metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[aqua­[μ5-5-(isonicotinamido)­isophthalato][μ4-5-(isonicotinamido)­isophthalato]holmium(III)silver(I)] dihydrate]

aDepartment of Chemistry and Materials Science, Hengyang Normal University, Hengyang Hunan 421008, People's Republic of China
*Correspondence e-mail: hyxuehuanie@163.com

(Received 9 June 2012; accepted 24 June 2012; online 30 June 2012)

The title heteronuclear complex, {[AgHo(C14H8N2O5)2(H2O)]·2H2O}n, has a three-dimensional polymeric structure, generated by the carboxyl­ate and pyridine groups of the 5-(isonicotinamido)­isophthalate (INAIP) ligands bridging the metal atoms. The HoIII atom is coordinated by seven O atoms from INAIP ligands and a water mol­ecule in a distorted square-anti­prismatic geometry, while the AgI atom has a distorted trigonal-planar AgN2O geometry. Inter­molecular O—H⋯O and N—H⋯O hydrogen bonds stabilize the crystal structure.

Related literature

For background to coordination polymeric frameworks, see: Kapoor et al. (2002[Kapoor, P., Pathak, A., Kapoor, R., Venugopalan, P., Corbella, M., Rodríguez, M., Robles, J. & Llobet, A. (2002). Inorg. Chem. 41, 6153-6160.]); Abourahma et al. (2002[Abourahma, H., Moulton, B., Kravtsov, V. & Zaworotko, M. J. (2002). J. Am. Chem. Soc. 124, 9990-9991.]); Costes et al. (2004[Costes, J. P., Dahan, F., Donnadieu, B., Douton, M. J. R., Garcia, M. I. F., Bousseksou, A. & Tuchagues, J. P. (2004). Inorg. Chem. 43, 2736-2744.]). For related hetero-metallic complexes, see: Chen et al. (2010[Chen, M.-S., Su, Z., Chen, M., Chen, S.-S., Li, Y.-Z. & Sun, W.-Y. (2010). CrystEngComm, 12, 3267-3276.]); Liang et al. (2000[Liang, Y.-C., Cao, R., Su, W.-P., Hong, M.-C. & Zhang, W.-J. (2000). Angew. Chem. Int. Ed. 39, 3304-3307.]); Zhao et al. (2003[Zhao, B., Cheng, P., Dai, Y., Cheng, C., Liao, D.-Z., Yan, S.-P., Jiang, Z.-H. & Wang, G.-L. (2003). Angew. Chem. Int. Ed. 42, 934-936.], 2004[Zhao, B., Cheng, P., Chen, X.-Y., Cheng, C., Shi, W., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). J. Am. Chem. Soc. 126, 3012-3013.]); Nie & Qu (2011[Nie, X. & Qu, J.-N. (2011). Acta Cryst. E67, m1107-m1108.]); Zhang et al. (2005[Zhang, M.-B., Zhang, J., Zheng, S.-T. & Yang, G.-Y. (2005). Angew. Chem. Int. Ed. 44, 1385-1388.]); Cheng et al. (2006[Cheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73-76.]); Lin et al. (2009[Lin, X.-M., Ying, Y., Chen, L., Fang, H.-C., Zhou, Z.-Y., Zhan, Q.-G. & Cai, Y.-P. (2009). Inorg. Chem. Commun. 12, 316-320.]).

[Scheme 1]

Experimental

Crystal data
  • [AgHo(C14H8N2O5)2(H2O)]·2H2O

  • Mr = 895.30

  • Triclinic, [P \overline 1]

  • a = 9.8343 (13) Å

  • b = 11.3087 (15) Å

  • c = 13.723 (2) Å

  • α = 73.914 (2)°

  • β = 70.671 (1)°

  • γ = 83.965 (2)°

  • V = 1383.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.63 mm−1

  • T = 291 K

  • 0.20 × 0.16 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.531, Tmax = 0.713

  • 7445 measured reflections

  • 5273 independent reflections

  • 4177 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.104

  • S = 1.03

  • 5273 reflections

  • 424 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 1.37 e Å−3

  • Δρmin = −1.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3Wi 0.86 2.11 2.878 (9) 149
N4—H4⋯O5ii 0.86 2.08 2.925 (8) 168
O1W—H1X⋯O9iii 0.85 2.05 2.562 (7) 118
O1W—H1Y⋯O10iv 0.85 1.90 2.717 (7) 161
O2W—H2X⋯O3Wv 0.85 2.11 2.799 (8) 138
O2W—H2Y⋯O1Wvi 0.85 2.34 3.136 (8) 156
O2W—H2Y⋯O9vii 0.85 2.22 2.766 (8) 122
O3W—H3X⋯N2viii 0.85 2.49 3.187 (9) 140
O3W—H3Y⋯O9ix 0.85 2.30 2.821 (7) 120
Symmetry codes: (i) x-1, y, z+1; (ii) -x+1, -y+2, -z+2; (iii) -x, -y+2, -z+2; (iv) x, y, z+1; (v) x-1, y, z; (vi) x, y-1, z-1; (vii) -x, -y+1, -z+1; (viii) -x+1, -y+1, -z+2; (ix) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, coordination polymeric frameworks have attracted great attention due to their potential applications and intriguing structure topologies (Kapoor et al., 2002; Abourahma et al., 2002; Costes et al., 2004). However, to obtain d-f coordination polymers is more important. On the other hand, multidentate ligands containing both N– and O-donor atoms are usually employed in the construction of Lanthanide and transiton metal heterometallic structures, in keeping with the typical coordination behaviors of Ln and M ions under different reaction conditions (Zhang et al., 2005; Cheng et al., 2006; Lin et al., 2009). To the best of our knowledge, 5-(isonicotinamido)isophthalic acid (H2INAIP) can show richer coordination modes due to its two carboxylate groups and one pyridyl group, accordingly, it is an excellent candidate for the construction of metal organic frameworks (Chen et al., 2010). In this paper, we report on the synthesis and crystal structure of a 4d-4f heterometallic coordination polymer (I).

It is interesting that two INAIP2- ligands exhibit different coordination modes: one coordinated to three HoIII atoms and two AgI atoms while the other coordinated to three HoIII atoms and one AgI atom, originated from the different coordination modes of the carboxylate groups. When the Ag—N and Ag—O connections are neglected, a two-dimensional (4,4) bilayer network is formed by Ho(III)-carboxylate groups, which is similar complex [AgCe(C14H8N2O5)2(H2O)]n (Nie et al., 2011). Then the two-dimensional (4,4) nets are linked together by Ag—N and Ag—O coordination interaction to form a complicated three-dimensional supramolecular net (Fig. 2), which is isomorphous to its AgEr isologue {[AgEr(INAIP)2(H2O)].H2O}n (Chen et al., 2010).

Related literature top

For background to coordination polymeric frameworks, see: Kapoor et al. (2002); Abourahma et al. (2002); Costes et al. (2004). For related hetero-metallic complexes, see: Chen et al. (2010); Liang et al. (2000); Zhao et al. (2003, 2004); Nie & Qu (2011); Zhang et al. (2005); Cheng et al. (2006); Lin et al. (2009).

Experimental top

A mixture of 0.05 mmol Ho(NO3)3.6H2O (23.0 mg, 0.05 mmol), H2INAIP (28.6 mg, 0.1 mmol), AgNO3 (8.5 mg, 0.05 mmol), NaOH (6.0 mg, 0.15 mmol) and H2O (10 ml) was heated in a 16 mL capacity Teflon-lined reaction vessel at 453 K for 4 d, the reaction mixture was cooled to room temperature over a period of 40 h. The product was collected by filtration.

Refinement top

H atoms bonded to C atoms were placed geometrically and refined as riding atoms. The pyridyl N atoms were found from a difference Fourier maps and refined as riding with N—H = 0.86 Å, and the water H atoms were found from Fourier difference maps and refined with restraints for O—H distances 0.85 Å with Uiso(H) = 1.2Ueq(O).

Structure description top

Recently, coordination polymeric frameworks have attracted great attention due to their potential applications and intriguing structure topologies (Kapoor et al., 2002; Abourahma et al., 2002; Costes et al., 2004). However, to obtain d-f coordination polymers is more important. On the other hand, multidentate ligands containing both N– and O-donor atoms are usually employed in the construction of Lanthanide and transiton metal heterometallic structures, in keeping with the typical coordination behaviors of Ln and M ions under different reaction conditions (Zhang et al., 2005; Cheng et al., 2006; Lin et al., 2009). To the best of our knowledge, 5-(isonicotinamido)isophthalic acid (H2INAIP) can show richer coordination modes due to its two carboxylate groups and one pyridyl group, accordingly, it is an excellent candidate for the construction of metal organic frameworks (Chen et al., 2010). In this paper, we report on the synthesis and crystal structure of a 4d-4f heterometallic coordination polymer (I).

It is interesting that two INAIP2- ligands exhibit different coordination modes: one coordinated to three HoIII atoms and two AgI atoms while the other coordinated to three HoIII atoms and one AgI atom, originated from the different coordination modes of the carboxylate groups. When the Ag—N and Ag—O connections are neglected, a two-dimensional (4,4) bilayer network is formed by Ho(III)-carboxylate groups, which is similar complex [AgCe(C14H8N2O5)2(H2O)]n (Nie et al., 2011). Then the two-dimensional (4,4) nets are linked together by Ag—N and Ag—O coordination interaction to form a complicated three-dimensional supramolecular net (Fig. 2), which is isomorphous to its AgEr isologue {[AgEr(INAIP)2(H2O)].H2O}n (Chen et al., 2010).

For background to coordination polymeric frameworks, see: Kapoor et al. (2002); Abourahma et al. (2002); Costes et al. (2004). For related hetero-metallic complexes, see: Chen et al. (2010); Liang et al. (2000); Zhao et al. (2003, 2004); Nie & Qu (2011); Zhang et al. (2005); Cheng et al. (2006); Lin et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP drawing of the title compound (I). Displacement ellipsoids are drawn at 30% probability level.
[Figure 2] Fig. 2. Projection showing the three-dimensional structure of the compound (I).
Poly[[aqua[µ5-5-(isonicotinamido)isophthalato][µ4-5- (isonicotinamido)isophthalato]holmium(III)silver(I)] dihydrate] top
Crystal data top
[AgHo(C14H8N2O5)2(H2O)]·2H2OZ = 2
Mr = 895.30F(000) = 872
Triclinic, P1Dx = 2.149 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8343 (13) ÅCell parameters from 3132 reflections
b = 11.3087 (15) Åθ = 2.1–25.3°
c = 13.723 (2) ŵ = 3.63 mm1
α = 73.914 (2)°T = 291 K
β = 70.671 (1)°Block, colorless
γ = 83.965 (2)°0.20 × 0.16 × 0.10 mm
V = 1383.6 (3) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
5273 independent reflections
Radiation source: sealed tube4177 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1210
Tmin = 0.531, Tmax = 0.713k = 1312
7445 measured reflectionsl = 1612
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.065P)2 + 1.99P]
where P = (Fo2 + 2Fc2)/3
5273 reflections(Δ/σ)max < 0.001
424 parametersΔρmax = 1.37 e Å3
2 restraintsΔρmin = 1.56 e Å3
Crystal data top
[AgHo(C14H8N2O5)2(H2O)]·2H2Oγ = 83.965 (2)°
Mr = 895.30V = 1383.6 (3) Å3
Triclinic, P1Z = 2
a = 9.8343 (13) ÅMo Kα radiation
b = 11.3087 (15) ŵ = 3.63 mm1
c = 13.723 (2) ÅT = 291 K
α = 73.914 (2)°0.20 × 0.16 × 0.10 mm
β = 70.671 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
5273 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4177 reflections with I > 2σ(I)
Tmin = 0.531, Tmax = 0.713Rint = 0.024
7445 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0402 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.03Δρmax = 1.37 e Å3
5273 reflectionsΔρmin = 1.56 e Å3
424 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag11.04960 (5)1.30998 (4)0.01447 (3)0.02214 (13)
N10.1196 (5)0.3945 (5)1.8413 (4)0.0258 (12)
C10.3868 (7)0.7756 (6)1.0898 (5)0.0294 (14)
C20.3587 (7)0.6471 (6)1.1524 (5)0.0251 (13)
C30.3163 (8)0.6261 (6)1.2659 (6)0.0308 (15)
H30.30880.69061.29740.037*
C40.2868 (7)0.5064 (6)1.3275 (5)0.0270 (14)
C50.2826 (7)0.4137 (7)1.2831 (6)0.0300 (15)
H50.26140.33451.32690.036*
C60.3089 (7)0.4344 (6)1.1751 (5)0.0275 (14)
C70.3509 (7)0.5518 (6)1.1080 (6)0.0287 (15)
H70.37340.56621.03440.034*
C80.2794 (7)0.3470 (6)1.1205 (5)0.0236 (13)
C90.2932 (7)0.5305 (6)1.4989 (4)0.0264 (14)
C100.2362 (6)0.4795 (5)1.6187 (4)0.0205 (12)
C110.3136 (7)0.4793 (6)1.6833 (5)0.0261 (13)
H110.40680.50961.65410.031*
C120.2550 (8)0.4341 (6)1.7940 (5)0.0289 (14)
H120.31250.43131.83640.035*
C130.0468 (8)0.3953 (6)1.7772 (5)0.0292 (14)
H130.04630.36491.80870.035*
C140.0931 (7)0.4361 (7)1.6693 (5)0.0317 (15)
H140.03290.43571.62950.038*
C150.3121 (8)1.0833 (6)0.9041 (5)0.0316 (15)
C160.2768 (8)1.1040 (6)0.8032 (5)0.0293 (14)
C170.1427 (7)1.0716 (7)0.8095 (5)0.0309 (15)
H170.07301.04250.87520.037*
C180.1136 (7)1.0844 (7)0.7096 (5)0.0281 (14)
C190.2151 (8)1.1266 (6)0.6153 (5)0.0282 (14)
H190.19511.13970.55150.034*
C200.3512 (7)1.1504 (6)0.6155 (5)0.0259 (14)
C210.3801 (6)1.1449 (6)0.7074 (5)0.0211 (12)
H210.46931.16880.70460.025*
C220.0289 (7)1.0459 (5)0.7172 (5)0.0238 (13)
C230.4874 (7)1.1543 (6)0.4272 (5)0.0263 (14)
C240.6258 (7)1.1979 (6)0.3365 (5)0.0261 (13)
C250.6156 (7)1.2202 (6)0.2338 (5)0.0245 (13)
H250.52841.21210.22380.029*
C260.7390 (7)1.2549 (6)0.1470 (6)0.0292 (14)
H260.73241.27080.07850.035*
C270.8703 (7)1.2411 (7)0.2579 (5)0.0287 (14)
H270.95911.24310.26770.034*
C280.7498 (7)1.2132 (6)0.3449 (5)0.0276 (14)
H280.75691.20490.41230.033*
Ho10.34584 (3)1.06199 (3)1.10929 (2)0.02108 (10)
N20.2485 (7)0.4741 (6)1.4411 (5)0.0308 (13)
H20.19160.41301.47570.037*
N30.8624 (6)1.2658 (6)0.1574 (4)0.0304 (13)
N40.4619 (6)1.1984 (5)0.5160 (4)0.0255 (11)
H40.51431.25710.51180.031*
O10.2805 (5)0.2273 (4)1.1729 (4)0.0288 (10)
O20.2510 (5)0.3806 (5)1.0383 (4)0.0331 (11)
O30.4852 (5)0.7904 (4)1.0006 (4)0.0266 (10)
O40.3161 (5)0.8618 (4)1.1245 (3)0.0243 (9)
O50.3783 (5)0.6113 (5)1.4626 (4)0.0315 (11)
O60.2220 (5)1.1194 (5)0.9793 (4)0.0299 (10)
O70.4297 (5)1.0367 (4)0.9108 (4)0.0260 (10)
O80.1050 (5)0.9720 (4)0.8033 (4)0.0262 (10)
O90.0714 (5)1.0863 (5)0.6377 (4)0.0326 (11)
O100.4053 (6)1.0890 (5)0.4210 (3)0.0355 (12)
O1W0.3331 (5)0.9853 (5)1.2887 (4)0.0379 (12)
H1X0.29120.91761.32510.045*
H1Y0.37071.02491.31740.045*
O2W0.0736 (6)0.1475 (5)0.3881 (5)0.0429 (13)
H2X0.09170.18410.42870.052*
H2Y0.13320.08820.37960.052*
O3W0.9981 (5)0.3256 (4)0.5043 (4)0.0349 (12)
H3X0.92050.36200.49710.042*
H3Y0.98580.29110.57000.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0179 (2)0.0271 (3)0.0160 (2)0.00653 (18)0.00087 (17)0.00215 (18)
N10.015 (2)0.039 (3)0.021 (3)0.007 (2)0.006 (2)0.015 (2)
C10.024 (3)0.031 (4)0.027 (3)0.012 (3)0.002 (3)0.005 (3)
C20.030 (3)0.018 (3)0.022 (3)0.004 (2)0.006 (3)0.003 (2)
C30.044 (4)0.010 (3)0.034 (4)0.010 (3)0.008 (3)0.001 (3)
C40.030 (3)0.034 (4)0.014 (3)0.012 (3)0.006 (3)0.001 (3)
C50.016 (3)0.033 (4)0.034 (4)0.012 (3)0.002 (3)0.005 (3)
C60.035 (4)0.027 (4)0.017 (3)0.005 (3)0.003 (3)0.005 (3)
C70.024 (3)0.015 (3)0.036 (4)0.002 (2)0.003 (3)0.002 (3)
C80.020 (3)0.027 (3)0.018 (3)0.004 (2)0.002 (2)0.001 (2)
C90.030 (3)0.026 (3)0.030 (3)0.006 (3)0.012 (3)0.013 (3)
C100.026 (3)0.012 (3)0.026 (3)0.007 (2)0.007 (3)0.005 (2)
C110.030 (3)0.019 (3)0.025 (3)0.008 (2)0.004 (3)0.001 (2)
C120.037 (4)0.026 (3)0.020 (3)0.005 (3)0.007 (3)0.002 (3)
C130.033 (4)0.033 (4)0.023 (3)0.008 (3)0.010 (3)0.005 (3)
C140.023 (3)0.044 (4)0.023 (3)0.011 (3)0.002 (3)0.008 (3)
C150.031 (4)0.025 (4)0.024 (3)0.008 (3)0.004 (3)0.004 (3)
C160.039 (4)0.024 (3)0.020 (3)0.005 (3)0.012 (3)0.003 (2)
C170.016 (3)0.053 (5)0.018 (3)0.003 (3)0.002 (2)0.007 (3)
C180.014 (3)0.039 (4)0.026 (3)0.007 (3)0.003 (2)0.006 (3)
C190.045 (4)0.018 (3)0.027 (3)0.007 (3)0.018 (3)0.003 (2)
C200.020 (3)0.020 (3)0.032 (3)0.009 (2)0.004 (3)0.007 (3)
C210.018 (3)0.021 (3)0.029 (3)0.002 (2)0.013 (2)0.005 (2)
C220.020 (3)0.011 (3)0.034 (3)0.001 (2)0.001 (3)0.006 (2)
C230.031 (3)0.026 (3)0.020 (3)0.009 (3)0.000 (3)0.009 (3)
C240.029 (3)0.019 (3)0.028 (3)0.000 (2)0.003 (3)0.007 (3)
C250.023 (3)0.017 (3)0.032 (3)0.005 (2)0.009 (3)0.006 (2)
C260.026 (3)0.024 (3)0.028 (3)0.002 (3)0.000 (3)0.001 (3)
C270.020 (3)0.041 (4)0.024 (3)0.004 (3)0.003 (3)0.009 (3)
C280.032 (4)0.019 (3)0.024 (3)0.003 (3)0.001 (3)0.005 (2)
Ho10.01787 (16)0.02171 (16)0.01800 (15)0.00186 (10)0.00121 (11)0.00102 (10)
N20.037 (3)0.033 (3)0.024 (3)0.008 (3)0.003 (2)0.015 (2)
N30.030 (3)0.039 (3)0.016 (3)0.006 (2)0.001 (2)0.003 (2)
N40.029 (3)0.027 (3)0.014 (2)0.012 (2)0.001 (2)0.000 (2)
O10.030 (2)0.027 (2)0.020 (2)0.0043 (19)0.0004 (19)0.0024 (18)
O20.031 (3)0.046 (3)0.030 (3)0.003 (2)0.012 (2)0.018 (2)
O30.025 (2)0.021 (2)0.025 (2)0.0010 (18)0.0009 (19)0.0004 (17)
O40.021 (2)0.023 (2)0.020 (2)0.0115 (18)0.0050 (17)0.0019 (17)
O50.031 (3)0.034 (3)0.030 (3)0.010 (2)0.009 (2)0.007 (2)
O60.028 (2)0.045 (3)0.020 (2)0.010 (2)0.0083 (19)0.016 (2)
O70.020 (2)0.019 (2)0.029 (2)0.0000 (17)0.0020 (18)0.0033 (18)
O80.018 (2)0.030 (2)0.025 (2)0.0024 (18)0.0029 (18)0.0022 (19)
O90.033 (3)0.037 (3)0.018 (2)0.010 (2)0.0044 (19)0.0075 (19)
O100.044 (3)0.048 (3)0.014 (2)0.028 (3)0.004 (2)0.012 (2)
O1W0.030 (3)0.054 (3)0.027 (3)0.002 (2)0.007 (2)0.007 (2)
O2W0.046 (3)0.032 (3)0.044 (3)0.015 (2)0.016 (3)0.006 (2)
O3W0.033 (3)0.029 (3)0.037 (3)0.010 (2)0.012 (2)0.006 (2)
Geometric parameters (Å, º) top
Ag1—N32.178 (5)C18—C221.473 (9)
Ag1—N1i2.198 (5)C19—C201.393 (10)
Ag1—O2ii2.361 (5)C19—H190.9300
N1—C131.304 (8)C20—C211.366 (9)
N1—C121.337 (9)C20—N41.440 (8)
N1—Ag1iii2.198 (5)C21—H210.9300
C1—O41.248 (9)C22—O91.249 (8)
C1—O31.265 (8)C22—O81.285 (8)
C1—C21.469 (9)C23—O101.187 (8)
C2—C71.396 (10)C23—N41.381 (8)
C2—C31.430 (10)C23—C241.524 (9)
C3—C41.385 (9)C24—C281.295 (10)
C3—H30.9300C24—C251.398 (9)
C4—C51.360 (10)C25—C261.389 (9)
C4—N21.425 (8)C25—H250.9300
C5—C61.373 (10)C26—N31.290 (9)
C5—H50.9300C26—H260.9300
C6—C71.402 (9)C27—N31.357 (9)
C6—C81.496 (9)C27—C281.364 (9)
C7—H70.9300C27—H270.9300
C8—O21.201 (8)C28—H280.9300
C8—O11.347 (8)Ho1—O1iv2.225 (5)
C9—O51.190 (7)Ho1—O42.256 (4)
C9—N21.342 (8)Ho1—O8v2.291 (4)
C9—C101.5102 (11)Ho1—O3vi2.313 (4)
C10—C111.347 (9)Ho1—O7vi2.333 (4)
C10—C141.418 (9)Ho1—O1W2.337 (5)
C11—C121.397 (9)Ho1—O62.391 (4)
C11—H110.9300Ho1—O72.660 (5)
C12—H120.9300N2—H20.8600
C13—C141.353 (9)N4—H40.8600
C13—H130.9300O1—Ho1vii2.225 (5)
C14—H140.9300O2—Ag1viii2.361 (5)
C15—O71.241 (9)O3—Ho1vi2.313 (4)
C15—O61.252 (9)O7—Ho1vi2.333 (4)
C15—C161.488 (10)O8—Ho1v2.291 (4)
C15—Ho12.885 (7)O1W—H1X0.8501
C16—C211.361 (9)O1W—H1Y0.8500
C16—C171.375 (10)O2W—H2X0.8500
C17—C181.457 (9)O2W—H2Y0.8500
C17—H170.9300O3W—H3X0.8500
C18—C191.342 (9)O3W—H3Y0.8500
N3—Ag1—N1i144.2 (2)C26—C25—C24118.3 (6)
N3—Ag1—O2ii115.2 (2)C26—C25—H25120.8
N1i—Ag1—O2ii93.50 (18)C24—C25—H25120.8
C13—N1—C12115.7 (6)N3—C26—C25122.8 (7)
C13—N1—Ag1iii125.4 (4)N3—C26—H26118.6
C12—N1—Ag1iii118.3 (4)C25—C26—H26118.6
O4—C1—O3123.9 (6)N3—C27—C28120.9 (6)
O4—C1—C2120.8 (6)N3—C27—H27119.5
O3—C1—C2115.3 (6)C28—C27—H27119.5
C7—C2—C3119.8 (6)C24—C28—C27122.2 (7)
C7—C2—C1123.4 (6)C24—C28—H28118.9
C3—C2—C1116.1 (6)C27—C28—H28118.9
C4—C3—C2117.7 (6)O1iv—Ho1—O4149.70 (16)
C4—C3—H3121.2O1iv—Ho1—O8v78.68 (18)
C2—C3—H3121.2O4—Ho1—O8v75.05 (16)
C5—C4—C3121.5 (6)O1iv—Ho1—O3vi74.53 (17)
C5—C4—N2115.8 (6)O4—Ho1—O3vi135.51 (16)
C3—C4—N2122.5 (6)O8v—Ho1—O3vi144.42 (16)
C4—C5—C6121.5 (6)O1iv—Ho1—O7vi124.68 (18)
C4—C5—H5119.3O4—Ho1—O7vi72.06 (16)
C6—C5—H5119.3O8v—Ho1—O7vi141.58 (16)
C5—C6—C7119.3 (6)O3vi—Ho1—O7vi73.90 (16)
C5—C6—C8125.9 (6)O1iv—Ho1—O1W77.24 (18)
C7—C6—C8114.3 (6)O4—Ho1—O1W82.04 (18)
C2—C7—C6119.6 (6)O8v—Ho1—O1W76.21 (17)
C2—C7—H7120.2O3vi—Ho1—O1W119.05 (18)
C6—C7—H7120.2O7vi—Ho1—O1W80.08 (17)
O2—C8—O1122.1 (6)O1iv—Ho1—O696.32 (17)
O2—C8—C6122.9 (6)O4—Ho1—O689.69 (17)
O1—C8—C6114.9 (5)O8v—Ho1—O671.91 (16)
O5—C9—N2124.8 (5)O3vi—Ho1—O688.12 (17)
O5—C9—C10119.3 (5)O7vi—Ho1—O6126.46 (16)
N2—C9—C10115.8 (5)O1W—Ho1—O6148.13 (17)
C11—C10—C14116.5 (5)O1iv—Ho1—O7131.53 (15)
C11—C10—C9122.5 (5)O4—Ho1—O773.93 (14)
C14—C10—C9120.9 (5)O8v—Ho1—O7113.37 (15)
C10—C11—C12120.5 (6)O3vi—Ho1—O770.57 (16)
C10—C11—H11119.7O7vi—Ho1—O775.75 (17)
C12—C11—H11119.7O1W—Ho1—O7150.06 (17)
N1—C12—C11122.7 (6)O6—Ho1—O750.74 (15)
N1—C12—H12118.7O1iv—Ho1—C15115.62 (19)
C11—C12—H12118.7O4—Ho1—C1580.58 (18)
N1—C13—C14126.5 (7)O8v—Ho1—C1592.40 (18)
N1—C13—H13116.8O3vi—Ho1—C1578.82 (18)
C14—C13—H13116.8O7vi—Ho1—C15101.17 (19)
C13—C14—C10118.1 (6)O1W—Ho1—C15161.2 (2)
C13—C14—H14121.0O6—Ho1—C1525.30 (18)
C10—C14—H14121.0O7—Ho1—C1525.45 (17)
O7—C15—O6121.8 (7)O1iv—Ho1—Ho1vi141.56 (12)
O7—C15—C16120.5 (6)O4—Ho1—Ho1vi68.37 (11)
O6—C15—C16117.7 (7)O8v—Ho1—Ho1vi136.93 (12)
O7—C15—Ho167.1 (4)O3vi—Ho1—Ho1vi67.16 (12)
O6—C15—Ho154.7 (4)O7vi—Ho1—Ho1vi40.79 (12)
C16—C15—Ho1172.3 (5)O1W—Ho1—Ho1vi118.83 (13)
C21—C16—C17121.6 (6)O6—Ho1—Ho1vi85.69 (11)
C21—C16—C15119.8 (6)O7—Ho1—Ho1vi34.96 (10)
C17—C16—C15118.4 (6)C15—Ho1—Ho1vi60.39 (15)
C16—C17—C18117.6 (6)C9—N2—C4125.9 (6)
C16—C17—H17121.2C9—N2—H2117.1
C18—C17—H17121.2C4—N2—H2117.1
C19—C18—C17120.6 (6)C26—N3—C27117.8 (6)
C19—C18—C22122.2 (6)C26—N3—Ag1118.9 (5)
C17—C18—C22117.2 (6)C27—N3—Ag1123.2 (5)
C18—C19—C20118.4 (6)C23—N4—C20122.8 (6)
C18—C19—H19120.8C23—N4—H4118.6
C20—C19—H19120.8C20—N4—H4118.6
C21—C20—C19122.4 (6)C8—O1—Ho1vii129.9 (4)
C21—C20—N4117.1 (6)C8—O2—Ag1viii123.1 (5)
C19—C20—N4120.0 (6)C1—O3—Ho1vi137.0 (4)
C16—C21—C20119.2 (6)C1—O4—Ho1138.4 (4)
C16—C21—H21120.4C15—O6—Ho1100.0 (4)
C20—C21—H21120.4C15—O7—Ho1vi167.9 (5)
O9—C22—O8121.9 (6)C15—O7—Ho187.5 (4)
O9—C22—C18117.9 (6)Ho1vi—O7—Ho1104.25 (17)
O8—C22—C18120.3 (6)C22—O8—Ho1v136.1 (4)
O10—C23—N4122.2 (6)Ho1—O1W—H1X120.0
O10—C23—C24122.3 (6)Ho1—O1W—H1Y120.0
N4—C23—C24115.5 (6)H1X—O1W—H1Y120.0
C28—C24—C25117.7 (6)H2X—O2W—H2Y109.5
C28—C24—C23127.3 (6)H3X—O3W—H3Y109.5
C25—C24—C23115.0 (6)
O4—C1—C2—C7136.4 (7)O6—C15—Ho1—O7vi179.2 (4)
O3—C1—C2—C743.4 (9)O7—C15—Ho1—O1W94.8 (7)
O4—C1—C2—C333.9 (10)O6—C15—Ho1—O1W87.2 (7)
O3—C1—C2—C3146.3 (7)O7—C15—Ho1—O6178.0 (7)
C7—C2—C3—C48.3 (10)O6—C15—Ho1—O7178.0 (7)
C1—C2—C3—C4179.0 (6)O7—C15—Ho1—Ho1vi1.9 (3)
C2—C3—C4—C57.0 (11)O6—C15—Ho1—Ho1vi179.8 (5)
C2—C3—C4—N2177.8 (6)C10—C9—N2—C4179.5 (6)
C3—C4—C5—C60.7 (11)C5—C4—N2—C9153.6 (7)
N2—C4—C5—C6176.2 (6)C3—C4—N2—C931.0 (11)
C4—C5—C6—C74.5 (11)C25—C26—N3—C270.6 (11)
C4—C5—C6—C8167.2 (7)C25—C26—N3—Ag1176.3 (5)
C3—C2—C7—C63.4 (10)C28—C27—N3—C264.1 (11)
C1—C2—C7—C6173.4 (6)C28—C27—N3—Ag1179.6 (5)
C5—C6—C7—C23.0 (10)N1i—Ag1—N3—C2623.8 (8)
C8—C6—C7—C2169.6 (6)O2ii—Ag1—N3—C26163.9 (5)
C5—C6—C8—O2150.6 (7)N1i—Ag1—N3—C27160.7 (5)
C7—C6—C8—O221.4 (10)O2ii—Ag1—N3—C2720.6 (6)
C5—C6—C8—O126.4 (10)O10—C23—N4—C2012.9 (11)
C7—C6—C8—O1161.5 (6)C24—C23—N4—C20168.7 (6)
O5—C9—C10—C1129.0 (10)C21—C20—N4—C23144.5 (7)
N2—C9—C10—C11147.1 (6)C19—C20—N4—C2343.6 (9)
O5—C9—C10—C14146.9 (7)O2—C8—O1—Ho1vii35.2 (9)
N2—C9—C10—C1437.0 (9)C6—C8—O1—Ho1vii147.7 (5)
C14—C10—C11—C122.2 (9)O1—C8—O2—Ag1viii47.6 (8)
C9—C10—C11—C12178.3 (6)C6—C8—O2—Ag1viii129.2 (6)
C13—N1—C12—C113.1 (10)O4—C1—O3—Ho1vi30.8 (11)
Ag1iii—N1—C12—C11174.4 (5)C2—C1—O3—Ho1vi149.4 (5)
C10—C11—C12—N13.1 (11)O3—C1—O4—Ho128.5 (11)
C12—N1—C13—C142.6 (11)C2—C1—O4—Ho1151.7 (5)
Ag1iii—N1—C13—C14173.2 (6)O1iv—Ho1—O4—C1159.5 (6)
N1—C13—C14—C102.0 (12)O8v—Ho1—O4—C1169.8 (7)
C11—C10—C14—C131.7 (10)O3vi—Ho1—O4—C111.4 (8)
C9—C10—C14—C13177.8 (6)O7vi—Ho1—O4—C130.3 (7)
O7—C15—C16—C2139.9 (10)O1W—Ho1—O4—C1112.4 (7)
O6—C15—C16—C21137.0 (7)O6—Ho1—O4—C198.5 (7)
O7—C15—C16—C17135.0 (7)O7—Ho1—O4—C149.5 (7)
O6—C15—C16—C1748.2 (10)C15—Ho1—O4—C174.7 (7)
C21—C16—C17—C181.0 (11)Ho1vi—Ho1—O4—C113.0 (6)
C15—C16—C17—C18175.7 (6)O7—C15—O6—Ho12.2 (7)
C16—C17—C18—C190.1 (11)C16—C15—O6—Ho1179.0 (5)
C16—C17—C18—C22178.2 (6)O1iv—Ho1—O6—C15141.6 (4)
C17—C18—C19—C204.0 (11)O4—Ho1—O6—C1568.2 (4)
C22—C18—C19—C20174.3 (6)O8v—Ho1—O6—C15142.5 (5)
C18—C19—C20—C217.1 (10)O3vi—Ho1—O6—C1567.4 (4)
C18—C19—C20—N4178.6 (6)O7vi—Ho1—O6—C151.0 (5)
C17—C16—C21—C201.9 (10)O1W—Ho1—O6—C15142.5 (4)
C15—C16—C21—C20172.8 (6)O7—Ho1—O6—C151.1 (4)
C19—C20—C21—C166.1 (10)Ho1vi—Ho1—O6—C150.1 (4)
N4—C20—C21—C16177.8 (6)O6—C15—O7—Ho1vi168.5 (16)
C19—C18—C22—O921.2 (10)C16—C15—O7—Ho1vi15 (2)
C17—C18—C22—O9160.5 (6)Ho1—C15—O7—Ho1vi167 (2)
C19—C18—C22—O8158.1 (7)O6—C15—O7—Ho12.0 (7)
C17—C18—C22—O820.2 (10)C16—C15—O7—Ho1178.7 (6)
O10—C23—C24—C28143.0 (8)O1iv—Ho1—O7—C1558.9 (4)
N4—C23—C24—C2838.7 (10)O4—Ho1—O7—C15102.1 (4)
O10—C23—C24—C2535.3 (10)O8v—Ho1—O7—C1536.7 (4)
N4—C23—C24—C25143.1 (6)O3vi—Ho1—O7—C15105.2 (4)
C28—C24—C25—C261.3 (9)O7vi—Ho1—O7—C15177.1 (5)
C23—C24—C25—C26177.1 (6)O1W—Ho1—O7—C15140.0 (4)
C24—C25—C26—N30.8 (10)O6—Ho1—O7—C151.1 (4)
C25—C24—C28—C274.9 (10)Ho1vi—Ho1—O7—C15177.1 (5)
C23—C24—C28—C27173.4 (6)O1iv—Ho1—O7—Ho1vi124.0 (2)
N3—C27—C28—C246.5 (11)O4—Ho1—O7—Ho1vi75.07 (18)
O7—C15—Ho1—O1iv134.7 (4)O8v—Ho1—O7—Ho1vi140.43 (17)
O6—C15—Ho1—O1iv43.2 (5)O3vi—Ho1—O7—Ho1vi77.65 (18)
O7—C15—Ho1—O472.3 (4)O7vi—Ho1—O7—Ho1vi0.0
O6—C15—Ho1—O4109.8 (4)O1W—Ho1—O7—Ho1vi37.1 (4)
O7—C15—Ho1—O8v146.7 (4)O6—Ho1—O7—Ho1vi178.3 (3)
O6—C15—Ho1—O8v35.4 (4)C15—Ho1—O7—Ho1vi177.1 (5)
O7—C15—Ho1—O3vi68.1 (4)O9—C22—O8—Ho1v30.4 (10)
O6—C15—Ho1—O3vi109.9 (4)C18—C22—O8—Ho1v150.3 (5)
O7—C15—Ho1—O7vi2.8 (5)
Symmetry codes: (i) x+1, y+1, z2; (ii) x+1, y+1, z1; (iii) x1, y1, z+2; (iv) x, y+1, z; (v) x, y+2, z+2; (vi) x+1, y+2, z+2; (vii) x, y1, z; (viii) x1, y1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3Wix0.862.112.878 (9)149
N4—H4···O5vi0.862.082.925 (8)168
O1W—H1X···O9v0.852.052.562 (7)118
O1W—H1Y···O10x0.851.902.717 (7)161
O2W—H2X···O3Wxi0.852.112.799 (8)138
O2W—H2Y···O1Wxii0.852.343.136 (8)156
O2W—H2Y···O9xiii0.852.222.766 (8)122
O3W—H3X···N2xiv0.852.493.187 (9)140
O3W—H3Y···O9xv0.852.302.821 (7)120
Symmetry codes: (v) x, y+2, z+2; (vi) x+1, y+2, z+2; (ix) x1, y, z+1; (x) x, y, z+1; (xi) x1, y, z; (xii) x, y1, z1; (xiii) x, y+1, z+1; (xiv) x+1, y+1, z+2; (xv) x+1, y1, z.

Experimental details

Crystal data
Chemical formula[AgHo(C14H8N2O5)2(H2O)]·2H2O
Mr895.30
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)9.8343 (13), 11.3087 (15), 13.723 (2)
α, β, γ (°)73.914 (2), 70.671 (1), 83.965 (2)
V3)1383.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)3.63
Crystal size (mm)0.20 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.531, 0.713
No. of measured, independent and
observed [I > 2σ(I)] reflections
7445, 5273, 4177
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.104, 1.03
No. of reflections5273
No. of parameters424
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.37, 1.56

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3Wi0.862.112.878 (9)149
N4—H4···O5ii0.862.082.925 (8)168
O1W—H1X···O9iii0.852.052.562 (7)118
O1W—H1Y···O10iv0.851.902.717 (7)161
O2W—H2X···O3Wv0.852.112.799 (8)138
O2W—H2Y···O1Wvi0.852.343.136 (8)156
O2W—H2Y···O9vii0.852.222.766 (8)122
O3W—H3X···N2viii0.852.493.187 (9)140
O3W—H3Y···O9ix0.852.302.821 (7)120
Symmetry codes: (i) x1, y, z+1; (ii) x+1, y+2, z+2; (iii) x, y+2, z+2; (iv) x, y, z+1; (v) x1, y, z; (vi) x, y1, z1; (vii) x, y+1, z+1; (viii) x+1, y+1, z+2; (ix) x+1, y1, z.
 

Acknowledgements

This work was supported by the Hengyang Bureau of Science & Technology (grant No. 2009 K J28).

References

First citationAbourahma, H., Moulton, B., Kravtsov, V. & Zaworotko, M. J. (2002). J. Am. Chem. Soc. 124, 9990–9991.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, M.-S., Su, Z., Chen, M., Chen, S.-S., Li, Y.-Z. & Sun, W.-Y. (2010). CrystEngComm, 12, 3267–3276.  Web of Science CSD CrossRef CAS Google Scholar
First citationCheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73–76.  Web of Science CSD CrossRef CAS Google Scholar
First citationCostes, J. P., Dahan, F., Donnadieu, B., Douton, M. J. R., Garcia, M. I. F., Bousseksou, A. & Tuchagues, J. P. (2004). Inorg. Chem. 43, 2736–2744.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKapoor, P., Pathak, A., Kapoor, R., Venugopalan, P., Corbella, M., Rodríguez, M., Robles, J. & Llobet, A. (2002). Inorg. Chem. 41, 6153–6160.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiang, Y.-C., Cao, R., Su, W.-P., Hong, M.-C. & Zhang, W.-J. (2000). Angew. Chem. Int. Ed. 39, 3304–3307.  Web of Science CrossRef CAS Google Scholar
First citationLin, X.-M., Ying, Y., Chen, L., Fang, H.-C., Zhou, Z.-Y., Zhan, Q.-G. & Cai, Y.-P. (2009). Inorg. Chem. Commun. 12, 316–320.  Web of Science CSD CrossRef Google Scholar
First citationNie, X. & Qu, J.-N. (2011). Acta Cryst. E67, m1107–m1108.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, M.-B., Zhang, J., Zheng, S.-T. & Yang, G.-Y. (2005). Angew. Chem. Int. Ed. 44, 1385–1388.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, B., Cheng, P., Chen, X.-Y., Cheng, C., Shi, W., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). J. Am. Chem. Soc. 126, 3012–3013.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhao, B., Cheng, P., Dai, Y., Cheng, C., Liao, D.-Z., Yan, S.-P., Jiang, Z.-H. & Wang, G.-L. (2003). Angew. Chem. Int. Ed. 42, 934–936.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds