organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Di­chloro­acetyl-8a-methyl-1,2,3,4,6,7,8,8a-octa­hydro­pyrrolo­[1,2-a]pyrimidin-6-one

aCollege of Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
*Correspondence e-mail: fuying@neau.edu.cn

(Received 26 April 2012; accepted 26 May 2012; online 2 June 2012)

In the title compound, C10H14Cl2N2O2, the five-membered ring adopts an envelope conformation (with the methylene C atom closest to the C—N bridge as the flap), while the conformation of the six-membered ring is close to a twist-boat. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming chains along the c-axis direction.

Related literature

For general background to 1,5-diaza­bicyclo compounds, see: Fuerst & Lamoureux (1992[Fuerst, E. P. & Lamoureux, G. L. (1992). Pestic. Biochem. Physiol. 42, 78-87.]); Hutton & Bartlett (2007[Hutton, C. A. & Bartlett, P. A. (2007). J. Org. Chem. 72, 6865-6872.]); Koptelov et al. (2011[Koptelov, Y. B., Saik, S. P., Molchanov, A. P. & Selivanov, S. I. (2011). Russ. J. Org. Chem. 47, 421-432.]); Loriga et al. (2007[Loriga, G., Ruiu, S., Manca, I., Murineddu, G., Dessi, C., Pani, L. & Pinna, G. A. (2007). Bioorg. Med. Chem. 15, 3748-3755.]); Moreland et al. (1993[Moreland, D. E., Corbin, F. T. & McFarland, J. E. (1993). Pestic. Biochem. Physiol. 45, 43-53.]); Taylor et al. (2010[Taylor, R. R. R., Twin, H. C., Wen, W. W., Mallot, R. J., Lough, A. J., Gray-Owen, S. D. & Batey, R. A. (2010). Tetrahedron, 66, 3370-3377.]). For details of the synthesis, see: Sun & Ye (2010[Sun, T. F. & Ye, F. (2010). Chem. Online, 73, 669-672.]); Rohr et al. (1984[Rohr, W., Hansen, H., Plath, P. & Wuerzer, B. (1984). US Patent No. 4448960.],1986[Rohr, W., Hansen, H., Plath, P. & Wuerzer, B. (1986). US Patent No. 4565565.]). For applications of N-dichloro­acetyl-1,5-diaza­bicyclo compounds, see: Lamour­eux & Rusness (1992[Lamoureux, G. L. & Rusness, D. G. (1992). Pestic. Biochem. Physiol. 42, 128-139.]); Hatzios & Burgos (2004[Hatzios, K. K. & Burgos, N. (2004). Weed Sci. 52, 454-467.]).

[Scheme 1]

Experimental

Crystal data
  • C10H14Cl2N2O2

  • Mr = 265.13

  • Orthorhombic, P b c a

  • a = 10.312 (2) Å

  • b = 14.997 (3) Å

  • c = 15.666 (3) Å

  • V = 2422.7 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 293 K

  • 0.23 × 0.19 × 0.16 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.889, Tmax = 0.922

  • 22128 measured reflections

  • 2770 independent reflections

  • 2376 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.156

  • S = 1.11

  • 2770 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2i 0.98 2.15 3.115 (2) 168
C3—H3B⋯O2i 0.97 2.55 3.502 (3) 169
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1999[Rigaku (1999). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Diazabicyclo derivatives are extremely important synthetic intermediates in the syntheses of compounds with potential high biological activity (Fuerst & Lamoureux, 1992; Loriga et al., 2007; Hutton & Bartlett, 2007; Taylor et al., 2010). N-dichloroacetyl-1,5-diazabicyclo compounds have been investigated for usage as herbicide safeners which protect crops from the injury by herbicides (Lamoureux & Rusness, 1992; Hatzios & Burgos, 2004). As a part of our ongoing investigation on the diazabicyclo derivatives we have determined the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. In the crystal, molecules are linked by weak intermolecular C—H···O hydrogen bonds, forming chains along the c direction (Fig. 2).

Related literature top

For general background to 1,5-diazabicyclo compounds, see: Fuerst & Lamoureux (1992); Hutton & Bartlett (2007); Koptelov et al. (2011); Loriga et al. (2007); Moreland et al. (1993); Taylor et al. (2010). For details of the synthesis, see: Sun & Ye (2010); Rohr et al. (1984,1986). For applications of N-dichloroacetyl-1,5-diazabicyclo compounds, see: Lamoureux & Rusness (1992); Hatzios & Burgos (2004).

Experimental top

The title compound was prepared according to the literature procedure (Sun & Ye, 2010). The single crystal suitable for X-ray structural analysis was obtained by slow evaporation of a solution in the mixture of petroleum ether and ethyl acetate at room temperature.

Refinement top

All H atoms were initially located in a difference Fourier map. The C—H atoms were then constrained to an ideal geometry, with C—H distances of 0.96/0.98 Å, and with Uiso(H) = 1.2/1.5 Ueq(C).

Structure description top

Diazabicyclo derivatives are extremely important synthetic intermediates in the syntheses of compounds with potential high biological activity (Fuerst & Lamoureux, 1992; Loriga et al., 2007; Hutton & Bartlett, 2007; Taylor et al., 2010). N-dichloroacetyl-1,5-diazabicyclo compounds have been investigated for usage as herbicide safeners which protect crops from the injury by herbicides (Lamoureux & Rusness, 1992; Hatzios & Burgos, 2004). As a part of our ongoing investigation on the diazabicyclo derivatives we have determined the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. In the crystal, molecules are linked by weak intermolecular C—H···O hydrogen bonds, forming chains along the c direction (Fig. 2).

For general background to 1,5-diazabicyclo compounds, see: Fuerst & Lamoureux (1992); Hutton & Bartlett (2007); Koptelov et al. (2011); Loriga et al. (2007); Moreland et al. (1993); Taylor et al. (2010). For details of the synthesis, see: Sun & Ye (2010); Rohr et al. (1984,1986). For applications of N-dichloroacetyl-1,5-diazabicyclo compounds, see: Lamoureux & Rusness (1992); Hatzios & Burgos (2004).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1999); cell refinement: RAPID-AUTO (Rigaku, 1999); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing view showing hydrogen bonds.
1-Dichloroacetyl-8a-methyl-1,2,3,4,6,7,8,8a- octahydropyrrolo[1,2-a]pyrimidin-6-one top
Crystal data top
C10H14Cl2N2O2F(000) = 1104
Mr = 265.13Dx = 1.454 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9134 reflections
a = 10.312 (2) Åθ = 3.2–27.6°
b = 14.997 (3) ŵ = 0.52 mm1
c = 15.666 (3) ÅT = 293 K
V = 2422.7 (8) Å3Block, colourless
Z = 80.23 × 0.19 × 0.16 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2770 independent reflections
Radiation source: fine-focus sealed tube2376 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scanh = 1311
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1919
Tmin = 0.889, Tmax = 0.922l = 2020
22128 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.097P)2 + 0.5072P]
where P = (Fo2 + 2Fc2)/3
2770 reflections(Δ/σ)max = 0.001
146 parametersΔρmax = 0.74 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C10H14Cl2N2O2V = 2422.7 (8) Å3
Mr = 265.13Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.312 (2) ŵ = 0.52 mm1
b = 14.997 (3) ÅT = 293 K
c = 15.666 (3) Å0.23 × 0.19 × 0.16 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2770 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2376 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.922Rint = 0.038
22128 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.11Δρmax = 0.74 e Å3
2770 reflectionsΔρmin = 0.36 e Å3
146 parameters
Special details top

Geometry. All s.u.'s (except the s.u.'s in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.44507 (19)0.93130 (12)0.76600 (12)0.0425 (4)
H10.40670.88550.72930.051*
C20.36708 (16)0.93818 (10)0.84965 (10)0.0356 (3)
C30.3554 (3)0.77230 (13)0.84857 (16)0.0717 (8)
H3A0.43480.74710.87120.086*
H3B0.36540.77840.78730.086*
C40.2472 (4)0.71165 (18)0.86658 (17)0.0951 (11)
H4A0.26200.65520.83800.114*
H4B0.16750.73700.84440.114*
C50.2331 (3)0.69585 (16)0.96139 (15)0.0778 (8)
H5A0.14270.68540.97530.093*
H5B0.28240.64350.97790.093*
C60.27314 (17)0.86362 (11)0.97259 (10)0.0388 (4)
C70.1334 (2)0.89612 (19)0.96606 (15)0.0643 (6)
H7A0.08490.85640.93010.096*
H7B0.13210.95500.94200.096*
H7C0.09510.89741.02190.096*
C80.3550 (2)0.91831 (13)1.03659 (11)0.0490 (5)
H8A0.44030.93061.01330.059*
H8B0.31280.97451.04970.059*
C90.3655 (2)0.86100 (14)1.11572 (12)0.0512 (5)
H9A0.45290.86261.13850.061*
H9B0.30570.88131.15940.061*
C100.33128 (18)0.76904 (13)1.08684 (12)0.0460 (4)
Cl10.60562 (5)0.89949 (5)0.79454 (4)0.0661 (2)
Cl20.44643 (7)1.03447 (4)0.71183 (3)0.0634 (2)
N10.33425 (15)0.86043 (9)0.88631 (9)0.0376 (3)
N20.28063 (18)0.77378 (10)1.00813 (10)0.0495 (4)
O10.34367 (15)1.01088 (8)0.88014 (9)0.0493 (4)
O20.34379 (18)0.69963 (12)1.12676 (10)0.0677 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0509 (10)0.0420 (9)0.0347 (8)0.0063 (7)0.0010 (7)0.0023 (7)
C20.0419 (8)0.0325 (8)0.0325 (8)0.0003 (6)0.0051 (6)0.0013 (6)
C30.133 (2)0.0307 (9)0.0519 (12)0.0056 (11)0.0152 (13)0.0057 (8)
C40.177 (3)0.0556 (14)0.0523 (14)0.0532 (18)0.0047 (16)0.0051 (10)
C50.132 (2)0.0500 (12)0.0517 (13)0.0423 (14)0.0074 (13)0.0063 (10)
C60.0463 (9)0.0384 (8)0.0318 (8)0.0040 (7)0.0051 (6)0.0021 (6)
C70.0486 (11)0.0909 (17)0.0534 (12)0.0083 (11)0.0025 (9)0.0066 (11)
C80.0672 (12)0.0430 (9)0.0367 (9)0.0096 (8)0.0075 (8)0.0038 (7)
C90.0591 (11)0.0615 (12)0.0330 (9)0.0038 (9)0.0070 (8)0.0004 (8)
C100.0472 (9)0.0549 (11)0.0359 (9)0.0012 (8)0.0030 (7)0.0098 (8)
Cl10.0494 (3)0.0859 (5)0.0629 (4)0.0085 (3)0.0054 (2)0.0065 (3)
Cl20.0924 (5)0.0559 (4)0.0419 (3)0.0146 (3)0.0005 (2)0.0120 (2)
N10.0490 (8)0.0311 (7)0.0328 (7)0.0019 (5)0.0022 (6)0.0014 (5)
N20.0691 (10)0.0393 (8)0.0400 (8)0.0153 (7)0.0084 (7)0.0076 (6)
O10.0724 (9)0.0308 (6)0.0448 (7)0.0038 (6)0.0064 (6)0.0010 (5)
O20.0858 (11)0.0644 (10)0.0528 (9)0.0071 (8)0.0007 (8)0.0255 (7)
Geometric parameters (Å, º) top
C1—C21.541 (2)C6—N21.460 (2)
C1—Cl21.7647 (19)C6—N11.492 (2)
C1—Cl11.780 (2)C6—C71.525 (3)
C1—H10.9800C6—C81.546 (2)
C2—O11.214 (2)C7—H7A0.9600
C2—N11.343 (2)C7—H7B0.9600
C3—N11.464 (2)C7—H7C0.9600
C3—C41.467 (4)C8—C91.512 (3)
C3—H3A0.9700C8—H8A0.9700
C3—H3B0.9700C8—H8B0.9700
C4—C51.511 (4)C9—C101.494 (3)
C4—H4A0.9700C9—H9A0.9700
C4—H4B0.9700C9—H9B0.9700
C5—N21.464 (3)C10—O21.221 (2)
C5—H5A0.9700C10—N21.341 (2)
C5—H5B0.9700
C2—C1—Cl2110.76 (12)N2—C6—C8102.31 (13)
C2—C1—Cl1106.84 (12)N1—C6—C8111.95 (15)
Cl2—C1—Cl1110.39 (10)C7—C6—C8112.96 (17)
C2—C1—H1109.6C6—C7—H7A109.5
Cl2—C1—H1109.6C6—C7—H7B109.5
Cl1—C1—H1109.6H7A—C7—H7B109.5
O1—C2—N1124.12 (16)C6—C7—H7C109.5
O1—C2—C1119.90 (15)H7A—C7—H7C109.5
N1—C2—C1115.91 (14)H7B—C7—H7C109.5
N1—C3—C4111.7 (2)C9—C8—C6105.61 (15)
N1—C3—H3A109.3C9—C8—H8A110.6
C4—C3—H3A109.3C6—C8—H8A110.6
N1—C3—H3B109.3C9—C8—H8B110.6
C4—C3—H3B109.3C6—C8—H8B110.6
H3A—C3—H3B107.9H8A—C8—H8B108.7
C3—C4—C5111.1 (2)C10—C9—C8105.05 (15)
C3—C4—H4A109.4C10—C9—H9A110.7
C5—C4—H4A109.4C8—C9—H9A110.7
C3—C4—H4B109.4C10—C9—H9B110.7
C5—C4—H4B109.4C8—C9—H9B110.7
H4A—C4—H4B108.0H9A—C9—H9B108.8
N2—C5—C4109.54 (17)O2—C10—N2123.87 (19)
N2—C5—H5A109.8O2—C10—C9127.37 (19)
C4—C5—H5A109.8N2—C10—C9108.75 (15)
N2—C5—H5B109.8C2—N1—C3125.00 (15)
C4—C5—H5B109.8C2—N1—C6117.77 (13)
H5A—C5—H5B108.2C3—N1—C6117.23 (14)
N2—C6—N1107.07 (14)C10—N2—C6114.85 (15)
N2—C6—C7111.75 (17)C10—N2—C5123.23 (16)
N1—C6—C7110.41 (14)C6—N2—C5121.90 (16)
Cl2—C1—C2—O117.6 (2)N2—C6—N1—C2164.27 (15)
Cl1—C1—C2—O1102.68 (17)C7—C6—N1—C273.9 (2)
Cl2—C1—C2—N1165.39 (13)C8—C6—N1—C252.9 (2)
Cl1—C1—C2—N174.34 (16)N2—C6—N1—C315.0 (2)
N1—C3—C4—C562.4 (4)C7—C6—N1—C3106.9 (2)
C3—C4—C5—N228.4 (4)C8—C6—N1—C3126.3 (2)
N2—C6—C8—C917.3 (2)O2—C10—N2—C6179.24 (19)
N1—C6—C8—C9131.65 (17)C9—C10—N2—C60.3 (2)
C7—C6—C8—C9103.0 (2)O2—C10—N2—C50.7 (3)
C6—C8—C9—C1017.9 (2)C9—C10—N2—C5178.2 (2)
C8—C9—C10—O2169.3 (2)N1—C6—N2—C10128.79 (17)
C8—C9—C10—N211.8 (2)C7—C6—N2—C10110.2 (2)
O1—C2—N1—C3176.6 (2)C8—C6—N2—C1010.9 (2)
C1—C2—N1—C36.5 (3)N1—C6—N2—C552.6 (3)
O1—C2—N1—C64.3 (3)C7—C6—N2—C568.4 (3)
C1—C2—N1—C6172.63 (14)C8—C6—N2—C5170.5 (2)
C4—C3—N1—C2142.1 (2)C4—C5—N2—C10151.3 (3)
C4—C3—N1—C638.8 (3)C4—C5—N2—C630.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.982.153.115 (2)168
C3—H3B···O2i0.972.553.502 (3)169
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H14Cl2N2O2
Mr265.13
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)10.312 (2), 14.997 (3), 15.666 (3)
V3)2422.7 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.52
Crystal size (mm)0.23 × 0.19 × 0.16
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.889, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
22128, 2770, 2376
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.156, 1.11
No. of reflections2770
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.36

Computer programs: RAPID-AUTO (Rigaku, 1999), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.982.153.115 (2)167.5
C3—H3B···O2i0.972.553.502 (3)168.7
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

We thank the National Natural Science Foundation of China (No. 31101473), the China Postdoctoral Science Foundation funded project (2011M500634), the Heilongjiang Province Foundation for Young Scholars (QC2009C44), the Research Science Foundation in Technology Innovation of Harbin (2010RFQYN108) and the Northeast Agricultural University Doctoral Foundation for generously supporting this study.

References

First citationFuerst, E. P. & Lamoureux, G. L. (1992). Pestic. Biochem. Physiol. 42, 78–87.  CrossRef CAS Web of Science Google Scholar
First citationHatzios, K. K. & Burgos, N. (2004). Weed Sci. 52, 454–467.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHutton, C. A. & Bartlett, P. A. (2007). J. Org. Chem. 72, 6865–6872.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKoptelov, Y. B., Saik, S. P., Molchanov, A. P. & Selivanov, S. I. (2011). Russ. J. Org. Chem. 47, 421–432.  Web of Science CrossRef CAS Google Scholar
First citationLamoureux, G. L. & Rusness, D. G. (1992). Pestic. Biochem. Physiol. 42, 128–139.  CrossRef CAS Web of Science Google Scholar
First citationLoriga, G., Ruiu, S., Manca, I., Murineddu, G., Dessi, C., Pani, L. & Pinna, G. A. (2007). Bioorg. Med. Chem. 15, 3748–3755.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMoreland, D. E., Corbin, F. T. & McFarland, J. E. (1993). Pestic. Biochem. Physiol. 45, 43–53.  CrossRef CAS Web of Science Google Scholar
First citationRigaku (1999). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRohr, W., Hansen, H., Plath, P. & Wuerzer, B. (1984). US Patent No. 4448960.  Google Scholar
First citationRohr, W., Hansen, H., Plath, P. & Wuerzer, B. (1986). US Patent No. 4565565.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, T. F. & Ye, F. (2010). Chem. Online, 73, 669–672.  CAS Google Scholar
First citationTaylor, R. R. R., Twin, H. C., Wen, W. W., Mallot, R. J., Lough, A. J., Gray-Owen, S. D. & Batey, R. A. (2010). Tetrahedron, 66, 3370–3377.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds