metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(nitrato-κ2O,O′)bis­­(pyrazine-2-carboxamide-κN4)cadmium–pyrazine-2-carboxamide (1/2)

aDepartment of Chemistry, Omidieh Branch, Islamic Azad University, Omidieh, Iran
*Correspondence e-mail: sadif.shirvan1@gmail.com

(Received 21 June 2012; accepted 23 June 2012; online 30 June 2012)

In the title compound, [Cd(NO3)2(C5H5N3O)2(H2O)2]·2C5H5N3O, the CdII cation is located on a twofold rotation axis and is coordinated by two pyrazine-2-carboxamide ligands and two water mol­ecules and chelated by two nitrate anions in a distorted square-anti­prismatic geometry. Extensive inter­molecular N—H⋯O, N—H⋯N, O—H⋯O and O—H⋯N hydrogen bonds, as well as weak inter­molecular C—H⋯N and C—H⋯O inter­actions occur in the crystal. ππ stacking between between pyrazine rings of coordinating ligands and lattice molecules [centroid–centroid distance = 3.5669 (14) Å] may further stabilize the structure.

Related literature

For related structures, see: Abu-Youssef et al. (2006[Abu-Youssef, M. A. M., Escuer, A. & Langer, V. (2006). Eur. J. Inorg. Chem. pp. 3177-3184.]); Azhdari Tehrani et al. (2010[Azhdari Tehrani, A., Mir Mohammad Sadegh, B. & Khavasi, H. R. (2010). Acta Cryst. E66, m261.]); Goher & Mautner (2000[Goher, M. A. S. & Mautner, F. A. (2000). Polyhedron, 19, 601-606.]); Kristiansson (2002[Kristiansson, O. (2002). Acta Cryst. E58, m130-m132.]); Mir Mohammad Sadegh et al. (2010[Mir Mohammad Sadegh, B., Azhdari Tehrani, A. & Khavasi, H. R. (2010). Acta Cryst. E66, m158.]); Munakata et al. (1997[Munakata, M., Wu, L. P., Sowa, T. K., Maekawa, M., Moriwaki, K. & Kitagawa, S. (1997). Inorg. Chem. 36, 5416-5418.]); Pacigova et al. (2008[Pacigova, S., Gyepes, R., Tatiersky, J. & Sivak, M. (2008). Dalton Trans. pp. 121-130.]); Shirvan & Haydari Dezfuli (2012a[Shirvan, S. A. & Haydari Dezfuli, S. (2012a). Acta Cryst. E68, m527.],b[Shirvan, S. A. & Haydari Dezfuli, S. (2012b). Acta Cryst. E68, m627-m628.],c[Shirvan, S. A. & Haydari Dezfuli, S. (2012c). Acta Cryst. E68, m546.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(NO3)2(C5H5N3O)2(H2O)2]·2C5H5N3O

  • Mr = 764.94

  • Monoclinic, C 2/c

  • a = 13.5650 (5) Å

  • b = 6.7845 (3) Å

  • c = 31.2031 (11) Å

  • β = 95.665 (3)°

  • V = 2857.65 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 298 K

  • 0.22 × 0.21 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.835, Tmax = 0.865

  • 15388 measured reflections

  • 3850 independent reflections

  • 3099 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.069

  • S = 1.02

  • 3850 reflections

  • 221 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O3 2.386 (2)
Cd1—O4 2.529 (2)
Cd1—O5 2.469 (2)
Cd1—N2 2.3459 (19)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3D⋯N6i 0.82 (1) 2.13 (1) 2.937 (3) 169 (4)
O3—H3E⋯O5ii 0.82 (3) 2.44 (3) 3.215 (4) 158 (3)
O3—H3E⋯O6ii 0.82 (3) 2.39 (3) 3.130 (3) 150 (3)
N3—H3B⋯O2 0.86 2.22 3.072 (3) 170
N3—H3C⋯O2iii 0.86 2.30 2.987 (3) 137
N4—H4A⋯N5iv 0.86 2.50 3.180 (3) 137
N4—H4B⋯O1 0.86 1.97 2.832 (3) 179
C6—H6⋯N1iii 0.93 2.57 3.364 (4) 143
C8—H8⋯O1iv 0.93 2.57 3.429 (3) 155
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) -x+1, -y-1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrazine-2-carboxamide (pzc), is a good ligand, and a few complexes with pzc have been prepared, such as that of mercury (Azhdari Tehrani et al., 2010; Mir Mohammad Sadegh et al., 2010), vanadium (Pacigova et al., 2008), manganese (Abu-Youssef et al., 2006), copper (Kristiansson, 2002; Munakata et al., 1997; Goher & Mautner, 2000) and zinc (Shirvan & Haydari Dezfuli, 2012a,b,c). Here, we report the synthesis and structure of the title compound.

The asymmetric unit of the title compound, (Fig. 1), contains one half of CdII atom, one coordinated pyrazine-2-carboxamide ligand, one water molecule, one nitrate anion and one none coordinated pyrazine-2-carboxamide. The CdII atom is eight-coordinated by two N atoms from two pyrazine-2-carboxamide ligands, two O atoms from two water molecules and four O atoms from two nitrate anions. The Cd—O and Cd—N bond lengths and angles are collected in Table 1.

In the crystal structure, intra and intermolecular N—H···O, N—H···N, O—H···O, C—H···N and C—H···O hydrogen bonds (Table 2) and π-π contacts (Fig. 2) between the pyrazine rings, Cg1—Cg2i [symmetry cods: (i) 1-X,-Y,1-Z, where Cg1 and Cg2 are centroids of the rings (N1/C2—C3/N2/C1/C4) and (N5/C7—C8/N6/C6/C9), respectively] may stabilize the structure, with centroid-centroid distance of 3.5669 (14) Å.

Related literature top

For related structures, see: Abu-Youssef et al. (2006); Azhdari Tehrani et al. (2010); Goher & Mautner (2000); Kristiansson (2002); Mir Mohammad Sadegh et al. (2010); Munakata et al. (1997); Pacigova et al. (2008); Shirvan & Haydari Dezfuli (2012a,b,c).

Experimental top

A solution of pyrazine-2-carboxamide (0.50 g, 4.0 mmol) in methanol (10 ml) was added to a solution of Cd(NO3)2.4H2O (0.31 g, 1.0 mmol) in methanol (10 ml) and the resulting colorless solution was stirred for 15 min at room temperature. This solution was left to evaporate slowly at room temperature. After one week, colorless block crystals of the title compound were isolated (yield 0.56 g, 73.2%).

Refinement top

H atoms were positioned geometrically with C—H = 0.93 and N—H = 0.86 Å, and constrained to ride on their parent atoms, Uiso(H) = 1.2Ueq(N,C).

Structure description top

Pyrazine-2-carboxamide (pzc), is a good ligand, and a few complexes with pzc have been prepared, such as that of mercury (Azhdari Tehrani et al., 2010; Mir Mohammad Sadegh et al., 2010), vanadium (Pacigova et al., 2008), manganese (Abu-Youssef et al., 2006), copper (Kristiansson, 2002; Munakata et al., 1997; Goher & Mautner, 2000) and zinc (Shirvan & Haydari Dezfuli, 2012a,b,c). Here, we report the synthesis and structure of the title compound.

The asymmetric unit of the title compound, (Fig. 1), contains one half of CdII atom, one coordinated pyrazine-2-carboxamide ligand, one water molecule, one nitrate anion and one none coordinated pyrazine-2-carboxamide. The CdII atom is eight-coordinated by two N atoms from two pyrazine-2-carboxamide ligands, two O atoms from two water molecules and four O atoms from two nitrate anions. The Cd—O and Cd—N bond lengths and angles are collected in Table 1.

In the crystal structure, intra and intermolecular N—H···O, N—H···N, O—H···O, C—H···N and C—H···O hydrogen bonds (Table 2) and π-π contacts (Fig. 2) between the pyrazine rings, Cg1—Cg2i [symmetry cods: (i) 1-X,-Y,1-Z, where Cg1 and Cg2 are centroids of the rings (N1/C2—C3/N2/C1/C4) and (N5/C7—C8/N6/C6/C9), respectively] may stabilize the structure, with centroid-centroid distance of 3.5669 (14) Å.

For related structures, see: Abu-Youssef et al. (2006); Azhdari Tehrani et al. (2010); Goher & Mautner (2000); Kristiansson (2002); Mir Mohammad Sadegh et al. (2010); Munakata et al. (1997); Pacigova et al. (2008); Shirvan & Haydari Dezfuli (2012a,b,c).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (a) 1 - x,y,3/2 - z].
[Figure 2] Fig. 2. Unit-cell packing diagram for title molecule. Hydrogen bonds are shown as dashed lines.
Diaquabis(nitrato-κ2O,O')bis(pyrazine-2- carboxamide-κN4)cadmium–pyrazine-2-carboxamide (1/2) top
Crystal data top
[Cd(NO3)2(C5H5N3O)2(H2O)2]·2C5H5N3OF(000) = 1544
Mr = 764.94Dx = 1.778 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 15388 reflections
a = 13.5650 (5) Åθ = 2.6–29.2°
b = 6.7845 (3) ŵ = 0.85 mm1
c = 31.2031 (11) ÅT = 298 K
β = 95.665 (3)°Block, colorless
V = 2857.65 (19) Å30.22 × 0.21 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3850 independent reflections
Radiation source: fine-focus sealed tube3099 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ω scansθmax = 29.2°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1518
Tmin = 0.835, Tmax = 0.865k = 99
15388 measured reflectionsl = 4242
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0281P)2]
where P = (Fo2 + 2Fc2)/3
3850 reflections(Δ/σ)max = 0.006
221 parametersΔρmax = 0.44 e Å3
2 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Cd(NO3)2(C5H5N3O)2(H2O)2]·2C5H5N3OV = 2857.65 (19) Å3
Mr = 764.94Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.5650 (5) ŵ = 0.85 mm1
b = 6.7845 (3) ÅT = 298 K
c = 31.2031 (11) Å0.22 × 0.21 × 0.20 mm
β = 95.665 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3850 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3099 reflections with I > 2σ(I)
Tmin = 0.835, Tmax = 0.865Rint = 0.067
15388 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0392 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.44 e Å3
3850 reflectionsΔρmin = 0.51 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.56965 (17)0.2539 (3)0.65471 (7)0.0297 (5)
H10.54930.12300.65500.036*
C20.5882 (2)0.5543 (3)0.68646 (8)0.0360 (6)
H20.57990.63960.70920.043*
C30.6311 (2)0.6240 (4)0.65109 (8)0.0388 (6)
H30.65240.75430.65100.047*
C40.61084 (17)0.3260 (3)0.61922 (7)0.0271 (5)
C50.61752 (18)0.1922 (3)0.58134 (7)0.0309 (5)
C60.6697 (2)0.3057 (4)0.40570 (8)0.0409 (6)
H60.69780.18270.40180.049*
C70.6301 (2)0.6120 (4)0.38209 (9)0.0407 (6)
H70.63070.71090.36150.049*
C80.5894 (2)0.6511 (4)0.41992 (9)0.0401 (6)
H80.56170.77450.42370.048*
C90.63094 (18)0.3443 (3)0.44398 (7)0.0294 (5)
C100.63336 (19)0.1919 (3)0.47903 (8)0.0323 (5)
N10.64298 (17)0.5111 (3)0.61710 (7)0.0349 (5)
N20.55839 (15)0.3686 (3)0.68886 (6)0.0288 (4)
N30.66404 (16)0.2610 (3)0.54907 (6)0.0400 (5)
H3B0.66880.18940.52660.048*
H3C0.68950.37720.55060.048*
N40.58381 (19)0.2357 (3)0.51183 (7)0.0473 (6)
H4B0.58270.15430.53290.057*
H4A0.55250.34580.51220.057*
N50.58844 (17)0.5180 (3)0.45120 (7)0.0357 (5)
N60.66844 (19)0.4378 (4)0.37415 (7)0.0457 (6)
N70.35495 (17)0.0688 (3)0.72058 (7)0.0381 (5)
O10.57917 (17)0.0284 (3)0.58187 (6)0.0502 (5)
O20.68015 (15)0.0373 (3)0.47604 (6)0.0452 (5)
O30.35625 (17)0.3987 (4)0.72005 (7)0.0526 (5)
H3D0.341 (3)0.410 (5)0.6940 (4)0.068 (11)*
H3E0.3053 (18)0.407 (6)0.7322 (12)0.085 (14)*
O40.41705 (19)0.0161 (3)0.69628 (8)0.0698 (7)
O50.3670 (2)0.0147 (3)0.75901 (7)0.0651 (7)
O60.28421 (17)0.1698 (3)0.70757 (9)0.0702 (7)
Cd10.50000.22584 (4)0.75000.03053 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0371 (12)0.0264 (11)0.0269 (10)0.0051 (9)0.0093 (9)0.0015 (9)
C20.0477 (16)0.0323 (12)0.0292 (13)0.0037 (11)0.0087 (11)0.0067 (9)
C30.0531 (17)0.0288 (12)0.0356 (14)0.0102 (11)0.0106 (12)0.0035 (10)
C40.0290 (12)0.0297 (11)0.0230 (11)0.0047 (9)0.0042 (9)0.0015 (8)
C50.0366 (13)0.0343 (12)0.0228 (11)0.0046 (10)0.0078 (10)0.0024 (9)
C60.0480 (16)0.0442 (14)0.0325 (13)0.0153 (12)0.0143 (12)0.0046 (11)
C70.0437 (16)0.0435 (14)0.0354 (14)0.0006 (12)0.0059 (12)0.0118 (11)
C80.0485 (16)0.0320 (12)0.0404 (15)0.0047 (11)0.0071 (13)0.0063 (10)
C90.0299 (12)0.0347 (11)0.0238 (11)0.0058 (9)0.0042 (10)0.0018 (9)
C100.0366 (13)0.0333 (12)0.0275 (12)0.0060 (10)0.0047 (10)0.0025 (9)
N10.0441 (13)0.0321 (10)0.0298 (11)0.0089 (9)0.0102 (10)0.0020 (8)
N20.0314 (11)0.0322 (10)0.0237 (10)0.0026 (8)0.0072 (8)0.0028 (7)
N30.0525 (13)0.0427 (12)0.0274 (9)0.0133 (10)0.0171 (9)0.0060 (9)
N40.0688 (15)0.0409 (12)0.0364 (11)0.0256 (11)0.0254 (11)0.0140 (10)
N50.0453 (13)0.0313 (10)0.0318 (11)0.0063 (9)0.0096 (10)0.0002 (8)
N60.0517 (15)0.0558 (14)0.0316 (12)0.0092 (11)0.0136 (11)0.0071 (10)
N70.0377 (13)0.0308 (11)0.0468 (14)0.0010 (9)0.0088 (11)0.0010 (9)
O10.0752 (15)0.0408 (10)0.0390 (11)0.0237 (10)0.0281 (10)0.0141 (8)
O20.0569 (13)0.0402 (10)0.0411 (11)0.0225 (9)0.0175 (10)0.0087 (8)
O30.0475 (14)0.0815 (15)0.0305 (11)0.0188 (11)0.0128 (10)0.0083 (10)
O40.0758 (17)0.0646 (14)0.0773 (17)0.0271 (12)0.0495 (14)0.0193 (12)
O50.107 (2)0.0472 (12)0.0426 (13)0.0008 (12)0.0159 (13)0.0011 (9)
O60.0452 (13)0.0619 (14)0.103 (2)0.0182 (11)0.0033 (13)0.0088 (13)
Cd10.03867 (15)0.03185 (13)0.02309 (12)0.0000.01321 (10)0.000
Geometric parameters (Å, º) top
Cd1—O32.386 (2)N3—H3C0.8600
Cd1—O42.529 (2)N4—C101.313 (3)
Cd1—O52.469 (2)N5—C81.331 (3)
Cd1—N22.3459 (19)N5—C91.341 (3)
Cd1—O3i2.386 (2)N6—C71.324 (4)
Cd1—O4i2.529 (2)N6—C61.330 (4)
Cd1—O5i2.469 (2)N4—H4B0.8600
Cd1—N2i2.3459 (19)N4—H4A0.8600
O1—C51.228 (3)C1—C41.378 (3)
O4—N71.240 (3)C2—C31.381 (4)
O5—N71.249 (3)C4—C51.500 (3)
O6—N71.216 (3)C1—H10.9300
O3—H3D0.822 (14)C2—H20.9300
O3—H3E0.82 (3)C3—H30.9300
O2—C101.234 (3)C6—C91.377 (3)
N1—C31.331 (3)C7—C81.377 (4)
N1—C41.333 (3)C9—C101.503 (3)
N2—C21.328 (3)C6—H60.9300
N2—C11.340 (3)C7—H70.9300
N3—C51.325 (3)C8—H80.9300
N3—H3B0.8600
O3—Cd1—O476.50 (8)O5—N7—O6120.7 (3)
O3—Cd1—O577.96 (8)H3B—N3—H3C120.00
O3—Cd1—N278.87 (7)C5—N3—H3B120.00
O3—Cd1—O3i121.11 (9)C5—N3—H3C120.00
O3—Cd1—O4i150.64 (8)C8—N5—C9116.0 (2)
O3—Cd1—O5i149.14 (8)C6—N6—C7116.1 (2)
O3—Cd1—N2i77.71 (7)C10—N4—H4B120.00
O4—Cd1—O550.53 (8)C10—N4—H4A120.00
O4—Cd1—N283.85 (7)H4A—N4—H4B120.00
O3i—Cd1—O4150.64 (8)N2—C1—C4121.31 (19)
O4—Cd1—O4i99.08 (7)N2—C2—C3121.7 (2)
O4—Cd1—O5i77.17 (8)N1—C3—C2122.2 (2)
O4—Cd1—N2i130.02 (8)C1—C4—C5118.62 (19)
O5—Cd1—N2132.42 (7)N1—C4—C5119.0 (2)
O3i—Cd1—O5149.14 (8)N1—C4—C1122.3 (2)
O4i—Cd1—O577.17 (8)N3—C5—C4117.13 (19)
O5—Cd1—O5i97.26 (8)O1—C5—C4118.6 (2)
O5—Cd1—N2i82.60 (7)O1—C5—N3124.3 (2)
O3i—Cd1—N277.71 (7)C4—C1—H1119.00
O4i—Cd1—N2130.02 (8)N2—C1—H1119.00
O5i—Cd1—N282.60 (7)C3—C2—H2119.00
N2—Cd1—N2i131.23 (7)N2—C2—H2119.00
O3i—Cd1—O4i76.50 (8)C2—C3—H3119.00
O3i—Cd1—O5i77.96 (8)N1—C3—H3119.00
O3i—Cd1—N2i78.87 (7)N6—C6—C9122.4 (2)
O4i—Cd1—O5i50.53 (8)N6—C7—C8122.0 (3)
O4i—Cd1—N2i83.85 (7)N5—C8—C7122.1 (2)
O5i—Cd1—N2i132.42 (7)C6—C9—C10121.2 (2)
Cd1—O4—N793.81 (16)N5—C9—C6121.4 (2)
Cd1—O5—N796.47 (16)N5—C9—C10117.5 (2)
H3D—O3—H3E108 (4)O2—C10—N4123.9 (2)
Cd1—O3—H3D123 (3)O2—C10—C9120.3 (2)
Cd1—O3—H3E123 (3)N4—C10—C9115.8 (2)
C3—N1—C4115.9 (2)N6—C6—H6119.00
C1—N2—C2116.5 (2)C9—C6—H6119.00
Cd1—N2—C1118.75 (15)N6—C7—H7119.00
Cd1—N2—C2124.53 (16)C8—C7—H7119.00
O4—N7—O6121.3 (2)N5—C8—H8119.00
O4—N7—O5118.0 (2)C7—C8—H8119.00
O3—Cd1—O4—N779.22 (16)Cd1—O4—N7—O6169.2 (2)
O5—Cd1—O4—N76.18 (14)Cd1—O5—N7—O411.0 (2)
N2—Cd1—O4—N7159.21 (16)Cd1—O5—N7—O6168.8 (2)
O3i—Cd1—O4—N7149.72 (17)C4—N1—C3—C20.0 (4)
O4i—Cd1—O4—N771.16 (16)C3—N1—C4—C11.3 (4)
O5i—Cd1—O4—N7117.01 (16)C3—N1—C4—C5177.3 (2)
N2i—Cd1—O4—N718.40 (19)Cd1—N2—C2—C3173.36 (19)
O3—Cd1—O5—N776.16 (16)C1—N2—C2—C31.7 (4)
O4—Cd1—O5—N76.16 (14)Cd1—N2—C1—C4174.91 (17)
N2—Cd1—O5—N713.7 (2)C2—N2—C1—C40.5 (3)
O3i—Cd1—O5—N7151.55 (16)C8—N5—C9—C10178.6 (2)
O4i—Cd1—O5—N7119.56 (17)C9—N5—C8—C71.0 (4)
O5i—Cd1—O5—N772.90 (16)C8—N5—C9—C62.3 (4)
N2i—Cd1—O5—N7155.10 (17)C6—N6—C7—C83.1 (4)
O3—Cd1—N2—C1104.80 (18)C7—N6—C6—C91.9 (4)
O4—Cd1—N2—C127.40 (17)N2—C1—C4—C5177.5 (2)
O5—Cd1—N2—C142.7 (2)N2—C1—C4—N11.1 (4)
O3i—Cd1—N2—C1129.63 (18)N2—C2—C3—N11.6 (4)
O4i—Cd1—N2—C169.30 (19)N1—C4—C5—N36.2 (3)
O5i—Cd1—N2—C150.41 (17)C1—C4—C5—O15.6 (3)
N2i—Cd1—N2—C1167.35 (15)N1—C4—C5—O1173.1 (2)
O3—Cd1—N2—C280.2 (2)C1—C4—C5—N3175.1 (2)
O4—Cd1—N2—C2157.6 (2)N6—C6—C9—N50.9 (4)
O5—Cd1—N2—C2142.32 (19)N6—C6—C9—C10179.9 (2)
O3i—Cd1—N2—C245.4 (2)N6—C7—C8—N51.8 (4)
O4i—Cd1—N2—C2105.7 (2)N5—C9—C10—O2172.7 (2)
O5i—Cd1—N2—C2124.6 (2)N5—C9—C10—N47.1 (3)
N2i—Cd1—N2—C217.7 (2)C6—C9—C10—O28.2 (4)
Cd1—O4—N7—O510.7 (2)C6—C9—C10—N4172.0 (2)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3D···N6ii0.82 (1)2.13 (1)2.937 (3)169 (4)
O3—H3E···O5iii0.82 (3)2.44 (3)3.215 (4)158 (3)
O3—H3E···O6iii0.82 (3)2.39 (3)3.130 (3)150 (3)
N3—H3B···O20.862.223.072 (3)170
N3—H3C···O2iv0.862.302.987 (3)137
N4—H4A···N5v0.862.503.180 (3)137
N4—H4B···O10.861.972.832 (3)179
C6—H6···N1iv0.932.573.364 (4)143
C8—H8···O1v0.932.573.429 (3)155
Symmetry codes: (ii) x+1, y, z+1; (iii) x+1/2, y+1/2, z+3/2; (iv) x+3/2, y+1/2, z+1; (v) x+1, y1, z+1.

Experimental details

Crystal data
Chemical formula[Cd(NO3)2(C5H5N3O)2(H2O)2]·2C5H5N3O
Mr764.94
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)13.5650 (5), 6.7845 (3), 31.2031 (11)
β (°) 95.665 (3)
V3)2857.65 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.22 × 0.21 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.835, 0.865
No. of measured, independent and
observed [I > 2σ(I)] reflections
15388, 3850, 3099
Rint0.067
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.069, 1.02
No. of reflections3850
No. of parameters221
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.51

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cd1—O32.386 (2)Cd1—O52.469 (2)
Cd1—O42.529 (2)Cd1—N22.3459 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3D···N6i0.822 (14)2.126 (13)2.937 (3)169 (4)
O3—H3E···O5ii0.82 (3)2.44 (3)3.215 (4)158 (3)
O3—H3E···O6ii0.82 (3)2.39 (3)3.130 (3)150 (3)
N3—H3B···O20.86002.22003.072 (3)170.00
N3—H3C···O2iii0.86002.30002.987 (3)137.00
N4—H4A···N5iv0.86002.50003.180 (3)137.00
N4—H4B···O10.86001.97002.832 (3)179.00
C6—H6···N1iii0.93002.57003.364 (4)143.00
C8—H8···O1iv0.93002.57003.429 (3)155.00
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x+3/2, y+1/2, z+1; (iv) x+1, y1, z+1.
 

Acknowledgements

We are grateful to the Islamic Azad University, Omidieh Branch, for financial support.

References

First citationAbu-Youssef, M. A. M., Escuer, A. & Langer, V. (2006). Eur. J. Inorg. Chem. pp. 3177–3184.  Google Scholar
First citationAzhdari Tehrani, A., Mir Mohammad Sadegh, B. & Khavasi, H. R. (2010). Acta Cryst. E66, m261.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGoher, M. A. S. & Mautner, F. A. (2000). Polyhedron, 19, 601–606.  Web of Science CSD CrossRef CAS Google Scholar
First citationKristiansson, O. (2002). Acta Cryst. E58, m130–m132.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMir Mohammad Sadegh, B., Azhdari Tehrani, A. & Khavasi, H. R. (2010). Acta Cryst. E66, m158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMunakata, M., Wu, L. P., Sowa, T. K., Maekawa, M., Moriwaki, K. & Kitagawa, S. (1997). Inorg. Chem. 36, 5416–5418.  CSD CrossRef CAS Web of Science Google Scholar
First citationPacigova, S., Gyepes, R., Tatiersky, J. & Sivak, M. (2008). Dalton Trans. pp. 121–130.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShirvan, S. A. & Haydari Dezfuli, S. (2012a). Acta Cryst. E68, m527.  CSD CrossRef IUCr Journals Google Scholar
First citationShirvan, S. A. & Haydari Dezfuli, S. (2012b). Acta Cryst. E68, m627–m628.  CSD CrossRef IUCr Journals Google Scholar
First citationShirvan, S. A. & Haydari Dezfuli, S. (2012c). Acta Cryst. E68, m546.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds