C12—C17—H17B110.00
O2—C12—C13122.91 (15)C16—C17—H17B110.00
C13—C12—C17125.75 (17)H17A—C17—H17B108.00
O2—C12—C17111.34 (16)C16—C17—H17A110.00
C8—C13—C14118.19 (14)O4—C18—C19110.9 (4)
C8—C13—C12122.27 (15)O4i—C19—C18110.8 (4)
C12—C13—C14119.54 (15)O4—C18—H18A109.00
C13—C14—C15117.57 (16)O4—C18—H18B109.00
O3—C14—C13121.28 (16)C19—C18—H18A109.00
O3—C14—C15121.11 (17)C19—C18—H18B109.00
C14—C15—C16112.24 (17)H18A—C18—H18B108.00
C15—C16—C17111.57 (18)C18—C19—H19A109.00
C12—C17—C16110.51 (18)C18—C19—H19B109.00
C1—C2—H2119.00H19A—C19—H19B108.00
C3—C2—H2119.00O4i—C19—H19A109.00
C4—C3—H3120.00O4i—C19—H19B110.00
C7—O1—C4—C39.3 (3)C1—C8—C9—C10105.99 (18)
C7—O1—C4—C5171.1 (2)C1—C8—C9—C1171.4 (2)
C10—O2—C12—C17171.59 (15)C9—C8—C13—C14161.46 (15)
C12—O2—C10—N1172.95 (15)C1—C8—C13—C1474.12 (19)
C10—O2—C12—C138.8 (2)C9—C8—C13—C1217.3 (2)
C12—O2—C10—C97.4 (2)C11—C9—C10—N15.4 (3)
C18i—O4i—C19—C1858.0 (5)C8—C9—C10—O27.6 (3)
C19i—O4—C18—C1958.0 (5)C8—C9—C10—N1172.00 (17)
C8—C1—C2—C3178.46 (19)C11—C9—C10—O2175.05 (16)
C8—C1—C6—C5178.09 (17)C17—C12—C13—C8174.55 (17)
C2—C1—C6—C50.2 (3)C17—C12—C13—C146.7 (3)
C2—C1—C8—C987.6 (2)O2—C12—C17—C16162.26 (16)
C2—C1—C8—C1334.9 (2)C13—C12—C17—C1617.3 (3)
C6—C1—C8—C990.63 (19)O2—C12—C13—C14173.82 (15)
C6—C1—C8—C13146.80 (16)O2—C12—C13—C85.0 (3)
C6—C1—C2—C30.2 (3)C12—C13—C14—O3178.26 (18)
C1—C2—C3—C40.0 (3)C8—C13—C14—O30.6 (3)
C2—C3—C4—C50.5 (3)C12—C13—C14—C150.5 (3)
C2—C3—C4—O1179.8 (2)C8—C13—C14—C15178.31 (16)
O1—C4—C5—C6179.37 (19)O3—C14—C15—C16151.3 (2)
C3—C4—C5—C61.0 (3)C13—C14—C15—C1631.0 (3)
C4—C5—C6—C10.8 (3)C14—C15—C16—C1754.6 (2)
C13—C8—C9—C11163.92 (15)C15—C16—C17—C1246.9 (2)
C1—C8—C13—C12107.09 (18)O4—C18—C19—O4i59.3 (5)
C13—C8—C9—C1018.7 (2)
Symmetry code: (i) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2ii0.862.273.123 (3)171
N1—H1B···O3iii0.862.102.945 (2)167
Symmetry codes: (ii) x+2, y+1, z+1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC17H16N2O3·0.5C4H8O2
Mr340.37
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.0876 (4), 9.2013 (4), 12.1613 (6)
α, β, γ (°)94.376 (2), 102.827 (1), 95.972 (2)
V3)873.01 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.25 × 0.22
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.973, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
14186, 4108, 3134
Rint0.021
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.194, 1.07
No. of reflections4108
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.39

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.273.123 (3)171
N1—H1B···O3ii0.862.102.945 (2)167
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z.
 

Acknowledgements

We thank Manchester Metropolitan University, the University of Sargodha and Erciyes University for guidance and for instrumental support of this study. We also extend our thanks to the Egyptian Government for their financial support of this project.

References

First citationAlvey, L., Prado, S., Saint-Joanis, B., Michel, S., Koch, M., Cole, S. T., Tillequin, F. & Janin, Y. L. (2009). Eur. J. Med. Chem. 44, 2497–2505.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBargagna, A., Longobardi, M., Mariani, E., Schenone, P. & Falzarano, C. (1992). Il Farmaco, 47, 345–355.  PubMed CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationForoumadi, A., Dehghan, G., Samzadeh-Kermani, A., Arabsorkhi, F., Sorkhi, M., Shafiee, A. & Abodollahi, M. (2007). Asian J. Chem. 19, 1391–1396.  CAS Google Scholar
First citationGorlitzer, K., Dehre, A. & Engler, E. (1984). Arch. Pharm. Weinheim Ger. 317, 526–530.  Google Scholar
First citationGourdeau, H., Leblond, L., Hamelin, B., Desputeau, C., Dong, K., Kianicka, I., Custeau, D., Boudreau, C., Geerts, L., Cai, S.-X., Drewe, J., Labrecque, D., Kasibhatla, S. & Tseng, B. (2004). Mol. Cancer Ther. 3, 1375–1384.  Web of Science PubMed CAS Google Scholar
First citationHan, Q.-B., Yang, N.-Y., Tian, H.-L., Qiao, C.-F., Song, J.-Z., Chang, D. C., Chen, S.-L., Luo, K. Q. & Xu, H.-X. (2008). Phytochemistry, 69, 2187–2192.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMartinez, A. G. & Marco, L. J. (1997). Bioorg. Med. Chem. Lett. 7, 3165–3170.  Google Scholar
First citationMohamed, S. K., Akkurt, M., Tahir, M. N., Abdelhamid, A. A. & Albayati, M. R. (2012). Acta Cryst. E68, o1965–o1966.  CSD CrossRef IUCr Journals Google Scholar
First citationNarender, T. & Gupta, S. (2009). Bioorg. Med. Chem. Lett. 14, 3913–3916.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, W. P., Sollis, L. S., Howes, D. P., Cherry, C. P., Starkey, D. I. & Cobley, N. K. (1998). J. Med. Chem. 41, 787–797.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSymeonidis, T., Chamilos, M., Hadjipavlou-Litina, D. J., Kallitsakis, M. & Litinas, K. E. (2009). Bioorg. Med. Chem. Lett. 19, 1139-1142.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTaylor, R. N., Cleasby, A., Singh, O., Sharzynski, T., Wonacott, J. A., Smith, W. P., Sollis, L. S., Howes, D. P., Cherry, C. P., Bethell, R., Colman, P. & Varghese, J. (1998). J. Med. Chem. 41, 798–807.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds