metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl­ammonium di­chloridotri­phenyl­stannate(IV)

aLaboratoire de Chimie Minerale et Analytique (LACHIMIA), Departement de Chimie, Faculte des Sciences et Techniques, Universite Cheikh Anta Diop Dakar, Senegal, and bDepartment of Chemistry, University of Bath, Bath BA2 7AY, England
*Correspondence e-mail: yayasow81@yahoo.fr

(Received 21 May 2012; accepted 25 June 2012; online 30 June 2012)

The title salt, [(CH3)2NH2][Sn(C6H5)3Cl2], was obtained as a by-product of the reaction between bis­(dimethyl­ammonium) oxalate and triphenyl­tin chloride. In the stannate anion, the trigonal–bipyramidal coordination environment of the SnIV atom is defined by the phenyl groups in equatorial and the Cl atoms in axial positions. The cations are connected to adjacent anions through N—H⋯Cl and C—H⋯Cl hydrogen-bonding inter­actions, leading to a chain motif parallel to [100].

Related literature

For background to organotin(IV) chemistry, see: Chee et al. (2003[Chee, C. F., Lo, K. M. & Ng, S. W. (2003). Acta Cryst. E59, m36-m37.]); Evans & Karpel (1985[Evans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology. J. Organomet. Chem. Library, Vol. 16, Amsterdam: Elsevier.]); Gielen et al. (1995[Gielen, M., Bouhdid, A., Kayser, S., Biesemans, M., De Vos, D., Mahieu, B. & Willem, R. (1995). Appl. Organomet. Chem. 9, 251-257.]); Ng & Kumar Das (1997[Ng, S. W. & Kumar Das, V. G. (1997). Acta Cryst. C53, 1034-1036.]); Zhang et al. (2006[Zhang, W.-L., Ma, J.-F. & Jiang, H. (2006). Acta Cryst. E62, m460-m461.]). For compounds containing the [Sn(C6H5)3Cl2] ion, see: Harrison et al. (1978[Harrison, P. G., Molloy, K. C., Phillips, R. C., Smith, P. J. & Crowe, A. J. (1978). J. Organomet. Chem. 160, 421-434.]); Ng (1995[Ng, S. W. (1995). Acta Cryst. C51, 1124-1125.], 1999[Ng, S. W. (1999). Acta Cryst. C55, IUC9900098.]).

[Scheme 1]

Experimental

Crystal data
  • (C2H8N)[Sn(C6H5)3Cl2]

  • Mr = 466.98

  • Monoclinic, C c

  • a = 7.9865 (1) Å

  • b = 17.5031 (3) Å

  • c = 14.9484 (3) Å

  • β = 105.406 (1)°

  • V = 2014.53 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.54 mm−1

  • T = 150 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.656, Tmax = 0.749

  • 16595 measured reflections

  • 4569 independent reflections

  • 4469 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.045

  • S = 1.07

  • 4569 reflections

  • 227 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.89 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2256 Friedel pairs

  • Flack parameter: −0.030 (12)

Table 1
Selected bond lengths (Å)

Sn—C7 2.152 (2)
Sn—C13 2.152 (2)
Sn—C1 2.160 (2)
Sn—Cl2 2.6098 (6)
Sn—Cl1 2.6153 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H1A⋯Cl1 0.89 (3) 2.33 (3) 3.203 (2) 167 (3)
N—H1B⋯Cl2i 0.82 (3) 2.34 (3) 3.143 (2) 164 (3)
C2—H2⋯Cl2 0.95 2.67 3.309 (3) 125
C6—H6⋯Cl1 0.95 2.76 3.376 (2) 123
C8—H8⋯Cl1 0.95 2.70 3.344 (2) 126
C12—H12⋯Cl2 0.95 2.69 3.340 (2) 126
Symmetry code: (i) x-1, y, z.

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Three [Sn(C6H5)3Cl2]- stannate(IV) anion-containing compounds with 2,2'-iminodipyridinium (Ng, 1999), triphenyl(benzoylmethyl)arsonium (Harrison et al., 1978) and tetramethylammonium (Ng, 1995), have previously been reported. In our research of new organotin(IV) compounds, driven by the various applications found within this family (Chee et al., 2003; Evans & Karpel 1985; Gielen et al., 1995; Ng et al.,1997; Zhang et al., 2006), we have initiated here the study of the interactions between bis(dimethylammonium)oxalate and triphenyltin chloride which has yielded the title ionic product, [(CH3)2NH2][Sn(C6H5)3Cl2], (I).

The [Sn(C6H5)3Cl2]- anion has a trigonal-bipyramidal shape with the Sn(IV) atom in a trans-Cl2C3 environment (Fig. 1). The equatorial plane is defined by the three phenyl groups [Sn—C 2.152 (2), 2.152 (2) and 2.160 (2) Å] while the Sn—Cl distances are 2.6098 (6) and 2.6153 (6) Å. The latter distances are very close to those reported by Ng (1995, 1999), [2.598 (1) Å] but somehow longer and shorter than those reported by Harrison et al. (1978) [2.573 (7), 2.689 (6) Å] for the same kind of anion. The sum of the equatorial angles (360°) indicates a planar SnPh3 residue, although the Cl—Sn—Cl angle deviates from linearity [174.94 (2)°].

The [SnPh3Cl2]- anions are connected by the ammonium cations through a pair of similar N—H···Cl hydrogen bonds leading to an infinite chain structure parallel to [100] (Fig. 2), which is probably the origin of the Sn—Cl bond lengthening in comparison with [(CH3)4N][Sn(C6H5)3Cl2]. In the crystal packing C—H···Cl interactions are also observed (Table 1).

Related literature top

For background to organotin(IV) chemistry, see: Chee et al. (2003); Evans & Karpel (1985); Gielen et al. (1995); Ng et al. (1997); Zhang et al. (2006). For compounds containing the [Sn(C6H5)3Cl2]- ion, see: Harrison et al. (1978); Ng (1995, 1999).

Experimental top

All chemicals were purchased from Aldrich (Germany) and used without any further purification. When ((CH3)2NH2)2C2O4.nH2O (obtained as a powder on submitting a 2/1 ratio mixture of [(CH3)2NH2][OH] and oxalic acid in water to evaporate at 333 K) is allowed to react while stirring with an excess of Sn(C6H5)3Cl, both as ethanolic solutions, over 2 h, a precipitate is obtained. After filtering the precipitate, slow solvent evaporation from the filtrate afforded colourless crystals of the title complex suitable for X-ray work.

Refinement top

Hydrogen atoms bonded to the N atom have been located in difference Fourier maps and have been freely refined. All other hydrogen atoms have been placed onto calculated position and refined using a riding model, with C—H distances of 0.95 Å for sp2 carbon atoms, or 0.98 Å for sp3 carbon atoms, and with Uiso(H) = 1.2Ueq(C) for the sp2 carbon atoms and Uiso(H) = 1.5Ueq(C) for the sp3 carbon atoms.

Structure description top

Three [Sn(C6H5)3Cl2]- stannate(IV) anion-containing compounds with 2,2'-iminodipyridinium (Ng, 1999), triphenyl(benzoylmethyl)arsonium (Harrison et al., 1978) and tetramethylammonium (Ng, 1995), have previously been reported. In our research of new organotin(IV) compounds, driven by the various applications found within this family (Chee et al., 2003; Evans & Karpel 1985; Gielen et al., 1995; Ng et al.,1997; Zhang et al., 2006), we have initiated here the study of the interactions between bis(dimethylammonium)oxalate and triphenyltin chloride which has yielded the title ionic product, [(CH3)2NH2][Sn(C6H5)3Cl2], (I).

The [Sn(C6H5)3Cl2]- anion has a trigonal-bipyramidal shape with the Sn(IV) atom in a trans-Cl2C3 environment (Fig. 1). The equatorial plane is defined by the three phenyl groups [Sn—C 2.152 (2), 2.152 (2) and 2.160 (2) Å] while the Sn—Cl distances are 2.6098 (6) and 2.6153 (6) Å. The latter distances are very close to those reported by Ng (1995, 1999), [2.598 (1) Å] but somehow longer and shorter than those reported by Harrison et al. (1978) [2.573 (7), 2.689 (6) Å] for the same kind of anion. The sum of the equatorial angles (360°) indicates a planar SnPh3 residue, although the Cl—Sn—Cl angle deviates from linearity [174.94 (2)°].

The [SnPh3Cl2]- anions are connected by the ammonium cations through a pair of similar N—H···Cl hydrogen bonds leading to an infinite chain structure parallel to [100] (Fig. 2), which is probably the origin of the Sn—Cl bond lengthening in comparison with [(CH3)4N][Sn(C6H5)3Cl2]. In the crystal packing C—H···Cl interactions are also observed (Table 1).

For background to organotin(IV) chemistry, see: Chee et al. (2003); Evans & Karpel (1985); Gielen et al. (1995); Ng et al. (1997); Zhang et al. (2006). For compounds containing the [Sn(C6H5)3Cl2]- ion, see: Harrison et al. (1978); Ng (1995, 1999).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the complex showing the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. : The packing of the structure showing N—H···Cl hydrogen bonding interactions as dashed lines.
Dimethylammonium dichloridotriphenylstannate(IV) top
Crystal data top
(C2H8N)[Sn(C6H5)3Cl2]F(000) = 936
Mr = 466.98Dx = 1.540 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 12072 reflections
a = 7.9865 (1) Åθ = 2.9–27.5°
b = 17.5031 (3) ŵ = 1.54 mm1
c = 14.9484 (3) ÅT = 150 K
β = 105.406 (1)°Block, colourless
V = 2014.53 (6) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
4569 independent reflections
Radiation source: fine-focus sealed tube4469 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
298 2.0 degree images with φ and ω scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 1010
Tmin = 0.656, Tmax = 0.749k = 2222
16595 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.045 w = 1/[σ2(Fo2) + (0.0204P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4569 reflectionsΔρmax = 0.41 e Å3
227 parametersΔρmin = 0.89 e Å3
2 restraintsAbsolute structure: Flack (1983), 2256 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.030 (12)
Crystal data top
(C2H8N)[Sn(C6H5)3Cl2]V = 2014.53 (6) Å3
Mr = 466.98Z = 4
Monoclinic, CcMo Kα radiation
a = 7.9865 (1) ŵ = 1.54 mm1
b = 17.5031 (3) ÅT = 150 K
c = 14.9484 (3) Å0.30 × 0.20 × 0.20 mm
β = 105.406 (1)°
Data collection top
Nonius KappaCCD
diffractometer
4569 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
4469 reflections with I > 2σ(I)
Tmin = 0.656, Tmax = 0.749Rint = 0.037
16595 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.045Δρmax = 0.41 e Å3
S = 1.07Δρmin = 0.89 e Å3
4569 reflectionsAbsolute structure: Flack (1983), 2256 Friedel pairs
227 parametersAbsolute structure parameter: 0.030 (12)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.547277 (14)0.045301 (7)0.791813 (12)0.01712 (5)
Cl10.25286 (7)0.11982 (3)0.75104 (4)0.02502 (13)
Cl20.84601 (8)0.02426 (3)0.84731 (4)0.02268 (12)
C10.4134 (3)0.06314 (13)0.77445 (16)0.0196 (5)
C20.4971 (3)0.12794 (14)0.75338 (18)0.0251 (5)
H20.61460.12430.75100.030*
C30.4122 (3)0.19752 (14)0.73581 (18)0.0293 (6)
H30.46990.24050.71910.035*
C40.2430 (3)0.20458 (14)0.74251 (19)0.0278 (6)
H40.18500.25240.73140.033*
C50.1592 (3)0.14099 (14)0.76558 (18)0.0269 (5)
H50.04380.14540.77110.032*
C60.2438 (3)0.07124 (14)0.78062 (17)0.0229 (5)
H60.18450.02800.79550.028*
C70.6122 (3)0.08981 (12)0.67105 (15)0.0189 (4)
C80.4818 (3)0.11348 (13)0.59360 (16)0.0229 (5)
H80.36390.11260.59570.028*
C90.5229 (3)0.13846 (14)0.51318 (17)0.0269 (5)
H90.43310.15370.46070.032*
C100.6947 (3)0.14098 (13)0.51011 (17)0.0262 (5)
H100.72250.15730.45520.031*
C110.8259 (3)0.11967 (13)0.58705 (18)0.0259 (5)
H110.94400.12280.58560.031*
C120.7843 (3)0.09383 (13)0.66590 (16)0.0222 (5)
H120.87500.07840.71790.027*
C130.6162 (3)0.10926 (12)0.91933 (16)0.0209 (5)
C140.6982 (3)0.07444 (14)1.00306 (17)0.0246 (5)
H140.72100.02111.00460.029*
C150.7473 (3)0.11681 (15)1.08452 (18)0.0315 (6)
H150.80300.09221.14130.038*
C160.7159 (4)0.19439 (15)1.0836 (2)0.0340 (6)
H160.74960.22311.13950.041*
C170.6349 (3)0.23011 (15)1.0009 (2)0.0318 (6)
H170.61480.28360.99980.038*
C180.5825 (3)0.18794 (13)0.91879 (18)0.0257 (5)
H180.52400.21260.86260.031*
N0.1313 (3)0.09715 (12)0.93699 (16)0.0265 (5)
H1A0.172 (4)0.0954 (16)0.887 (2)0.034 (8)*
H1B0.043 (4)0.0718 (19)0.916 (2)0.032 (8)*
C300.0840 (5)0.17409 (17)0.9603 (3)0.0535 (9)
H30A0.01630.17061.00610.080*
H30B0.01440.19930.90420.080*
H30C0.18970.20380.98630.080*
C200.2435 (5)0.0556 (2)1.0161 (3)0.0560 (10)
H20A0.34950.08521.04200.084*
H20B0.27430.00580.99520.084*
H20C0.18150.04821.06390.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.01594 (7)0.01814 (7)0.01734 (7)0.00084 (7)0.00453 (5)0.00073 (8)
Cl10.0184 (3)0.0280 (3)0.0286 (3)0.0049 (2)0.0062 (2)0.0038 (3)
Cl20.0170 (3)0.0253 (3)0.0250 (3)0.0014 (2)0.0043 (2)0.0007 (3)
C10.0209 (11)0.0241 (11)0.0128 (11)0.0049 (10)0.0027 (9)0.0002 (9)
C20.0238 (13)0.0236 (12)0.0317 (14)0.0029 (10)0.0142 (11)0.0051 (10)
C30.0320 (13)0.0230 (12)0.0346 (15)0.0016 (10)0.0117 (12)0.0050 (11)
C40.0284 (13)0.0219 (12)0.0314 (14)0.0096 (11)0.0052 (11)0.0040 (11)
C50.0205 (11)0.0284 (12)0.0314 (14)0.0053 (10)0.0059 (10)0.0008 (11)
C60.0231 (12)0.0239 (12)0.0228 (13)0.0021 (10)0.0077 (10)0.0005 (11)
C70.0223 (11)0.0157 (10)0.0180 (11)0.0031 (9)0.0042 (9)0.0025 (9)
C80.0220 (12)0.0231 (12)0.0227 (13)0.0005 (9)0.0043 (10)0.0002 (10)
C90.0339 (14)0.0250 (12)0.0200 (12)0.0022 (10)0.0036 (11)0.0004 (10)
C100.0422 (15)0.0213 (12)0.0185 (12)0.0026 (10)0.0136 (11)0.0019 (10)
C110.0252 (13)0.0252 (12)0.0300 (14)0.0044 (10)0.0122 (11)0.0017 (10)
C120.0230 (12)0.0222 (11)0.0202 (13)0.0020 (9)0.0039 (10)0.0003 (10)
C130.0193 (11)0.0233 (11)0.0207 (12)0.0027 (9)0.0063 (10)0.0023 (10)
C140.0282 (13)0.0231 (12)0.0228 (13)0.0026 (10)0.0075 (11)0.0014 (10)
C150.0358 (15)0.0377 (15)0.0213 (13)0.0058 (11)0.0080 (12)0.0039 (11)
C160.0386 (15)0.0391 (15)0.0264 (15)0.0107 (12)0.0127 (12)0.0134 (12)
C170.0346 (14)0.0244 (12)0.0406 (17)0.0057 (11)0.0173 (13)0.0134 (12)
C180.0269 (13)0.0223 (12)0.0296 (14)0.0001 (10)0.0105 (11)0.0002 (10)
N0.0232 (11)0.0300 (11)0.0258 (12)0.0030 (9)0.0058 (10)0.0033 (10)
C300.059 (2)0.0319 (16)0.081 (3)0.0027 (14)0.039 (2)0.0061 (16)
C200.045 (2)0.078 (3)0.041 (2)0.0102 (16)0.0024 (17)0.0204 (17)
Geometric parameters (Å, º) top
Sn—C72.152 (2)C11—C121.383 (3)
Sn—C132.152 (2)C11—H110.9500
Sn—C12.160 (2)C12—H120.9500
Sn—Cl22.6098 (6)C13—C141.390 (3)
Sn—Cl12.6153 (6)C13—C181.403 (3)
C1—C61.389 (3)C14—C151.390 (4)
C1—C21.395 (3)C14—H140.9500
C2—C31.385 (3)C15—C161.380 (4)
C2—H20.9500C15—H150.9500
C3—C41.387 (3)C16—C171.384 (4)
C3—H30.9500C16—H160.9500
C4—C51.389 (3)C17—C181.397 (4)
C4—H40.9500C17—H170.9500
C5—C61.385 (3)C18—H180.9500
C5—H50.9500N—C301.466 (4)
C6—H60.9500N—C201.473 (4)
C7—C81.399 (3)N—H1A0.89 (3)
C7—C121.399 (3)N—H1B0.82 (3)
C8—C91.398 (3)C30—H30A0.9800
C8—H80.9500C30—H30B0.9800
C9—C101.386 (4)C30—H30C0.9800
C9—H90.9500C20—H20A0.9800
C10—C111.386 (4)C20—H20B0.9800
C10—H100.9500C20—H20C0.9800
C7—Sn—C13119.52 (8)C12—C11—H11120.1
C7—Sn—C1116.05 (8)C10—C11—H11120.1
C13—Sn—C1124.43 (9)C11—C12—C7121.7 (2)
C7—Sn—Cl291.83 (6)C11—C12—H12119.2
C13—Sn—Cl287.94 (6)C7—C12—H12119.2
C1—Sn—Cl290.57 (7)C14—C13—C18118.7 (2)
C7—Sn—Cl191.49 (6)C14—C13—Sn121.19 (16)
C13—Sn—Cl187.10 (6)C18—C13—Sn120.14 (17)
C1—Sn—Cl191.40 (7)C13—C14—C15120.7 (2)
Cl2—Sn—Cl1174.94 (2)C13—C14—H14119.6
C6—C1—C2117.8 (2)C15—C14—H14119.6
C6—C1—Sn122.82 (18)C16—C15—C14120.5 (3)
C2—C1—Sn119.33 (16)C16—C15—H15119.7
C3—C2—C1121.2 (2)C14—C15—H15119.7
C3—C2—H2119.4C15—C16—C17119.6 (3)
C1—C2—H2119.4C15—C16—H16120.2
C2—C3—C4120.2 (2)C17—C16—H16120.2
C2—C3—H3119.9C16—C17—C18120.4 (2)
C4—C3—H3119.9C16—C17—H17119.8
C3—C4—C5119.3 (2)C18—C17—H17119.8
C3—C4—H4120.3C17—C18—C13120.1 (2)
C5—C4—H4120.3C17—C18—H18120.0
C6—C5—C4120.0 (2)C13—C18—H18120.0
C6—C5—H5120.0C30—N—C20113.8 (3)
C4—C5—H5120.0C30—N—H1A113.9 (18)
C5—C6—C1121.4 (2)C20—N—H1A112.2 (19)
C5—C6—H6119.3C30—N—H1B110 (2)
C1—C6—H6119.3C20—N—H1B109 (2)
C8—C7—C12117.8 (2)H1A—N—H1B97 (3)
C8—C7—Sn120.62 (17)N—C30—H30A109.5
C12—C7—Sn121.57 (17)N—C30—H30B109.5
C9—C8—C7120.8 (2)H30A—C30—H30B109.5
C9—C8—H8119.6N—C30—H30C109.5
C7—C8—H8119.6H30A—C30—H30C109.5
C10—C9—C8120.0 (2)H30B—C30—H30C109.5
C10—C9—H9120.0N—C20—H20A109.5
C8—C9—H9120.0N—C20—H20B109.5
C11—C10—C9120.1 (2)H20A—C20—H20B109.5
C11—C10—H10120.0N—C20—H20C109.5
C9—C10—H10120.0H20A—C20—H20C109.5
C12—C11—C10119.7 (2)H20B—C20—H20C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1A···Cl10.89 (3)2.33 (3)3.203 (2)167 (3)
N—H1B···Cl2i0.82 (3)2.34 (3)3.143 (2)164 (3)
C2—H2···Cl20.952.673.309 (3)125
C6—H6···Cl10.952.763.376 (2)123
C8—H8···Cl10.952.703.344 (2)126
C12—H12···Cl20.952.693.340 (2)126
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formula(C2H8N)[Sn(C6H5)3Cl2]
Mr466.98
Crystal system, space groupMonoclinic, Cc
Temperature (K)150
a, b, c (Å)7.9865 (1), 17.5031 (3), 14.9484 (3)
β (°) 105.406 (1)
V3)2014.53 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.54
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.656, 0.749
No. of measured, independent and
observed [I > 2σ(I)] reflections
16595, 4569, 4469
Rint0.037
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.045, 1.07
No. of reflections4569
No. of parameters227
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.89
Absolute structureFlack (1983), 2256 Friedel pairs
Absolute structure parameter0.030 (12)

Computer programs: COLLECT (Nonius, 1999), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn—C72.152 (2)Sn—Cl22.6098 (6)
Sn—C132.152 (2)Sn—Cl12.6153 (6)
Sn—C12.160 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H1A···Cl10.89 (3)2.33 (3)3.203 (2)167 (3)
N—H1B···Cl2i0.82 (3)2.34 (3)3.143 (2)164 (3)
C2—H2···Cl20.952.673.309 (3)124.9
C6—H6···Cl10.952.763.376 (2)123.2
C8—H8···Cl10.952.703.344 (2)125.6
C12—H12···Cl20.952.693.340 (2)125.8
Symmetry code: (i) x1, y, z.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChee, C. F., Lo, K. M. & Ng, S. W. (2003). Acta Cryst. E59, m36–m37.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEvans, C. J. & Karpel, S. (1985). Organotin Compounds in Modern Technology. J. Organomet. Chem. Library, Vol. 16, Amsterdam: Elsevier.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGielen, M., Bouhdid, A., Kayser, S., Biesemans, M., De Vos, D., Mahieu, B. & Willem, R. (1995). Appl. Organomet. Chem. 9, 251–257.  CrossRef CAS Web of Science Google Scholar
First citationHarrison, P. G., Molloy, K. C., Phillips, R. C., Smith, P. J. & Crowe, A. J. (1978). J. Organomet. Chem. 160, 421–434.  CSD CrossRef CAS Web of Science Google Scholar
First citationNg, S. W. (1995). Acta Cryst. C51, 1124–1125.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationNg, S. W. (1999). Acta Cryst. C55, IUC9900098.  CrossRef IUCr Journals Google Scholar
First citationNg, S. W. & Kumar Das, V. G. (1997). Acta Cryst. C53, 1034–1036.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, W.-L., Ma, J.-F. & Jiang, H. (2006). Acta Cryst. E62, m460–m461.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds