organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­cyclo­hexyl­ammonium 3,5-di­nitro­benzoate

aDepartment of Chemistry, Research Complex, Allama Iqbal Open Unicversity, Islamabad 44000, Pakistan, bNational Engineering & Scientific Commission, PO Box 2801, Islamabad, Pakistan, and cDepartment of Chemistry, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong SAR, People's Republic of China
*Correspondence e-mail: sohail262001@yahoo.com

(Received 14 June 2012; accepted 16 June 2012; online 23 June 2012)

The asymmetric unit of the title salt, C12H24N+·C7H3N2O6, contains two cations and two anions. In the crystal, the cations and anions are connected by N—H⋯O hydrogen bonds, forming a 12-membered ring with an R44(12) graph-set motif. The center of this 12-membered ring coincides with an inversion centre. ππ stacking is observed between parallel benzene rings [centroid–centriod distance = 3.771 (2) Å].

Related literature

For background to N-substituted benzamides, see: Saeed et al. (2011a[Saeed, S., Jasinski, J. P. & Butcher, R. J. (2011a). Acta Cryst. E67, o279.],b[Saeed, S., Rashid, N., Ng, S. W. & Tiekink, E. R. T. (2011b). Acta Cryst. E67, o1194.]). For the structure of a related 3,5-dinitro­benzamide, see: Saeed et al. (2012[Saeed, S., Rashid, N., Hussain, R. & Wong, W.-T. (2012). Acta Cryst. E68, o26.]).

[Scheme 1]

Experimental

Crystal data
  • C12H24N+·C7H3N2O6

  • Mr = 393.44

  • Triclinic, [P \overline 1]

  • a = 9.564 (3) Å

  • b = 10.722 (3) Å

  • c = 20.805 (6) Å

  • α = 87.294 (5)°

  • β = 83.226 (5)°

  • γ = 74.991 (5)°

  • V = 2045.9 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.55 × 0.26 × 0.08 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.949, Tmax = 0.992

  • 11363 measured reflections

  • 7054 independent reflections

  • 3055 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.159

  • S = 1.01

  • 7054 reflections

  • 521 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H1N⋯O1 0.90 (1) 1.88 (1) 2.768 (4) 169 (4)
N5—H2N⋯O2i 0.92 (1) 1.83 (1) 2.746 (4) 173 (3)
N6—H3N⋯O8ii 0.91 (1) 1.86 (1) 2.760 (4) 171 (3)
N6—H4N⋯O7iii 0.91 (1) 1.87 (1) 2.772 (4) 174 (4)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z; (iii) x, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In connection with on-going studies into N-substituted benzamides (Saeed et al., 2011a,b), we recently determined the crystal structure of N-(4-bromophenyl)-3,5-dinitrobenzamide (Saeed et al., 2012). In this paper we present the crystal structure of the title compound (I), Fig.1. There are two molecules of complex in the asymmetric unit. Each molecule consisted of a dicyclohexylammonium cation and a 3,5-dinitrobenzoate anion. All the cyclohexyl rings in the cation are in chair form. The 3,5-dinitrobenzoate were basically planar. The caboxylate groups / nitro groups make a dihedral angle of 2.0 (3)–16.3 (3)° with the phenyl ring.

Intermolecular H-bonding interactions were observed in the crystal lattice. Two cations and two anions were connected by intermolecular N—H···O H-bonding to form a 12-membered ring, with a graph set assignment, R44(12). The center of this ring coincide with an inversion centre. π···π interactions also help to stack the 3,5-dinitrobenzoates in the lattice.

Related literature top

For background to N-substituted benzamides, see: Saeed et al. (2011a,b). For the structure of a related 3,5-dinitrobenzamide, see: Saeed et al. (2012).

Experimental top

To a 250 ml round bottom flask fitted with a condenser was added dicyclohexyl amine (0.01 mol), dichloromethane (15 ml), triethylamine (0.5 ml)with magnetic stirring. 3,5-Dinitrobenzoyl chloride (0.01 mol) was added gradually. The reaction mixture was stirred at room temperature for 1 h and then refluxed for 2 h. The product precipitated out as yellow powder, which was washed three times with water. Recrystallization from ethyl acetate produced the crystals of the title compound.

Refinement top

The structure was solved by direct methods (SHELXS97, Sheldrick, 2008) and expanded using Fourier techniques. All non-H atoms were refined anisotropically.

The C-bound H atoms are all placed at geometrical positions with C—H = 0.93, 0.97 and 0.98 Å for phenyl, methylene and methine H-atoms respectively. All C-bound phenyl, methylene and methine H-atoms are refined using riding model with Uiso(H) = 1.2Ueq(Carrier). The N-bound H-atoms are located from difference Fourier map and refined using isotropically with bond distance restraints.

A total of 7 restraints have been used in the refinement, they were bond distances restraints. The N—H bond distances will become too long, 1.00–1.07 Å if not restrained. Thus, the N5—H1N distance was restrained to be 0.87 (1) Å, and the other three N—H distances were restrained to be the same within standard uncertainty of 0.01.

Highest peak is 0.22 at (0.3273, 0.9307, 0.3633) [1.31 Å from O6] Deepest hole is -0.22 at (0.0553, 0.0702, 0.3709) [1.38 Å from O6]

Structure description top

In connection with on-going studies into N-substituted benzamides (Saeed et al., 2011a,b), we recently determined the crystal structure of N-(4-bromophenyl)-3,5-dinitrobenzamide (Saeed et al., 2012). In this paper we present the crystal structure of the title compound (I), Fig.1. There are two molecules of complex in the asymmetric unit. Each molecule consisted of a dicyclohexylammonium cation and a 3,5-dinitrobenzoate anion. All the cyclohexyl rings in the cation are in chair form. The 3,5-dinitrobenzoate were basically planar. The caboxylate groups / nitro groups make a dihedral angle of 2.0 (3)–16.3 (3)° with the phenyl ring.

Intermolecular H-bonding interactions were observed in the crystal lattice. Two cations and two anions were connected by intermolecular N—H···O H-bonding to form a 12-membered ring, with a graph set assignment, R44(12). The center of this ring coincide with an inversion centre. π···π interactions also help to stack the 3,5-dinitrobenzoates in the lattice.

For background to N-substituted benzamides, see: Saeed et al. (2011a,b). For the structure of a related 3,5-dinitrobenzamide, see: Saeed et al. (2012).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title compound was shown at 50% probability thermal ellipsoids with the atom numbering scheme.
[Figure 2] Fig. 2. The packing diagram of the unit cell was projected along the a axis and shown at 50% probability thermal ellipsoids.
Dicyclohexylammonium 3,5-dinitrobenzoate top
Crystal data top
C12H24N+·C7H3N2O6Z = 4
Mr = 393.44F(000) = 840
Triclinic, P1Dx = 1.277 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.564 (3) ÅCell parameters from 11363 reflections
b = 10.722 (3) Åθ = 2.6–25.0°
c = 20.805 (6) ŵ = 0.10 mm1
α = 87.294 (5)°T = 296 K
β = 83.226 (5)°Block, yellow
γ = 74.991 (5)°0.55 × 0.26 × 0.08 mm
V = 2045.9 (10) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
7054 independent reflections
Radiation source: fine-focus sealed tube3055 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and φ scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1110
Tmin = 0.949, Tmax = 0.992k = 1212
11363 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0601P)2 + 0.1988P]
where P = (Fo2 + 2Fc2)/3
7054 reflections(Δ/σ)max < 0.001
521 parametersΔρmax = 0.22 e Å3
7 restraintsΔρmin = 0.22 e Å3
Crystal data top
C12H24N+·C7H3N2O6γ = 74.991 (5)°
Mr = 393.44V = 2045.9 (10) Å3
Triclinic, P1Z = 4
a = 9.564 (3) ÅMo Kα radiation
b = 10.722 (3) ŵ = 0.10 mm1
c = 20.805 (6) ÅT = 296 K
α = 87.294 (5)°0.55 × 0.26 × 0.08 mm
β = 83.226 (5)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
7054 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3055 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.992Rint = 0.032
11363 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0547 restraints
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.22 e Å3
7054 reflectionsΔρmin = 0.22 e Å3
521 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The structure was solved by direct methods (SHELXS97, Sheldrick, 2008) and expanded using Fourier techniques. All non-H atoms were refined anisotropically.

The C-bound H atoms are all placed at geometrical positions with C—H = 0.93, 0.97 and 0.98 Å for phenyl, methylene and methine H-atoms respectively. All C-bound phenyl, methylene and methine H-atoms are refined using riding model with Uiso(H) = 1.2Ueq(Carrier). The N-bound H-atoms are located from difference Fourier map and refined using isotropically with bond distance restraints.

A total of 7 restraints have been used in the refinement, they were bond distances restraints. The N—H bond distances will become too long, 1.00–1.07 (1) Å if not restrained. Thus, the N5—H1N distance was restrained to be 0.87 (1) Å, and the other three N—H distances were restrained to be the same as it within standard uncertainty of 0.01.

Highest peak is 0.22 at (0.3273, 0.9307, 0.3633) [1.31 Å from O6] Deepest hole is -0.22 at (0.0553, 0.0702, 0.3709) [1.38 Å from O6]

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4569 (3)0.2895 (2)0.42136 (14)0.0834 (8)
O20.4924 (3)0.3093 (2)0.52401 (12)0.0834 (8)
O30.3366 (5)0.0233 (4)0.68820 (16)0.1603 (17)
O40.2136 (5)0.1073 (4)0.66696 (16)0.1425 (14)
O50.1046 (3)0.1312 (3)0.44866 (14)0.0983 (9)
O60.1860 (6)0.0206 (4)0.37519 (18)0.195 (2)
O70.5031 (3)0.1717 (3)0.02474 (13)0.0906 (8)
O80.5089 (3)0.2613 (2)0.07304 (12)0.0775 (7)
O90.7548 (4)0.6023 (3)0.11953 (16)0.1102 (10)
O100.8711 (3)0.6612 (3)0.04920 (13)0.0908 (8)
O110.8652 (3)0.4624 (3)0.16503 (13)0.1105 (10)
O120.8101 (3)0.2796 (3)0.17632 (15)0.1065 (10)
N10.2786 (5)0.0255 (4)0.65123 (19)0.1057 (12)
N20.1713 (4)0.0526 (3)0.4302 (2)0.0871 (10)
N30.7952 (3)0.5959 (3)0.06621 (18)0.0739 (9)
N40.8184 (4)0.3779 (4)0.14607 (17)0.0831 (10)
N50.5809 (3)0.4935 (3)0.38884 (13)0.0530 (7)
H1N0.542 (4)0.429 (3)0.4046 (18)0.117 (16)*
H2N0.561 (3)0.555 (2)0.4203 (11)0.075 (11)*
N60.5428 (3)0.9642 (3)0.11129 (14)0.0582 (7)
H3N0.533 (3)0.8903 (17)0.0950 (12)0.057 (9)*
H4N0.533 (5)1.028 (3)0.0807 (15)0.130 (19)*
C10.4452 (4)0.2620 (3)0.4801 (2)0.0620 (9)
C20.3678 (3)0.1568 (3)0.50103 (16)0.0513 (8)
C30.3572 (3)0.1147 (3)0.56540 (18)0.0638 (9)
H30.39810.15040.59610.077*
C40.2866 (4)0.0209 (3)0.58320 (18)0.0655 (10)
C50.2253 (4)0.0359 (3)0.53991 (19)0.0677 (10)
H50.17760.09980.55280.081*
C60.2377 (3)0.0062 (3)0.47683 (18)0.0588 (9)
C70.3069 (3)0.1010 (3)0.45714 (16)0.0560 (8)
H70.31260.12750.41390.067*
C80.5415 (3)0.2468 (3)0.0166 (2)0.0597 (9)
C90.6339 (3)0.3311 (3)0.00360 (16)0.0504 (8)
C100.6717 (3)0.4232 (3)0.03878 (16)0.0547 (9)
H100.64180.43330.08010.066*
C110.7536 (3)0.4998 (3)0.01956 (17)0.0555 (9)
C120.8015 (3)0.4888 (3)0.04056 (18)0.0640 (10)
H120.85560.54240.05300.077*
C130.7655 (3)0.3946 (4)0.08150 (17)0.0598 (9)
C140.6834 (3)0.3167 (3)0.06412 (15)0.0581 (9)
H140.66090.25400.09300.070*
C150.5094 (3)0.5547 (3)0.33090 (15)0.0576 (8)
H150.55400.62440.31490.069*
C160.5315 (4)0.4597 (4)0.27702 (16)0.0755 (11)
H16A0.48970.38880.29210.091*
H16B0.63500.42450.26500.091*
C170.4611 (4)0.5238 (5)0.21826 (18)0.1011 (14)
H17A0.47150.45960.18550.121*
H17B0.51060.58800.20020.121*
C180.3008 (4)0.5881 (5)0.23551 (19)0.1013 (14)
H18A0.26130.63530.19800.122*
H18B0.24870.52250.24740.122*
C190.2781 (4)0.6802 (4)0.2911 (2)0.0909 (12)
H19A0.17450.71440.30330.109*
H19B0.31910.75200.27720.109*
C200.3491 (3)0.6132 (3)0.34976 (16)0.0695 (10)
H20A0.33680.67530.38380.083*
H20B0.30250.54610.36620.083*
C210.7439 (3)0.4428 (3)0.37931 (15)0.0548 (8)
H210.76770.36850.35070.066*
C220.7968 (3)0.3965 (3)0.44451 (17)0.0687 (10)
H22A0.77300.46840.47390.082*
H22B0.74830.33200.46300.082*
C230.9601 (4)0.3389 (4)0.4364 (2)0.0853 (12)
H23A0.99300.31230.47840.102*
H23B0.98260.26270.40980.102*
C241.0406 (4)0.4339 (4)0.4053 (2)0.0937 (13)
H24A1.14370.39160.39760.112*
H24B1.02880.50480.43440.112*
C250.9841 (4)0.4861 (4)0.3417 (2)0.0897 (12)
H25A1.00980.41720.31050.108*
H25B1.03110.55290.32500.108*
C260.8197 (3)0.5419 (3)0.34877 (18)0.0717 (10)
H26A0.79440.61790.37550.086*
H26B0.78750.56770.30650.086*
C270.4283 (3)1.0006 (3)0.16811 (15)0.0568 (9)
H270.44440.93040.20050.068*
C280.2796 (3)1.0151 (4)0.14522 (17)0.0757 (11)
H28A0.27710.93530.12580.091*
H28B0.26271.08320.11250.091*
C290.1594 (4)1.0473 (4)0.20176 (19)0.0842 (12)
H29A0.06541.05940.18590.101*
H29B0.17170.97580.23270.101*
C300.1633 (4)1.1676 (4)0.23485 (19)0.0872 (12)
H30A0.09211.18150.27280.105*
H30B0.13771.24130.20570.105*
C310.3140 (4)1.1572 (4)0.25515 (17)0.0881 (13)
H31A0.33311.09150.28900.106*
H31B0.31531.23880.27300.106*
C320.4351 (4)1.1232 (3)0.19912 (16)0.0708 (10)
H32A0.42361.19320.16730.085*
H32B0.52911.11130.21500.085*
C330.6991 (3)0.9351 (3)0.12455 (15)0.0587 (9)
H330.71371.01070.14490.070*
C340.7404 (4)0.8209 (3)0.16921 (17)0.0719 (10)
H34A0.72190.74600.15090.086*
H34B0.68070.83800.21050.086*
C350.8991 (4)0.7927 (4)0.17980 (19)0.0913 (13)
H35A0.91470.86340.20300.110*
H35B0.92430.71500.20640.110*
C360.9972 (4)0.7748 (4)0.1169 (2)0.0950 (13)
H36A0.99270.69620.09690.114*
H36B1.09680.76510.12580.114*
C370.9551 (4)0.8870 (4)0.0706 (2)0.0924 (13)
H37A1.01410.86760.02930.111*
H37B0.97380.96310.08750.111*
C380.7957 (4)0.9140 (4)0.06070 (16)0.0748 (11)
H38A0.77950.84180.03890.090*
H38B0.76970.99030.03320.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.103 (2)0.0813 (18)0.0796 (19)0.0484 (15)0.0160 (16)0.0207 (15)
O20.0840 (17)0.0762 (17)0.097 (2)0.0323 (14)0.0008 (15)0.0296 (15)
O30.264 (5)0.173 (4)0.070 (2)0.097 (3)0.035 (3)0.007 (2)
O40.205 (4)0.140 (3)0.091 (3)0.078 (3)0.010 (2)0.039 (2)
O50.102 (2)0.0819 (19)0.128 (3)0.0511 (17)0.0192 (18)0.0037 (18)
O60.377 (7)0.222 (4)0.079 (3)0.233 (5)0.064 (3)0.039 (3)
O70.114 (2)0.091 (2)0.083 (2)0.0593 (17)0.0143 (16)0.0209 (16)
O80.1000 (19)0.0783 (18)0.0670 (18)0.0398 (14)0.0207 (15)0.0039 (14)
O90.158 (3)0.105 (2)0.090 (2)0.069 (2)0.041 (2)0.0344 (18)
O100.0843 (18)0.0813 (19)0.116 (2)0.0408 (15)0.0056 (16)0.0001 (16)
O110.131 (3)0.129 (3)0.085 (2)0.043 (2)0.0366 (18)0.0232 (19)
O120.123 (2)0.122 (3)0.076 (2)0.028 (2)0.0306 (18)0.017 (2)
N10.151 (4)0.105 (3)0.060 (3)0.037 (3)0.003 (2)0.007 (2)
N20.113 (3)0.078 (2)0.085 (3)0.050 (2)0.017 (2)0.008 (2)
N30.076 (2)0.064 (2)0.084 (3)0.0236 (17)0.007 (2)0.003 (2)
N40.076 (2)0.102 (3)0.068 (3)0.015 (2)0.0082 (19)0.015 (2)
N50.0605 (18)0.0503 (18)0.0502 (18)0.0199 (14)0.0035 (14)0.0043 (15)
N60.0609 (19)0.060 (2)0.057 (2)0.0211 (15)0.0066 (15)0.0062 (18)
C10.058 (2)0.052 (2)0.077 (3)0.0165 (17)0.001 (2)0.008 (2)
C20.0474 (18)0.0505 (19)0.054 (2)0.0090 (15)0.0040 (16)0.0023 (17)
C30.062 (2)0.065 (2)0.063 (3)0.0120 (18)0.0068 (19)0.011 (2)
C40.074 (2)0.064 (2)0.053 (2)0.013 (2)0.004 (2)0.001 (2)
C50.068 (2)0.060 (2)0.073 (3)0.0192 (18)0.010 (2)0.003 (2)
C60.062 (2)0.058 (2)0.059 (2)0.0211 (18)0.0047 (18)0.0048 (19)
C70.059 (2)0.053 (2)0.058 (2)0.0184 (17)0.0088 (17)0.0036 (17)
C80.056 (2)0.059 (2)0.064 (3)0.0170 (17)0.0011 (19)0.008 (2)
C90.0509 (19)0.0506 (19)0.047 (2)0.0106 (15)0.0012 (16)0.0056 (17)
C100.0533 (19)0.053 (2)0.053 (2)0.0070 (16)0.0005 (16)0.0090 (18)
C110.055 (2)0.051 (2)0.059 (2)0.0124 (16)0.0002 (18)0.0055 (18)
C120.058 (2)0.067 (2)0.068 (3)0.0154 (18)0.0060 (19)0.015 (2)
C130.055 (2)0.077 (3)0.048 (2)0.0146 (19)0.0071 (17)0.010 (2)
C140.057 (2)0.060 (2)0.054 (2)0.0101 (17)0.0020 (17)0.0016 (17)
C150.057 (2)0.062 (2)0.057 (2)0.0227 (16)0.0056 (17)0.0104 (18)
C160.072 (2)0.096 (3)0.054 (2)0.013 (2)0.0071 (19)0.005 (2)
C170.082 (3)0.158 (4)0.059 (3)0.024 (3)0.011 (2)0.008 (3)
C180.081 (3)0.150 (4)0.066 (3)0.015 (3)0.018 (2)0.012 (3)
C190.072 (3)0.094 (3)0.100 (3)0.009 (2)0.020 (2)0.022 (3)
C200.064 (2)0.070 (2)0.072 (3)0.0114 (18)0.0096 (19)0.003 (2)
C210.0466 (19)0.058 (2)0.059 (2)0.0133 (16)0.0041 (16)0.0018 (17)
C220.064 (2)0.066 (2)0.078 (3)0.0221 (18)0.0103 (19)0.015 (2)
C230.063 (2)0.079 (3)0.113 (3)0.017 (2)0.018 (2)0.018 (2)
C240.060 (2)0.091 (3)0.131 (4)0.024 (2)0.015 (3)0.018 (3)
C250.065 (3)0.091 (3)0.110 (4)0.026 (2)0.009 (2)0.011 (3)
C260.059 (2)0.077 (2)0.080 (3)0.0253 (19)0.0035 (19)0.010 (2)
C270.057 (2)0.061 (2)0.054 (2)0.0194 (16)0.0004 (17)0.0006 (17)
C280.064 (2)0.083 (3)0.081 (3)0.0203 (19)0.005 (2)0.014 (2)
C290.066 (2)0.080 (3)0.106 (3)0.023 (2)0.002 (2)0.005 (2)
C300.084 (3)0.080 (3)0.091 (3)0.022 (2)0.019 (2)0.002 (2)
C310.112 (3)0.087 (3)0.066 (3)0.040 (2)0.023 (2)0.020 (2)
C320.082 (2)0.073 (2)0.062 (2)0.031 (2)0.000 (2)0.0079 (19)
C330.061 (2)0.058 (2)0.060 (2)0.0193 (17)0.0108 (18)0.0011 (18)
C340.071 (2)0.075 (3)0.070 (3)0.0192 (19)0.013 (2)0.004 (2)
C350.070 (3)0.110 (3)0.092 (3)0.018 (2)0.020 (2)0.012 (3)
C360.068 (3)0.101 (3)0.111 (4)0.012 (2)0.012 (3)0.006 (3)
C370.064 (3)0.121 (4)0.089 (3)0.022 (2)0.006 (2)0.004 (3)
C380.068 (2)0.091 (3)0.063 (2)0.018 (2)0.001 (2)0.001 (2)
Geometric parameters (Å, º) top
O1—C11.242 (4)C19—C201.525 (5)
O2—C11.247 (4)C19—H19A0.9700
O3—N11.209 (4)C19—H19B0.9700
O4—N11.213 (4)C20—H20A0.9700
O5—N21.206 (4)C20—H20B0.9700
O6—N21.181 (4)C21—C261.512 (4)
O7—C81.238 (4)C21—C221.520 (4)
O8—C81.244 (4)C21—H210.9800
O9—N31.210 (4)C22—C231.516 (4)
O10—N31.220 (3)C22—H22A0.9700
O11—N41.209 (4)C22—H22B0.9700
O12—N41.218 (4)C23—C241.509 (5)
N1—C41.478 (5)C23—H23A0.9700
N2—C61.468 (4)C23—H23B0.9700
N3—C111.479 (4)C24—C251.515 (5)
N4—C131.477 (5)C24—H24A0.9700
N5—C151.496 (4)C24—H24B0.9700
N5—C211.504 (4)C25—C261.523 (4)
N5—H1N0.900 (9)C25—H25A0.9700
N5—H2N0.918 (12)C25—H25B0.9700
N6—C331.502 (4)C26—H26A0.9700
N6—C271.505 (4)C26—H26B0.9700
N6—H3N0.907 (12)C27—C321.511 (4)
N6—H4N0.910 (12)C27—C281.521 (4)
C1—C21.523 (4)C27—H270.9800
C2—C71.375 (4)C28—C291.529 (4)
C2—C31.394 (4)C28—H28A0.9700
C3—C41.365 (5)C28—H28B0.9700
C3—H30.9300C29—C301.501 (5)
C4—C51.373 (5)C29—H29A0.9700
C5—C61.369 (4)C29—H29B0.9700
C5—H50.9300C30—C311.524 (5)
C6—C71.373 (4)C30—H30A0.9700
C7—H70.9300C30—H30B0.9700
C8—C91.520 (4)C31—C321.528 (4)
C9—C101.383 (4)C31—H31A0.9700
C9—C141.385 (4)C31—H31B0.9700
C10—C111.374 (4)C32—H32A0.9700
C10—H100.9300C32—H32B0.9700
C11—C121.372 (4)C33—C341.499 (4)
C12—C131.377 (4)C33—C381.517 (4)
C12—H120.9300C33—H330.9800
C13—C141.372 (4)C34—C351.509 (5)
C14—H140.9300C34—H34A0.9700
C15—C161.510 (4)C34—H34B0.9700
C15—C201.510 (4)C35—C361.506 (5)
C15—H150.9800C35—H35A0.9700
C16—C171.515 (5)C35—H35B0.9700
C16—H16A0.9700C36—C371.507 (5)
C16—H16B0.9700C36—H36A0.9700
C17—C181.516 (5)C36—H36B0.9700
C17—H17A0.9700C37—C381.513 (5)
C17—H17B0.9700C37—H37A0.9700
C18—C191.516 (5)C37—H37B0.9700
C18—H18A0.9700C38—H38A0.9700
C18—H18B0.9700C38—H38B0.9700
O3—N1—O4124.1 (5)N5—C21—H21108.2
O3—N1—C4116.8 (4)C26—C21—H21108.2
O4—N1—C4119.1 (4)C22—C21—H21108.2
O6—N2—O5122.4 (4)C23—C22—C21110.1 (3)
O6—N2—C6118.0 (4)C23—C22—H22A109.6
O5—N2—C6119.7 (4)C21—C22—H22A109.6
O9—N3—O10124.1 (4)C23—C22—H22B109.6
O9—N3—C11117.7 (3)C21—C22—H22B109.6
O10—N3—C11118.1 (3)H22A—C22—H22B108.2
O11—N4—O12125.1 (4)C24—C23—C22111.8 (3)
O11—N4—C13118.1 (4)C24—C23—H23A109.3
O12—N4—C13116.8 (4)C22—C23—H23A109.3
C15—N5—C21116.5 (3)C24—C23—H23B109.3
C15—N5—H1N110 (3)C22—C23—H23B109.3
C21—N5—H1N109 (3)H23A—C23—H23B107.9
C15—N5—H2N107.7 (19)C23—C24—C25111.0 (4)
C21—N5—H2N106.6 (19)C23—C24—H24A109.4
H1N—N5—H2N107 (3)C25—C24—H24A109.4
C33—N6—C27117.2 (3)C23—C24—H24B109.4
C33—N6—H3N104.9 (18)C25—C24—H24B109.4
C27—N6—H3N107.7 (18)H24A—C24—H24B108.0
C33—N6—H4N105 (3)C24—C25—C26112.4 (3)
C27—N6—H4N111 (3)C24—C25—H25A109.1
H3N—N6—H4N111 (3)C26—C25—H25A109.1
O1—C1—O2127.2 (3)C24—C25—H25B109.1
O1—C1—C2116.8 (3)C26—C25—H25B109.1
O2—C1—C2115.9 (4)H25A—C25—H25B107.8
C7—C2—C3118.3 (3)C21—C26—C25110.3 (3)
C7—C2—C1121.0 (3)C21—C26—H26A109.6
C3—C2—C1120.6 (3)C25—C26—H26A109.6
C4—C3—C2119.7 (3)C21—C26—H26B109.6
C4—C3—H3120.2C25—C26—H26B109.6
C2—C3—H3120.2H26A—C26—H26B108.1
C3—C4—C5122.7 (4)N6—C27—C32111.9 (3)
C3—C4—N1119.4 (4)N6—C27—C28108.6 (3)
C5—C4—N1117.9 (4)C32—C27—C28110.7 (3)
C6—C5—C4116.8 (3)N6—C27—H27108.5
C6—C5—H5121.6C32—C27—H27108.5
C4—C5—H5121.6C28—C27—H27108.5
C5—C6—C7122.2 (3)C27—C28—C29110.7 (3)
C5—C6—N2117.4 (4)C27—C28—H28A109.5
C7—C6—N2120.4 (4)C29—C28—H28A109.5
C6—C7—C2120.3 (3)C27—C28—H28B109.5
C6—C7—H7119.9C29—C28—H28B109.5
C2—C7—H7119.9H28A—C28—H28B108.1
O7—C8—O8125.8 (3)C30—C29—C28111.1 (3)
O7—C8—C9117.5 (3)C30—C29—H29A109.4
O8—C8—C9116.7 (3)C28—C29—H29A109.4
C10—C9—C14118.6 (3)C30—C29—H29B109.4
C10—C9—C8120.3 (3)C28—C29—H29B109.4
C14—C9—C8121.1 (3)H29A—C29—H29B108.0
C11—C10—C9119.6 (3)C29—C30—C31111.0 (3)
C11—C10—H10120.2C29—C30—H30A109.4
C9—C10—H10120.2C31—C30—H30A109.4
C12—C11—C10122.8 (3)C29—C30—H30B109.4
C12—C11—N3118.6 (3)C31—C30—H30B109.4
C10—C11—N3118.6 (3)H30A—C30—H30B108.0
C11—C12—C13116.7 (3)C30—C31—C32112.9 (3)
C11—C12—H12121.7C30—C31—H31A109.0
C13—C12—H12121.7C32—C31—H31A109.0
C14—C13—C12122.2 (3)C30—C31—H31B109.0
C14—C13—N4119.7 (4)C32—C31—H31B109.0
C12—C13—N4118.2 (4)H31A—C31—H31B107.8
C13—C14—C9120.1 (3)C27—C32—C31109.6 (3)
C13—C14—H14119.9C27—C32—H32A109.8
C9—C14—H14119.9C31—C32—H32A109.8
N5—C15—C16111.8 (3)C27—C32—H32B109.8
N5—C15—C20110.1 (3)C31—C32—H32B109.8
C16—C15—C20110.6 (3)H32A—C32—H32B108.2
N5—C15—H15108.0C34—C33—N6112.7 (3)
C16—C15—H15108.0C34—C33—C38110.7 (3)
C20—C15—H15108.0N6—C33—C38108.8 (3)
C15—C16—C17111.1 (3)C34—C33—H33108.2
C15—C16—H16A109.4N6—C33—H33108.2
C17—C16—H16A109.4C38—C33—H33108.2
C15—C16—H16B109.4C33—C34—C35111.0 (3)
C17—C16—H16B109.4C33—C34—H34A109.4
H16A—C16—H16B108.0C35—C34—H34A109.4
C16—C17—C18111.4 (3)C33—C34—H34B109.4
C16—C17—H17A109.3C35—C34—H34B109.4
C18—C17—H17A109.3H34A—C34—H34B108.0
C16—C17—H17B109.3C36—C35—C34112.0 (3)
C18—C17—H17B109.3C36—C35—H35A109.2
H17A—C17—H17B108.0C34—C35—H35A109.2
C19—C18—C17111.3 (3)C36—C35—H35B109.2
C19—C18—H18A109.4C34—C35—H35B109.2
C17—C18—H18A109.4H35A—C35—H35B107.9
C19—C18—H18B109.4C35—C36—C37112.1 (3)
C17—C18—H18B109.4C35—C36—H36A109.2
H18A—C18—H18B108.0C37—C36—H36A109.2
C18—C19—C20111.6 (3)C35—C36—H36B109.2
C18—C19—H19A109.3C37—C36—H36B109.2
C20—C19—H19A109.3H36A—C36—H36B107.9
C18—C19—H19B109.3C36—C37—C38110.9 (3)
C20—C19—H19B109.3C36—C37—H37A109.5
H19A—C19—H19B108.0C38—C37—H37A109.5
C15—C20—C19109.9 (3)C36—C37—H37B109.5
C15—C20—H20A109.7C38—C37—H37B109.5
C19—C20—H20A109.7H37A—C37—H37B108.0
C15—C20—H20B109.7C37—C38—C33111.5 (3)
C19—C20—H20B109.7C37—C38—H38A109.3
H20A—C20—H20B108.2C33—C38—H38A109.3
N5—C21—C26112.7 (3)C37—C38—H38B109.3
N5—C21—C22108.5 (3)C33—C38—H38B109.3
C26—C21—C22110.8 (3)H38A—C38—H38B108.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H1N···O10.90 (1)1.88 (1)2.768 (4)169 (4)
N5—H1N···O20.90 (1)2.79 (3)3.508 (4)138 (3)
N5—H2N···O2i0.92 (1)1.83 (1)2.746 (4)173 (3)
N6—H3N···O8ii0.91 (1)1.86 (1)2.760 (4)171 (3)
N6—H4N···O7iii0.91 (1)1.87 (1)2.772 (4)174 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H24N+·C7H3N2O6
Mr393.44
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.564 (3), 10.722 (3), 20.805 (6)
α, β, γ (°)87.294 (5), 83.226 (5), 74.991 (5)
V3)2045.9 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.55 × 0.26 × 0.08
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.949, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
11363, 7054, 3055
Rint0.032
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.159, 1.01
No. of reflections7054
No. of parameters521
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H1N···O10.900 (9)1.879 (12)2.768 (4)169 (4)
N5—H2N···O2i0.918 (12)1.833 (13)2.746 (4)173 (3)
N6—H3N···O8ii0.907 (12)1.861 (13)2.760 (4)171 (3)
N6—H4N···O7iii0.910 (12)1.865 (14)2.772 (4)174 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z; (iii) x, y+1, z.
 

Acknowledgements

SS is thankful to the University of Hong Kong for providing the single-crystal X-ray crystallography facility.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSaeed, S., Jasinski, J. P. & Butcher, R. J. (2011a). Acta Cryst. E67, o279.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, S., Rashid, N., Hussain, R. & Wong, W.-T. (2012). Acta Cryst. E68, o26.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, S., Rashid, N., Ng, S. W. & Tiekink, E. R. T. (2011b). Acta Cryst. E67, o1194.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds