metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{1-[(1H-benzotriazol-1-yl)meth­yl]-2-methyl-1H-imidazole-κN3}di­chlorido­cobalt(II)

aSchool of Materials and Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, People's Republic of China
*Correspondence e-mail: yanghy2009@yahoo.com.cn

(Received 18 May 2012; accepted 13 June 2012; online 20 June 2012)

In the title mononuclear complex, [CoCl2(C11H11N5)2], the CoII atom is four-coordinated by two ligand N atoms and two Cl atoms in a distorted tetra­hedral geometry. In the crystal, mol­ecules are stacked through ππ inter­actions [centroid–centroid distances = 3.473 (2), 3.807 (3), 3.883 (2) and 3.676 (2) Å], forming a three-dimensional supra­molecular network.

Related literature

For background to complexes constructed from N-heterocyclic ligands, see: Yang et al. (2009[Yang, H.-Y., Li, L.-K., Wu, J., Hou, H.-W., Xiao, B. & Fan, Y.-T. (2009). Chem. Eur. J. 15, 4049-4056.]); Meng et al. (2009[Meng, X.-R., Zhu, X.-Q., Qi, Y.-F., Hou, H.-W. & Fan, Y.-T. (2009). J. Mol. Struct. 934, 28-36.]); Mu et al. (2011[Mu, Y.-J., Fu, J.-H., Song, Y.-J., Li, Z., Hou, H.-W. & Fan, Y.-T. (2011). Cryst. Growth Des. 11 , 2183-2193.]); Zhao et al. (2012[Zhao, L., Liu, B., Li, T. & Meng, X. (2012). Acta Cryst. E68, m162.]).

[Scheme 1]

Experimental

Crystal data
  • [CoCl2(C11H11N5)2]

  • Mr = 556.33

  • Triclinic, [P \overline 1]

  • a = 8.1684 (16) Å

  • b = 12.691 (3) Å

  • c = 13.289 (3) Å

  • α = 65.48 (3)°

  • β = 79.66 (3)°

  • γ = 84.30 (3)°

  • V = 1232.5 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 293 K

  • 0.22 × 0.21 × 0.18 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: numerical (CrystalClear; Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.819, Tmax = 0.848

  • 12593 measured reflections

  • 4330 independent reflections

  • 3512 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.101

  • S = 1.08

  • 4330 reflections

  • 318 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Multidentate N-heterocyclic ligands, such as imidazole, triazole, tetrazole and their derivative, have more coordination sites and can result in coordination polymers with novel network patterns (Yang et al., 2009; Meng et al., 2009). These ligands have been the focus of attention in coordination chemistry. In recent years, our group has designed and synthesized a series of N-heterocyclic compounds and studied their coordination behaviors (Mu et al., 2011; Zhao et al., 2012). As a continuation of our research, we synthesized a N-heterocyclic compound 1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-methyl-imdazole), and used it as ligand to react with CoCl2, generating a new complex, [Co(C11H11N5)2Cl2] (I), which is reported here.

The crystal structure of the title compound is depicted in Fig. 1. The CoII atom is four-coordinated by two N atoms from two ligands, with Co—N bond lengths of 2.012 (3) Å and 2.026 (3) Å., and two Cl atoms, with Co—Cl bond lengths of 2.2449 (10) Å and 2.2527 (14) Å. The bond angles around the Co atom vary from 102.74 (8) ° (N10—Co1—Cl1) to 115.96 (8) ° (N7—Co1—Cl1). The dihedral angle between the imidazole planes in the two ligands is 77.2 (2) °.

In the crystal structure, the adjacent mononuclear structure units are stacked on each other along the b- and c axis through ππ interactions as is shown in Fig. 2. The centroid-centroid distances between the two adjacent aromatic planes are 3.883 (2) Å (planes A and B), 3.807 (3) Å (planes B and C), 3.473 (2) Å (planes C and D), 4.593 (4) Å (planes E and F) and 3.676 (2) Å (planes G and H), respectively. In addition, these mononuclear structure units are parallel to each other along the a axis, forming a three-dimensional supramolecular network.

Related literature top

For background to complexes constructed from N-heterocyclic ligands, see: Yang et al. (2009); Meng et al. (2009); Mu et al. (2011); Zhao et al. (2012).

Experimental top

A methanol solution (5 ml) of 1-((benzotriazol-1-yl)methyl)- 1-H-1,3-(2-methyl-imdazol) (0.1 mmol) was added dropwise into a methanol solution (3 ml) of CoCl2 (0.05 mmol). The resulting solution was left at room temperature. After two weeks, good quality blue crystals were obtained from the solution and dried in air.

Refinement top

H atoms were generated geometrically, with C-H = 0.96, 0.97 and 0.93Å for methyl, methylene and aromatic H, respectively, and constrained to ride their parent atoms with Uiso(H) = x times Ueq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Structure description top

Multidentate N-heterocyclic ligands, such as imidazole, triazole, tetrazole and their derivative, have more coordination sites and can result in coordination polymers with novel network patterns (Yang et al., 2009; Meng et al., 2009). These ligands have been the focus of attention in coordination chemistry. In recent years, our group has designed and synthesized a series of N-heterocyclic compounds and studied their coordination behaviors (Mu et al., 2011; Zhao et al., 2012). As a continuation of our research, we synthesized a N-heterocyclic compound 1-[(benzotriazol-1-yl)methyl]-1-H-1,3-(2-methyl-imdazole), and used it as ligand to react with CoCl2, generating a new complex, [Co(C11H11N5)2Cl2] (I), which is reported here.

The crystal structure of the title compound is depicted in Fig. 1. The CoII atom is four-coordinated by two N atoms from two ligands, with Co—N bond lengths of 2.012 (3) Å and 2.026 (3) Å., and two Cl atoms, with Co—Cl bond lengths of 2.2449 (10) Å and 2.2527 (14) Å. The bond angles around the Co atom vary from 102.74 (8) ° (N10—Co1—Cl1) to 115.96 (8) ° (N7—Co1—Cl1). The dihedral angle between the imidazole planes in the two ligands is 77.2 (2) °.

In the crystal structure, the adjacent mononuclear structure units are stacked on each other along the b- and c axis through ππ interactions as is shown in Fig. 2. The centroid-centroid distances between the two adjacent aromatic planes are 3.883 (2) Å (planes A and B), 3.807 (3) Å (planes B and C), 3.473 (2) Å (planes C and D), 4.593 (4) Å (planes E and F) and 3.676 (2) Å (planes G and H), respectively. In addition, these mononuclear structure units are parallel to each other along the a axis, forming a three-dimensional supramolecular network.

For background to complexes constructed from N-heterocyclic ligands, see: Yang et al. (2009); Meng et al. (2009); Mu et al. (2011); Zhao et al. (2012).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title complex, showing the labeling of the 30% probability ellipsolids.
[Figure 2] Fig. 2. View of the title complex along the a axis, showing the ππ stacking interactions between the molecules.
Bis{1-[(1H-benzotriazol-1-yl)methyl]-2-methyl-1H-imidazole- κN3}dichloridocobalt(II) top
Crystal data top
[CoCl2(C11H11N5)2]Z = 2
Mr = 556.33F(000) = 570
Triclinic, P1Dx = 1.499 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1684 (16) ÅCell parameters from 3451 reflections
b = 12.691 (3) Åθ = 2.5–29.2°
c = 13.289 (3) ŵ = 0.95 mm1
α = 65.48 (3)°T = 293 K
β = 79.66 (3)°Prism, blue
γ = 84.30 (3)°0.22 × 0.21 × 0.18 mm
V = 1232.5 (6) Å3
Data collection top
Rigaku Saturn
diffractometer
4330 independent reflections
Radiation source: fine-focus sealed tube3512 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 2.5°
ω scansh = 99
Absorption correction: numerical
(CrystalClear; Rigaku/MSC, 2006)
k = 1515
Tmin = 0.819, Tmax = 0.848l = 1515
12593 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0391P)2 + 0.5956P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
4330 reflectionsΔρmax = 0.27 e Å3
318 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0016 (4)
Crystal data top
[CoCl2(C11H11N5)2]γ = 84.30 (3)°
Mr = 556.33V = 1232.5 (6) Å3
Triclinic, P1Z = 2
a = 8.1684 (16) ÅMo Kα radiation
b = 12.691 (3) ŵ = 0.95 mm1
c = 13.289 (3) ÅT = 293 K
α = 65.48 (3)°0.22 × 0.21 × 0.18 mm
β = 79.66 (3)°
Data collection top
Rigaku Saturn
diffractometer
4330 independent reflections
Absorption correction: numerical
(CrystalClear; Rigaku/MSC, 2006)
3512 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 0.848Rint = 0.039
12593 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.08Δρmax = 0.27 e Å3
4330 reflectionsΔρmin = 0.23 e Å3
318 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.74031 (5)0.25471 (4)1.02928 (4)0.03397 (15)
Cl20.96039 (10)0.29359 (8)1.08673 (7)0.0442 (2)
Cl10.54177 (11)0.15986 (8)1.17231 (7)0.0499 (3)
N100.8046 (3)0.1424 (2)0.9553 (2)0.0355 (6)
N90.9277 (3)0.0521 (2)0.8515 (2)0.0361 (6)
N80.5347 (3)0.5454 (2)0.7929 (2)0.0347 (6)
N70.6681 (3)0.4063 (2)0.9140 (2)0.0356 (6)
N60.3355 (3)0.5794 (2)0.6656 (2)0.0366 (6)
N51.0308 (3)0.0933 (2)0.6572 (2)0.0355 (6)
N40.1979 (4)0.5126 (3)0.7064 (2)0.0506 (8)
C220.5192 (4)0.4454 (3)0.8859 (3)0.0341 (7)
C210.3696 (4)0.6166 (3)0.5519 (3)0.0351 (8)
C201.0485 (4)0.0219 (3)0.7720 (3)0.0402 (8)
H20A1.15990.02960.78360.048*
H20B1.03570.05850.78650.048*
C190.9193 (4)0.0867 (3)0.5953 (3)0.0355 (8)
C180.7811 (4)0.4857 (3)0.8355 (3)0.0412 (8)
H180.89570.48050.83470.049*
C171.0626 (4)0.2316 (3)0.8261 (3)0.0518 (10)
H17A1.05850.27620.86980.078*
H17B1.04340.28200.75170.078*
H17C1.17010.19390.82280.078*
N31.1490 (4)0.1713 (3)0.5909 (3)0.0506 (8)
C160.7157 (4)0.0454 (3)0.9789 (3)0.0458 (9)
H160.61920.02221.03070.055*
C150.9326 (4)0.1432 (3)0.8783 (3)0.0336 (7)
C140.7008 (4)0.5706 (3)0.7612 (3)0.0431 (9)
H140.74780.63430.70010.052*
C130.3999 (4)0.6178 (3)0.7388 (3)0.0412 (8)
H13A0.30960.62060.79620.049*
H13B0.43910.69600.69570.049*
N20.1465 (4)0.5038 (3)0.6233 (3)0.0545 (8)
C120.9755 (4)0.1649 (3)0.4876 (3)0.0429 (9)
N11.1164 (4)0.2153 (3)0.4899 (3)0.0561 (9)
C110.4878 (4)0.6888 (3)0.4702 (3)0.0516 (10)
H110.57040.72100.48760.062*
C100.2473 (4)0.5673 (3)0.5262 (3)0.0409 (8)
C90.3583 (4)0.3907 (3)0.9458 (3)0.0548 (10)
H9A0.31990.35360.90470.082*
H9B0.27780.44890.95240.082*
H9C0.37270.33411.01900.082*
C80.7901 (4)0.0098 (3)0.9155 (3)0.0477 (9)
H80.75520.07710.91500.057*
C70.7637 (6)0.1099 (4)0.4233 (4)0.0684 (13)
H70.70860.11530.36580.082*
C60.7829 (4)0.0189 (3)0.6201 (3)0.0506 (9)
H60.74530.03310.69260.061*
C50.7071 (5)0.0326 (4)0.5325 (4)0.0657 (12)
H50.61430.01090.54560.079*
C40.2367 (5)0.5902 (4)0.4153 (3)0.0541 (10)
H40.15490.55800.39730.065*
C30.8964 (6)0.1772 (4)0.3983 (3)0.0606 (11)
H30.93300.22900.32550.073*
C20.3513 (5)0.6615 (4)0.3352 (3)0.0623 (11)
H20.34760.67880.26040.075*
C10.4746 (5)0.7095 (4)0.3621 (3)0.0645 (12)
H10.55100.75750.30430.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0345 (3)0.0377 (3)0.0270 (2)0.00561 (19)0.00427 (19)0.0096 (2)
Cl20.0399 (5)0.0547 (5)0.0383 (5)0.0103 (4)0.0084 (4)0.0162 (4)
Cl10.0476 (5)0.0608 (6)0.0335 (5)0.0190 (4)0.0048 (4)0.0121 (4)
N100.0339 (15)0.0412 (16)0.0308 (15)0.0087 (12)0.0017 (13)0.0135 (13)
N90.0444 (16)0.0333 (15)0.0281 (15)0.0064 (13)0.0051 (13)0.0090 (12)
N80.0347 (15)0.0357 (15)0.0331 (15)0.0004 (12)0.0090 (12)0.0121 (13)
N70.0327 (15)0.0389 (16)0.0318 (15)0.0045 (12)0.0031 (12)0.0109 (13)
N60.0350 (15)0.0396 (16)0.0366 (16)0.0028 (12)0.0104 (13)0.0144 (13)
N50.0402 (16)0.0354 (15)0.0287 (15)0.0065 (12)0.0038 (13)0.0102 (12)
N40.0496 (19)0.056 (2)0.0401 (18)0.0179 (15)0.0051 (15)0.0106 (15)
C220.0317 (18)0.0379 (19)0.0318 (18)0.0050 (14)0.0030 (15)0.0130 (15)
C210.0297 (18)0.0391 (19)0.0383 (19)0.0046 (15)0.0070 (15)0.0178 (16)
C200.047 (2)0.041 (2)0.0327 (19)0.0042 (16)0.0083 (16)0.0154 (16)
C190.0361 (18)0.0365 (19)0.0354 (19)0.0007 (15)0.0055 (15)0.0164 (16)
C180.0285 (18)0.050 (2)0.039 (2)0.0075 (16)0.0031 (16)0.0114 (17)
C170.055 (2)0.054 (2)0.048 (2)0.0167 (19)0.0076 (19)0.0263 (19)
N30.058 (2)0.0488 (18)0.0410 (18)0.0219 (16)0.0027 (16)0.0144 (15)
C160.044 (2)0.053 (2)0.042 (2)0.0197 (18)0.0044 (17)0.0209 (18)
C150.0377 (18)0.0326 (18)0.0294 (17)0.0040 (14)0.0092 (15)0.0092 (15)
C140.040 (2)0.041 (2)0.038 (2)0.0114 (16)0.0046 (16)0.0040 (16)
C130.045 (2)0.040 (2)0.043 (2)0.0046 (16)0.0163 (17)0.0192 (17)
N20.0509 (19)0.065 (2)0.048 (2)0.0192 (16)0.0110 (16)0.0184 (17)
C120.055 (2)0.038 (2)0.033 (2)0.0056 (17)0.0085 (17)0.0136 (16)
N10.074 (2)0.0477 (19)0.0361 (18)0.0151 (17)0.0057 (16)0.0091 (15)
C110.036 (2)0.061 (2)0.055 (2)0.0104 (18)0.0029 (18)0.021 (2)
C100.0387 (19)0.046 (2)0.042 (2)0.0005 (16)0.0097 (17)0.0205 (17)
C90.036 (2)0.065 (3)0.048 (2)0.0130 (18)0.0003 (18)0.009 (2)
C80.058 (2)0.046 (2)0.040 (2)0.0248 (19)0.0001 (18)0.0167 (18)
C70.074 (3)0.084 (3)0.073 (3)0.040 (3)0.048 (3)0.051 (3)
C60.044 (2)0.056 (2)0.053 (2)0.0062 (18)0.0097 (19)0.022 (2)
C50.046 (2)0.082 (3)0.084 (3)0.009 (2)0.026 (2)0.044 (3)
C40.053 (2)0.071 (3)0.049 (2)0.000 (2)0.015 (2)0.032 (2)
C30.084 (3)0.059 (3)0.038 (2)0.028 (2)0.020 (2)0.022 (2)
C20.065 (3)0.085 (3)0.043 (2)0.002 (2)0.009 (2)0.032 (2)
C10.057 (3)0.083 (3)0.041 (2)0.015 (2)0.010 (2)0.018 (2)
Geometric parameters (Å, º) top
Co1—N72.012 (3)C17—H17A0.9600
Co1—N102.026 (3)C17—H17B0.9600
Co1—Cl22.2449 (10)C17—H17C0.9600
Co1—Cl12.2527 (14)N3—N11.289 (4)
N10—C151.323 (4)C16—C81.339 (5)
N10—C161.385 (4)C16—H160.9300
N9—C151.350 (4)C14—H140.9300
N9—C81.372 (4)C13—H13A0.9700
N9—C201.457 (4)C13—H13B0.9700
N8—C221.351 (4)N2—C101.371 (4)
N8—C141.375 (4)C12—N11.381 (5)
N8—C131.452 (4)C12—C31.396 (5)
N7—C221.324 (4)C11—C11.372 (5)
N7—C181.387 (4)C11—H110.9300
N6—N41.365 (4)C10—C41.396 (5)
N6—C211.366 (4)C9—H9A0.9600
N6—C131.446 (4)C9—H9B0.9600
N5—N31.360 (4)C9—H9C0.9600
N5—C191.361 (4)C8—H80.9300
N5—C201.441 (4)C7—C31.355 (6)
N4—N21.298 (4)C7—C51.397 (6)
C22—C91.480 (4)C7—H70.9300
C21—C101.390 (4)C6—C51.355 (5)
C21—C111.387 (5)C6—H60.9300
C20—H20A0.9700C5—H50.9300
C20—H20B0.9700C4—C21.357 (5)
C19—C61.383 (4)C4—H40.9300
C19—C121.386 (4)C3—H30.9300
C18—C141.332 (5)C2—C11.395 (6)
C18—H180.9300C2—H20.9300
C17—C151.480 (4)C1—H10.9300
N7—Co1—N10108.31 (11)N10—C15—N9110.3 (3)
N7—Co1—Cl2106.00 (8)N10—C15—C17125.8 (3)
N10—Co1—Cl2111.09 (8)N9—C15—C17123.9 (3)
N7—Co1—Cl1115.96 (8)C18—C14—N8106.3 (3)
N10—Co1—Cl1102.74 (8)C18—C14—H14126.8
Cl2—Co1—Cl1112.73 (4)N8—C14—H14126.8
C15—N10—C16106.0 (3)N6—C13—N8114.5 (3)
C15—N10—Co1129.7 (2)N6—C13—H13A108.6
C16—N10—Co1124.2 (2)N8—C13—H13A108.6
C15—N9—C8107.5 (3)N6—C13—H13B108.6
C15—N9—C20126.7 (3)N8—C13—H13B108.6
C8—N9—C20125.7 (3)H13A—C13—H13B107.6
C22—N8—C14108.1 (3)N4—N2—C10108.7 (3)
C22—N8—C13126.5 (3)N1—C12—C19108.3 (3)
C14—N8—C13125.4 (3)N1—C12—C3130.9 (4)
C22—N7—C18106.3 (3)C19—C12—C3120.7 (4)
C22—N7—Co1130.8 (2)N3—N1—C12108.7 (3)
C18—N7—Co1122.4 (2)C1—C11—C21115.5 (3)
N4—N6—C21110.0 (3)C1—C11—H11122.2
N4—N6—C13118.9 (3)C21—C11—H11122.2
C21—N6—C13129.8 (3)N2—C10—C21108.9 (3)
N3—N5—C19110.3 (3)N2—C10—C4130.2 (3)
N3—N5—C20119.8 (3)C21—C10—C4120.9 (3)
C19—N5—C20129.4 (3)C22—C9—H9A109.5
N2—N4—N6108.5 (3)C22—C9—H9B109.5
N7—C22—N8109.6 (3)H9A—C9—H9B109.5
N7—C22—C9126.4 (3)C22—C9—H9C109.5
N8—C22—C9124.0 (3)H9A—C9—H9C109.5
N6—C21—C10103.9 (3)H9B—C9—H9C109.5
N6—C21—C11133.7 (3)C16—C8—N9106.7 (3)
C10—C21—C11122.3 (3)C16—C8—H8126.6
N5—C20—N9112.9 (3)N9—C8—H8126.6
N5—C20—H20A109.0C3—C7—C5122.1 (4)
N9—C20—H20A109.0C3—C7—H7119.0
N5—C20—H20B109.0C5—C7—H7119.0
N9—C20—H20B109.0C5—C6—C19116.2 (4)
H20A—C20—H20B107.8C5—C6—H6121.9
N5—C19—C6133.5 (3)C19—C6—H6121.9
N5—C19—C12104.1 (3)C6—C5—C7122.2 (4)
C6—C19—C12122.3 (3)C6—C5—H5118.9
C14—C18—N7109.7 (3)C7—C5—H5118.9
C14—C18—H18125.1C2—C4—C10117.0 (3)
N7—C18—H18125.1C2—C4—H4121.5
C15—C17—H17A109.5C10—C4—H4121.5
C15—C17—H17B109.5C7—C3—C12116.6 (4)
H17A—C17—H17B109.5C7—C3—H3121.7
C15—C17—H17C109.5C12—C3—H3121.7
H17A—C17—H17C109.5C4—C2—C1121.6 (4)
H17B—C17—H17C109.5C4—C2—H2119.2
N1—N3—N5108.6 (3)C1—C2—H2119.2
C8—C16—N10109.4 (3)C11—C1—C2122.7 (4)
C8—C16—H16125.3C11—C1—H1118.7
N10—C16—H16125.3C2—C1—H1118.7
N7—Co1—N10—C1568.8 (3)Co1—N10—C15—C170.5 (5)
Cl2—Co1—N10—C1547.3 (3)C8—N9—C15—N100.4 (4)
Cl1—Co1—N10—C15168.0 (3)C20—N9—C15—N10178.6 (3)
N7—Co1—N10—C16111.3 (3)C8—N9—C15—C17179.4 (3)
Cl2—Co1—N10—C16132.7 (2)C20—N9—C15—C172.4 (5)
Cl1—Co1—N10—C1611.9 (3)N7—C18—C14—N80.2 (4)
N10—Co1—N7—C2291.0 (3)C22—N8—C14—C180.0 (4)
Cl2—Co1—N7—C22149.7 (3)C13—N8—C14—C18176.8 (3)
Cl1—Co1—N7—C2223.8 (3)N4—N6—C13—N895.8 (4)
N10—Co1—N7—C1879.4 (3)C21—N6—C13—N898.6 (4)
Cl2—Co1—N7—C1839.9 (3)C22—N8—C13—N681.8 (4)
Cl1—Co1—N7—C18165.8 (2)C14—N8—C13—N6102.0 (4)
C21—N6—N4—N21.7 (4)N6—N4—N2—C101.6 (4)
C13—N6—N4—N2169.9 (3)N5—C19—C12—N10.5 (4)
C18—N7—C22—N80.4 (4)C6—C19—C12—N1177.7 (3)
Co1—N7—C22—N8171.2 (2)N5—C19—C12—C3176.2 (3)
C18—N7—C22—C9179.2 (3)C6—C19—C12—C30.9 (5)
Co1—N7—C22—C99.2 (5)N5—N3—N1—C120.9 (4)
C14—N8—C22—N70.3 (4)C19—C12—N1—N30.9 (4)
C13—N8—C22—N7177.0 (3)C3—C12—N1—N3175.4 (4)
C14—N8—C22—C9179.3 (3)N6—C21—C11—C1176.7 (4)
C13—N8—C22—C92.7 (5)C10—C21—C11—C10.8 (5)
N4—N6—C21—C101.0 (3)N4—N2—C10—C210.9 (4)
C13—N6—C21—C10167.6 (3)N4—N2—C10—C4175.8 (4)
N4—N6—C21—C11176.8 (4)N6—C21—C10—N20.1 (4)
C13—N6—C21—C1110.2 (6)C11—C21—C10—N2178.1 (3)
N3—N5—C20—N9110.2 (3)N6—C21—C10—C4177.2 (3)
C19—N5—C20—N979.0 (4)C11—C21—C10—C41.0 (5)
C15—N9—C20—N577.1 (4)N10—C16—C8—N90.2 (4)
C8—N9—C20—N5105.0 (4)C15—N9—C8—C160.1 (4)
N3—N5—C19—C6176.6 (4)C20—N9—C8—C16178.3 (3)
C20—N5—C19—C65.1 (6)N5—C19—C6—C5175.7 (4)
N3—N5—C19—C120.0 (3)C12—C19—C6—C50.4 (5)
C20—N5—C19—C12171.5 (3)C19—C6—C5—C70.5 (6)
C22—N7—C18—C140.4 (4)C3—C7—C5—C61.0 (7)
Co1—N7—C18—C14172.1 (2)N2—C10—C4—C2176.8 (4)
C19—N5—N3—N10.6 (4)C21—C10—C4—C20.4 (6)
C20—N5—N3—N1173.0 (3)C5—C7—C3—C120.5 (6)
C15—N10—C16—C80.5 (4)N1—C12—C3—C7176.3 (4)
Co1—N10—C16—C8179.6 (2)C19—C12—C3—C70.4 (5)
C16—N10—C15—N90.5 (4)C10—C4—C2—C10.3 (6)
Co1—N10—C15—N9179.5 (2)C21—C11—C1—C20.1 (6)
C16—N10—C15—C17179.5 (3)C4—C2—C1—C110.4 (7)

Experimental details

Crystal data
Chemical formula[CoCl2(C11H11N5)2]
Mr556.33
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.1684 (16), 12.691 (3), 13.289 (3)
α, β, γ (°)65.48 (3), 79.66 (3), 84.30 (3)
V3)1232.5 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.22 × 0.21 × 0.18
Data collection
DiffractometerRigaku Saturn
Absorption correctionNumerical
(CrystalClear; Rigaku/MSC, 2006)
Tmin, Tmax0.819, 0.848
No. of measured, independent and
observed [I > 2σ(I)] reflections
12593, 4330, 3512
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.101, 1.08
No. of reflections4330
No. of parameters318
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.23

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors are grateful to Zhongyuan University of Technology for financial support and thank Professor Hong-Wei Hou of Zhengzhou University for his help.

References

First citationMeng, X.-R., Zhu, X.-Q., Qi, Y.-F., Hou, H.-W. & Fan, Y.-T. (2009). J. Mol. Struct. 934, 28–36.  Web of Science CSD CrossRef CAS Google Scholar
First citationMu, Y.-J., Fu, J.-H., Song, Y.-J., Li, Z., Hou, H.-W. & Fan, Y.-T. (2011). Cryst. Growth Des. 11 , 2183–2193.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, H.-Y., Li, L.-K., Wu, J., Hou, H.-W., Xiao, B. & Fan, Y.-T. (2009). Chem. Eur. J. 15, 4049–4056.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhao, L., Liu, B., Li, T. & Meng, X. (2012). Acta Cryst. E68, m162.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds