metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tri­carbonyl-1κ3C-(1η5-cyclo­penta­dien­yl)lead(II)molyb­denum(0)](MoPb)-μ3-acetato-2′:2:2′′κ4O:O,O′:O′]

aInstitut für Chemie, Naturwissenschaftliche Fakultät II, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120 Halle, Germany
*Correspondence e-mail: kurt.merzweiler@chemie.uni-halle.de

(Received 25 May 2012; accepted 30 May 2012; online 2 June 2012)

In the title compound, [MoPb(C5H5)(CH3COO)(CO)3], the PbII atom is coordinated pyramidally via the Mo0 atom of a {Cp(CO)3Mo} (Cp = cyclo­penta­dien­yl) fragment [Pb—Mo = 3.0589 (5) Å] and a chelating acetate (Ac) group. Additionally, the [{Cp(CO)3Mo}PbAc] units are linked along [100] by Pb—O(acetate) inter­actions, giving a ladder-type polymeric structure composed of PbCO2 and Pb2O2 four-membered rings. The {Cp(CO)3Mo} units attached to the PbII atom occupy terminal positions at opposite sides of the slightly puckered lead acetate chain. The angle between the Pb—Mo bond vector and the central chain plane is 67.8 (2)°.

Related literature

For organometallic compounds containing Pb—Mo bonds, see: Kubicki et al. (1984[Kubicki, M. M., Kergoat, R., Guerchais, J.-E. & L'Haridon, P. (1984). J. Chem. Soc. Dalton Trans. pp. 1791-1793.]); Hitchcock et al. (1987[Hitchcock, P. B., Lappert, M. F. & Michalczyk, M. J. (1987). J. Chem. Soc. Dalton Trans. pp. 2635-2642.]); Pu et al. (2000[Pu, L., Power, P. P., Boltes, I. & Herbst-Irmer, R. (2000). Organometallics, 19, 352-356.]); Campbell et al. (2002[Campbell, J., Mercier, H. P. A., Franke, H., Santry, D. P., Dixon, D. A. & Schrobilgen, G. J. (2002). Inorg. Chem. 41, 86-107.]); Yong et al. (2005a[Yong, L., Hoffmann, S. D. & Fässler, T. F. (2005a). Eur. J. Inorg. Chem. pp. 3663-3669.],b[Yong, L., Hoffmann, S. D., Fässler, T. F., Riedel, S. & Kaupp, M. (2005b). Angew. Chem. Int. Ed. 44, 2092-2096.]); Alonso et al. (2010[Alonso, M., Alvarez, M. A., Garcia, M. E., Ruiz, M. A., Hamidov, H. & Jeffery, J. C. (2010). Inorg. Chem. 49, 11595-11605.]). For lead(II) carboxyl­ates with ladder-type structures, see: Rajaram & Rao (1982[Rajaram, R. K. & Rao, J. K. M. (1982). Z. Kristallogr. 160, 225-233.]); Dai et al. (2009[Dai, J., Yang, J. & An, X. (2009). Acta Cryst. E65, m709-m710.]).

[Scheme 1]

Experimental

Crystal data
  • [MoPb(C5H5)(C2H3O2)(CO)3]

  • Mr = 511.29

  • Monoclinic, P 21 /n

  • a = 7.4813 (6) Å

  • b = 14.9431 (12) Å

  • c = 11.3323 (9) Å

  • β = 98.660 (9)°

  • V = 1252.44 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 14.43 mm−1

  • T = 220 K

  • 0.19 × 0.19 × 0.08 mm

Data collection
  • Stoe IPDS I diffractometer

  • Absorption correction: numerical (IPDS Program Package; Stoe & Cie, 1999[Stoe & Cie (1999). IPDS Program Package. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.112, Tmax = 0.263

  • 9600 measured reflections

  • 2417 independent reflections

  • 2130 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.056

  • S = 1.03

  • 2417 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 1.29 e Å−3

  • Δρmin = −1.15 e Å−3

Data collection: IPDS Program Package (Stoe & Cie, 1999[Stoe & Cie (1999). IPDS Program Package. Stoe & Cie, Darmstadt, Germany.]); cell refinement: IPDS Program Package; data reduction: IPDS Program Package; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the title compound, [Mo(C5H5)(CO)3Pb(CH3COO)], (I), the lead(II) atom is coordinated by a {Cp(CO)3Mo} fragment and a chelating acetate group to give a pyramidal PbMoO2 unit with lead at its apex (Fig. 1). The Pb—Mo distance of 3.0589 (5) Å is slightly longer than the values that have been observed in other organometallic lead(II) complexes, like [{Cp*(CO)3Mo}2Pb(thf)] (2.989 and 3.019 Å), [{Cp*(CO)3Mo}2Pb2] (2.935 and 2.989 Å; Hitchcock et al., 1987) and [{Cp(CO)3MoPbR] (2.986 Å, R = 2,6-bis(2,4,6-triisopropylphenyl)phenyl; Pu et al., 2000). Complexes containing polynuclear lead clusters as ligands display Pb—Mo distances within a similar range, e.g. [Pb9{Mo(CO)3}]4- (2.962–3.241 Å; Yong et al., 2005a; 2.985–3.084 Å; Campbell et al., 2002), [Pb5{Mo(CO)3}2]2- (3.001–3.093 Å; Yong et al., 2005b). In the case of the Pb(IV) derivatives [{Cp2MoH}2PbAc2] (Kubicki et al., 1984) and [MCp{P(O)R*}(CO)2(PbPh3)] (R* = 2,4,6-C6H2tBu3) (Alonso et al., 2010) considerably shorter Pb—Mo distances of 2.808 Å and 2.8845 Å, respectively, have been observed.

The acetate group forms two Pb—O bonds with 2.491 (4) and 2.522 (4) Å to give a PbCO2 chelate ring. Additionally, the acetate group interacts with two neighbouring lead(II) atoms with Pb—O distances of 2.703 (4) and 2.752 (4) Å. Due to this µ3-κ4-O,O:O':O' coordination mode a chain structure along [100] with alternating PbCO2 and Pb2O2 rings is formed. The Pb2O2 four-membered rings display exact planarity (crystallographic 1 symmetry) and the PbCO2 rings are nearly planar (deviation from the rms plane = 0.009 (4) Å). The interplanar angle between the PbCO2 rings and the Pb2O2 units is 29.7 (2)° and consequently a slightly puckered ladder chain is formed (Fig. 2). Similar ladder chain motifs have been observed in other Pb(II) carboxylate compounds like lead(II) diacetate trihydrate (Rajaram & Rao, 1982) and lead(II) bis (3-methylbenzoate) trihydrate (Dai et al., 2009).

Related literature top

For organometallic compounds containing Pb—Mo bonds, see: Kubicki et al. (1984); Hitchcock et al. (1987); Pu et al. (2000); Campbell et al. (2002); Yong et al. (2005a,b); Alonso et al. (2010). For lead(II) carboxylates with ladder-type structures, see: Rajaram & Rao (1982); Dai et al. (2009).

Experimental top

The title compound (I) was synthesized by two different routes:

Method A

2.68 g of Na{Cp(CO)3Mo} (10 mmol) were dissolved in 50 ml of thf and cooled to 195 K. To this solution 1.63 g (5 mmol) of lead(II) acetate in 50 ml thf were added. The reaction mixture was stirred at 195 K for one hour and then slowly warmed up to 248 K. The originally pale yellow solution changed to blue green. After one day the reaction mixture was filtered over celite and the filtrated was layered with n-heptane. After some hours orange crystals of [{Cp(CO)3Mo}Pb(Ac)] formed at the phase boundary.

Yield: 0.92 g (36%)

Method B

1.4 g of Pb(II) acetate trihydrate (3.73 mmol) were dissolved in 20 ml of water and conc. acetic acid was added to adjust the pH value to approx. 4. After addition of a solution of 1.0 g (3.73 mmol) of Na{Cp(CO)3Mo} in 20 ml of H2O an orange coloured precipitate formed. The precipitate was filtered off and washed with water. After drying in vacuo, the residue was extracted with thf to give an orange solution which is layered with n-heptane. Within two days bright orange crystals of [{Cp(CO)3Mo}Pb(Ac)] formed.

Yield: 0.5 g (26%)

Analysis, calculated for C10H8MoO5Pb: C 23.5, H 1.58%, found: C 22.2, H 1.49%

Refinement top

H atoms were placed in calculated positions with C—H distances of 0.97 Å for the CH3 group and 0.94 Å for the Cp group, Uiso(H) = 1.2 Ueq(C). The highest and lowest remaining electron densities were found 1.93 Å from Pb and 0.91 Å, respectively, from the same atom.

Structure description top

In the title compound, [Mo(C5H5)(CO)3Pb(CH3COO)], (I), the lead(II) atom is coordinated by a {Cp(CO)3Mo} fragment and a chelating acetate group to give a pyramidal PbMoO2 unit with lead at its apex (Fig. 1). The Pb—Mo distance of 3.0589 (5) Å is slightly longer than the values that have been observed in other organometallic lead(II) complexes, like [{Cp*(CO)3Mo}2Pb(thf)] (2.989 and 3.019 Å), [{Cp*(CO)3Mo}2Pb2] (2.935 and 2.989 Å; Hitchcock et al., 1987) and [{Cp(CO)3MoPbR] (2.986 Å, R = 2,6-bis(2,4,6-triisopropylphenyl)phenyl; Pu et al., 2000). Complexes containing polynuclear lead clusters as ligands display Pb—Mo distances within a similar range, e.g. [Pb9{Mo(CO)3}]4- (2.962–3.241 Å; Yong et al., 2005a; 2.985–3.084 Å; Campbell et al., 2002), [Pb5{Mo(CO)3}2]2- (3.001–3.093 Å; Yong et al., 2005b). In the case of the Pb(IV) derivatives [{Cp2MoH}2PbAc2] (Kubicki et al., 1984) and [MCp{P(O)R*}(CO)2(PbPh3)] (R* = 2,4,6-C6H2tBu3) (Alonso et al., 2010) considerably shorter Pb—Mo distances of 2.808 Å and 2.8845 Å, respectively, have been observed.

The acetate group forms two Pb—O bonds with 2.491 (4) and 2.522 (4) Å to give a PbCO2 chelate ring. Additionally, the acetate group interacts with two neighbouring lead(II) atoms with Pb—O distances of 2.703 (4) and 2.752 (4) Å. Due to this µ3-κ4-O,O:O':O' coordination mode a chain structure along [100] with alternating PbCO2 and Pb2O2 rings is formed. The Pb2O2 four-membered rings display exact planarity (crystallographic 1 symmetry) and the PbCO2 rings are nearly planar (deviation from the rms plane = 0.009 (4) Å). The interplanar angle between the PbCO2 rings and the Pb2O2 units is 29.7 (2)° and consequently a slightly puckered ladder chain is formed (Fig. 2). Similar ladder chain motifs have been observed in other Pb(II) carboxylate compounds like lead(II) diacetate trihydrate (Rajaram & Rao, 1982) and lead(II) bis (3-methylbenzoate) trihydrate (Dai et al., 2009).

For organometallic compounds containing Pb—Mo bonds, see: Kubicki et al. (1984); Hitchcock et al. (1987); Pu et al. (2000); Campbell et al. (2002); Yong et al. (2005a,b); Alonso et al. (2010). For lead(II) carboxylates with ladder-type structures, see: Rajaram & Rao (1982); Dai et al. (2009).

Computing details top

Data collection: IPDS Program Package (Stoe & Cie, 1999); cell refinement: IPDS Program Package (Stoe & Cie, 1999); data reduction: IPDS Program Package (Stoe & Cie, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Coordination around the lead atom in the structure of compound (I). The asymmetric unit is shown with filled bonds. Thermal ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i): 1 - x, 1 - y, 1 - z, (ii): -x, -y + 1, -z + 1.]
[Figure 2] Fig. 2. Part of the ladder type chain structure in compound (I).
catena-Poly[[tricarbonyl-1κ3C-(1η5- cyclopentadienyl)lead(II)molybdenum(0)](MoPb)-µ3-acetato- 2':2:2''κ4O:O,O':O'] top
Crystal data top
[MoPb(C5H5)(C2H3O2)(CO)3]F(000) = 928
Mr = 511.29Dx = 2.712 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8000 reflections
a = 7.4813 (6) Åθ = 2.3–25.9°
b = 14.9431 (12) ŵ = 14.43 mm1
c = 11.3323 (9) ÅT = 220 K
β = 98.660 (9)°Plate, orange
V = 1252.44 (17) Å30.19 × 0.19 × 0.08 mm
Z = 4
Data collection top
Stoe IPDS I
diffractometer
2417 independent reflections
Radiation source: fine-focus sealed tube2130 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
φ oscillation scansθmax = 25.9°, θmin = 2.3°
Absorption correction: numerical
(IPDS Program Package; Stoe & Cie, 1999)
h = 99
Tmin = 0.112, Tmax = 0.263k = 1818
9600 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0275P)2]
where P = (Fo2 + 2Fc2)/3
2417 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 1.29 e Å3
0 restraintsΔρmin = 1.15 e Å3
Crystal data top
[MoPb(C5H5)(C2H3O2)(CO)3]V = 1252.44 (17) Å3
Mr = 511.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.4813 (6) ŵ = 14.43 mm1
b = 14.9431 (12) ÅT = 220 K
c = 11.3323 (9) Å0.19 × 0.19 × 0.08 mm
β = 98.660 (9)°
Data collection top
Stoe IPDS I
diffractometer
2417 independent reflections
Absorption correction: numerical
(IPDS Program Package; Stoe & Cie, 1999)
2130 reflections with I > 2σ(I)
Tmin = 0.112, Tmax = 0.263Rint = 0.066
9600 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.03Δρmax = 1.29 e Å3
2417 reflectionsΔρmin = 1.15 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2861 (8)0.5561 (4)0.6488 (5)0.0223 (12)
C20.3210 (12)0.5900 (6)0.7737 (6)0.057 (2)
H30.44490.61090.79150.068*
H20.30180.54220.82820.068*
H10.23920.63910.78260.068*
C30.2737 (9)0.7886 (4)0.3061 (5)0.0283 (13)
C40.4537 (8)0.6461 (4)0.3283 (5)0.0223 (12)
C50.0974 (8)0.6837 (4)0.4177 (5)0.0259 (13)
C60.0802 (9)0.6429 (5)0.1399 (6)0.0406 (17)
H40.19230.64820.16720.049*
C70.0154 (10)0.7132 (4)0.0927 (5)0.0385 (17)
H50.01960.77360.08470.046*
C80.1749 (10)0.6743 (5)0.0599 (5)0.0378 (16)
H60.26320.70480.02470.045*
C90.1782 (10)0.5829 (5)0.0891 (5)0.0384 (16)
H70.26870.54150.07770.046*
C100.0208 (10)0.5650 (4)0.1386 (5)0.0357 (16)
H80.01130.50890.16660.043*
O10.4139 (5)0.5565 (3)0.5865 (3)0.0244 (9)
O20.1338 (5)0.5251 (3)0.6061 (4)0.0246 (9)
O30.3190 (8)0.8626 (3)0.3264 (4)0.0491 (13)
O40.6102 (6)0.6423 (3)0.3575 (4)0.0376 (11)
O50.0370 (7)0.7031 (3)0.5033 (4)0.0465 (13)
Mo0.19661 (6)0.66595 (3)0.26799 (4)0.01695 (12)
Pb0.22870 (3)0.489761 (12)0.406981 (17)0.01569 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.020 (3)0.028 (3)0.019 (3)0.002 (2)0.003 (2)0.000 (2)
C20.055 (5)0.084 (6)0.034 (4)0.037 (5)0.014 (4)0.021 (4)
C30.031 (4)0.024 (3)0.026 (3)0.002 (3)0.007 (3)0.006 (2)
C40.029 (4)0.018 (3)0.020 (3)0.004 (2)0.006 (3)0.000 (2)
C50.033 (4)0.018 (3)0.029 (3)0.006 (2)0.011 (3)0.002 (2)
C60.021 (4)0.069 (5)0.028 (3)0.007 (3)0.007 (3)0.003 (3)
C70.053 (5)0.030 (3)0.024 (3)0.006 (3)0.020 (3)0.002 (3)
C80.035 (4)0.063 (5)0.015 (3)0.016 (3)0.003 (3)0.000 (3)
C90.051 (5)0.040 (4)0.022 (3)0.003 (3)0.003 (3)0.010 (3)
C100.050 (5)0.034 (4)0.019 (3)0.018 (3)0.011 (3)0.004 (2)
O10.019 (2)0.032 (2)0.023 (2)0.0025 (17)0.0073 (18)0.0014 (16)
O20.013 (2)0.031 (2)0.029 (2)0.0035 (17)0.0006 (17)0.0033 (17)
O30.069 (4)0.023 (2)0.048 (3)0.013 (2)0.013 (3)0.004 (2)
O40.018 (3)0.040 (3)0.054 (3)0.0005 (19)0.003 (2)0.001 (2)
O50.053 (3)0.049 (3)0.042 (3)0.017 (2)0.022 (3)0.001 (2)
Mo0.0173 (2)0.0174 (2)0.0154 (2)0.00063 (18)0.00030 (18)0.00218 (16)
Pb0.01277 (13)0.01757 (12)0.01657 (11)0.00013 (8)0.00171 (8)0.00066 (7)
Geometric parameters (Å, º) top
C1—O21.258 (7)C7—Mo2.339 (6)
C1—O11.272 (7)C7—H50.9400
C1—C21.488 (9)C8—C91.405 (10)
C2—H30.9700C8—Mo2.342 (6)
C2—H20.9700C8—H60.9400
C2—H10.9700C9—C101.404 (10)
C3—O31.168 (7)C9—Mo2.363 (6)
C3—Mo1.951 (6)C9—H70.9400
C4—O41.169 (7)C10—Mo2.361 (6)
C4—Mo1.965 (6)C10—H80.9400
C5—O51.166 (7)O1—Pb2.491 (4)
C5—Mo1.970 (5)O1—Pbi2.752 (4)
C6—C101.390 (10)O2—Pb2.522 (4)
C6—C71.420 (10)O2—Pbii2.703 (4)
C6—Mo2.368 (7)Mo—Pb3.0589 (5)
C6—H40.9400Pb—O2ii2.703 (4)
C7—C81.426 (10)Pb—O1i2.752 (4)
O2—C1—O1120.1 (5)Pb—O2—Pbii110.43 (15)
O2—C1—C2120.7 (5)C3—Mo—C479.8 (2)
O1—C1—C2119.2 (6)C3—Mo—C579.6 (2)
C1—C2—H3109.5C4—Mo—C5101.3 (2)
C1—C2—H2109.5C3—Mo—C791.1 (2)
H3—C2—H2109.5C4—Mo—C7138.9 (2)
C1—C2—H1109.5C5—Mo—C7116.5 (3)
H3—C2—H1109.5C3—Mo—C898.4 (2)
H2—C2—H1109.5C4—Mo—C8105.9 (2)
O3—C3—Mo178.6 (5)C5—Mo—C8151.9 (3)
O4—C4—Mo172.8 (5)C7—Mo—C835.5 (2)
O5—C5—Mo173.3 (5)C3—Mo—C10148.9 (2)
C10—C6—C7108.1 (6)C4—Mo—C10123.0 (2)
C10—C6—Mo72.6 (4)C5—Mo—C10112.0 (3)
C7—C6—Mo71.3 (4)C7—Mo—C1057.9 (2)
C10—C6—H4125.9C8—Mo—C1057.4 (2)
C7—C6—H4125.9C3—Mo—C9131.3 (2)
Mo—C6—H4121.8C4—Mo—C998.4 (2)
C6—C7—C8106.6 (6)C5—Mo—C9146.0 (3)
C6—C7—Mo73.6 (4)C7—Mo—C958.6 (2)
C8—C7—Mo72.4 (4)C8—Mo—C934.8 (2)
C6—C7—H5126.7C10—Mo—C934.6 (2)
C8—C7—H5126.7C3—Mo—C6118.3 (3)
Mo—C7—H5119.3C4—Mo—C6155.7 (2)
C9—C8—C7108.7 (6)C5—Mo—C698.0 (3)
C9—C8—Mo73.4 (3)C7—Mo—C635.1 (2)
C7—C8—Mo72.1 (3)C8—Mo—C657.9 (2)
C9—C8—H6125.6C10—Mo—C634.2 (3)
C7—C8—H6125.6C9—Mo—C657.7 (3)
Mo—C8—H6120.5C3—Mo—Pb134.20 (17)
C10—C9—C8107.0 (6)C4—Mo—Pb72.17 (16)
C10—C9—Mo72.6 (4)C5—Mo—Pb71.52 (16)
C8—C9—Mo71.8 (3)C7—Mo—Pb133.44 (17)
C10—C9—H7126.5C8—Mo—Pb123.54 (18)
C8—C9—H7126.5C10—Mo—Pb76.28 (15)
Mo—C9—H7120.9C9—Mo—Pb88.82 (17)
C6—C10—C9109.5 (6)C6—Mo—Pb100.61 (19)
C6—C10—Mo73.2 (4)O1—Pb—O251.85 (12)
C9—C10—Mo72.8 (4)O1—Pb—O2ii120.53 (12)
C6—C10—H8125.2O2—Pb—O2ii69.57 (15)
C9—C10—H8125.2O1—Pb—O1i70.11 (13)
Mo—C10—H8120.5O2—Pb—O1i115.60 (12)
C1—O1—Pb94.6 (3)O2ii—Pb—O1i160.67 (12)
C1—O1—Pbi142.5 (4)O1—Pb—Mo93.83 (9)
Pb—O1—Pbi109.89 (13)O2—Pb—Mo105.64 (9)
C1—O2—Pb93.5 (3)O2ii—Pb—Mo92.42 (9)
C1—O2—Pbii153.5 (4)O1i—Pb—Mo103.33 (8)
C10—C6—C7—C81.6 (7)C10—C9—Mo—C777.8 (4)
Mo—C6—C7—C865.4 (4)C8—C9—Mo—C737.5 (4)
C10—C6—C7—Mo63.8 (5)C10—C9—Mo—C8115.2 (6)
C6—C7—C8—C91.3 (7)C8—C9—Mo—C10115.2 (6)
Mo—C7—C8—C964.8 (4)C10—C9—Mo—C636.2 (4)
C6—C7—C8—Mo66.2 (4)C8—C9—Mo—C679.0 (5)
C7—C8—C9—C100.6 (7)C10—C9—Mo—Pb67.2 (4)
Mo—C8—C9—C1064.6 (4)C8—C9—Mo—Pb177.6 (4)
C7—C8—C9—Mo64.0 (4)C10—C6—Mo—C3159.8 (4)
C7—C6—C10—C91.3 (7)C7—C6—Mo—C343.1 (5)
Mo—C6—C10—C964.2 (5)C10—C6—Mo—C424.9 (8)
C7—C6—C10—Mo62.9 (4)C7—C6—Mo—C491.8 (7)
C8—C9—C10—C60.4 (7)C10—C6—Mo—C5117.7 (4)
Mo—C9—C10—C664.5 (5)C7—C6—Mo—C5125.6 (4)
C8—C9—C10—Mo64.0 (4)C10—C6—Mo—C7116.7 (6)
O2—C1—O1—Pb1.3 (6)C10—C6—Mo—C878.0 (4)
C2—C1—O1—Pb179.4 (6)C7—C6—Mo—C838.7 (4)
O2—C1—O1—Pbi130.3 (5)C7—C6—Mo—C10116.7 (6)
C2—C1—O1—Pbi47.8 (9)C10—C6—Mo—C936.6 (4)
O1—C1—O2—Pb1.3 (6)C7—C6—Mo—C980.1 (4)
C2—C1—O2—Pb179.3 (6)C10—C6—Mo—Pb45.1 (4)
O1—C1—O2—Pbii156.3 (5)C7—C6—Mo—Pb161.8 (4)
C2—C1—O2—Pbii25.6 (13)C1—O1—Pb—O20.7 (3)
C6—C7—Mo—C3143.0 (4)Pbi—O1—Pb—O2150.3 (2)
C8—C7—Mo—C3103.0 (4)C1—O1—Pb—O2ii11.1 (4)
C6—C7—Mo—C4141.2 (4)Pbi—O1—Pb—O2ii162.11 (12)
C8—C7—Mo—C427.3 (6)C1—O1—Pb—O1i151.0 (4)
C6—C7—Mo—C564.1 (5)Pbi—O1—Pb—O1i0.0
C8—C7—Mo—C5178.0 (4)C1—O1—Pb—Mo106.2 (3)
C6—C7—Mo—C8113.9 (6)Pbi—O1—Pb—Mo102.80 (11)
C6—C7—Mo—C1036.3 (4)C1—O2—Pb—O10.7 (3)
C8—C7—Mo—C1077.6 (4)Pbii—O2—Pb—O1169.1 (2)
C6—C7—Mo—C977.2 (4)C1—O2—Pb—O2ii168.4 (4)
C8—C7—Mo—C936.7 (4)Pbii—O2—Pb—O2ii0.0
C8—C7—Mo—C6113.9 (6)C1—O2—Pb—O1i31.9 (4)
C6—C7—Mo—Pb24.9 (5)Pbii—O2—Pb—O1i159.73 (13)
C8—C7—Mo—Pb89.0 (4)C1—O2—Pb—Mo81.7 (3)
C9—C8—Mo—C3163.5 (4)Pbii—O2—Pb—Mo86.71 (13)
C7—C8—Mo—C379.9 (4)C3—Mo—Pb—O14.2 (3)
C9—C8—Mo—C481.7 (4)C4—Mo—Pb—O150.95 (18)
C7—C8—Mo—C4161.7 (4)C5—Mo—Pb—O158.0 (2)
C9—C8—Mo—C5112.8 (6)C7—Mo—Pb—O1167.3 (3)
C7—C8—Mo—C53.7 (7)C8—Mo—Pb—O1148.6 (2)
C9—C8—Mo—C7116.6 (6)C10—Mo—Pb—O1177.2 (2)
C9—C8—Mo—C1037.5 (4)C9—Mo—Pb—O1150.2 (2)
C7—C8—Mo—C1079.0 (4)C6—Mo—Pb—O1153.0 (2)
C7—C8—Mo—C9116.6 (6)C3—Mo—Pb—O247.2 (3)
C9—C8—Mo—C678.2 (5)C4—Mo—Pb—O2102.33 (19)
C7—C8—Mo—C638.3 (4)C5—Mo—Pb—O26.7 (2)
C9—C8—Mo—Pb2.9 (5)C7—Mo—Pb—O2115.9 (3)
C7—C8—Mo—Pb119.4 (4)C8—Mo—Pb—O2160.1 (2)
C6—C10—Mo—C336.1 (7)C10—Mo—Pb—O2125.9 (2)
C9—C10—Mo—C381.2 (7)C9—Mo—Pb—O2158.4 (2)
C6—C10—Mo—C4168.1 (4)C6—Mo—Pb—O2101.7 (2)
C9—C10—Mo—C450.7 (5)C3—Mo—Pb—O2ii116.6 (3)
C6—C10—Mo—C571.0 (4)C4—Mo—Pb—O2ii171.78 (18)
C9—C10—Mo—C5171.7 (4)C5—Mo—Pb—O2ii62.8 (2)
C6—C10—Mo—C737.3 (4)C7—Mo—Pb—O2ii46.5 (3)
C9—C10—Mo—C780.0 (4)C8—Mo—Pb—O2ii90.6 (2)
C6—C10—Mo—C879.6 (4)C10—Mo—Pb—O2ii56.4 (2)
C9—C10—Mo—C837.7 (4)C9—Mo—Pb—O2ii89.0 (2)
C6—C10—Mo—C9117.3 (6)C6—Mo—Pb—O2ii32.22 (19)
C9—C10—Mo—C6117.3 (6)C3—Mo—Pb—O1i74.7 (3)
C6—C10—Mo—Pb134.2 (4)C4—Mo—Pb—O1i19.50 (18)
C9—C10—Mo—Pb108.5 (4)C5—Mo—Pb—O1i128.5 (2)
C10—C9—Mo—C3137.2 (4)C7—Mo—Pb—O1i122.2 (3)
C8—C9—Mo—C322.0 (6)C8—Mo—Pb—O1i78.1 (2)
C10—C9—Mo—C4138.9 (4)C10—Mo—Pb—O1i112.3 (2)
C8—C9—Mo—C4105.8 (4)C9—Mo—Pb—O1i79.7 (2)
C10—C9—Mo—C513.8 (7)C6—Mo—Pb—O1i136.50 (19)
C8—C9—Mo—C5129.1 (5)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[MoPb(C5H5)(C2H3O2)(CO)3]
Mr511.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)220
a, b, c (Å)7.4813 (6), 14.9431 (12), 11.3323 (9)
β (°) 98.660 (9)
V3)1252.44 (17)
Z4
Radiation typeMo Kα
µ (mm1)14.43
Crystal size (mm)0.19 × 0.19 × 0.08
Data collection
DiffractometerStoe IPDS I
Absorption correctionNumerical
(IPDS Program Package; Stoe & Cie, 1999)
Tmin, Tmax0.112, 0.263
No. of measured, independent and
observed [I > 2σ(I)] reflections
9600, 2417, 2130
Rint0.066
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.056, 1.03
No. of reflections2417
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.29, 1.15

Computer programs: IPDS Program Package (Stoe & Cie, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2009), publCIF (Westrip, 2010).

 

References

First citationAlonso, M., Alvarez, M. A., Garcia, M. E., Ruiz, M. A., Hamidov, H. & Jeffery, J. C. (2010). Inorg. Chem. 49, 11595–11605.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCampbell, J., Mercier, H. P. A., Franke, H., Santry, D. P., Dixon, D. A. & Schrobilgen, G. J. (2002). Inorg. Chem. 41, 86–107.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDai, J., Yang, J. & An, X. (2009). Acta Cryst. E65, m709–m710.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHitchcock, P. B., Lappert, M. F. & Michalczyk, M. J. (1987). J. Chem. Soc. Dalton Trans. pp. 2635–2642.  CSD CrossRef Web of Science Google Scholar
First citationKubicki, M. M., Kergoat, R., Guerchais, J.-E. & L'Haridon, P. (1984). J. Chem. Soc. Dalton Trans. pp. 1791–1793.  CSD CrossRef Web of Science Google Scholar
First citationPu, L., Power, P. P., Boltes, I. & Herbst-Irmer, R. (2000). Organometallics, 19, 352–356.  Web of Science CSD CrossRef CAS Google Scholar
First citationRajaram, R. K. & Rao, J. K. M. (1982). Z. Kristallogr. 160, 225–233.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1999). IPDS Program Package. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYong, L., Hoffmann, S. D. & Fässler, T. F. (2005a). Eur. J. Inorg. Chem. pp. 3663–3669.  Web of Science CSD CrossRef Google Scholar
First citationYong, L., Hoffmann, S. D., Fässler, T. F., Riedel, S. & Kaupp, M. (2005b). Angew. Chem. Int. Ed. 44, 2092–2096.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds