organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Benzyl­sulfanyl-4-[(4-methyl­phen­yl)sulfan­yl]-6-pentyl­pyrimidine-5-carbo­nitrile

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 1 June 2012; accepted 3 June 2012; online 13 June 2012)

In the title compound, C24H25N3S2, the S-bound benzene rings have orthogonal [dihedral angle = 85.31 (9)°] and splayed [67.92 (11)°] orientations with respect to the pyrimidine ring; the dihedral angle between the benzene rings is 48.18 (12)°. The pentyl group has an extended all-trans conformation and lies to one side of the pyrimidine ring [the Npy—Cpy—Cp—Cp torsion angle = −85.7 (2)°; py = pyrimidine and p = pent­yl].

Related literature

For the chemotherapeutic activity of pyrimidine derivatives see: Ghoshal & Jacob (1997[Ghoshal, K. & Jacob, S. T. (1997). Biochem. Pharmacol. 53, 1569-1575.]); De Corte (2005[De Corte, B. L. (2005). J. Med. Chem. 48, 1689-1696.]); Al-Omar et al. (2010[Al-Omar, M. A., Al-Obaid, A. M., El-Brollosy, N. R. & El-Emam, A. A. (2010). Synth. Commun. 40, 1530-1538.]); Al-Abdullah et al. (2011[Al-Abdullah, E. S., Al-Obaid, A. M., Al-Deeb, O. A., Habib, E. E. & El-Emam, A. A. (2011). Eur. J. Med. Chem. 46, 4642-4647.]); Al-Turkistani et al. (2011[Al-Turkistani, A. A., Al-Deeb, O. A., El-Brollosy, N. R. & El-Emam, A. A. (2011). Molecules, 16, 4764-4774.]). For a related pyrimidine structure, see: El-Emam et al. (2012[El-Emam, A. A., Al-Deeb, O. A., Al-Turkistani, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2055-o2056.]).

[Scheme 1]

Experimental

Crystal data
  • C24H25N3S2

  • Mr = 419.59

  • Monoclinic, P 21 /c

  • a = 9.9178 (2) Å

  • b = 8.2235 (2) Å

  • c = 28.4388 (8) Å

  • β = 96.115 (2)°

  • V = 2306.24 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.19 mm−1

  • T = 294 K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.689, Tmax = 1.000

  • 9523 measured reflections

  • 4746 independent reflections

  • 3720 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.138

  • S = 1.03

  • 4746 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The ability of of pyrimidine derivatives to inhibit vital enzymes responsible for DNA bio-synthesis is the reason behind their chemotherapeutic efficacy. Thus, several pyrimidine non-nucleoside derivatives exhibit anti-cancer (Ghoshal & Jacob, 1997), anti-viral (De Corte, 2005) and anti-bacterial activities (Al-Abdullah et al., 2011). The synthesis and crystal structure determination of the title compound, was undertaken in connection with on-going studies of the chemical, pharmacological and structural properties of pyrimidine derivatives (Al-Omar et al., 2010; Al-Turkistani et al., 2011; El-Emam et al. 2012).

With reference to the pyrimidine ring (r.m.s. deviation = 0.011 Å) in the title compound, Fig. 1, the S1- and S2-bound benzene rings form dihedral angles of 85.31 (9) and 67.92 (11)°, respectively, which indicate an orthogonal and a splayed orientation, respectively; the dihedral angle between the benzene rings is 48.18 (12)°. The pentyl group lies to one side of the pyrimidine ring with the N2—C3—C20—C21 torsion angle being -85.7 (2)°. The remaining chain has an extended all-trans conformation [the C20—C21—C22—C23 and C21—C22—C23—C24 torsion angles are -173.8 (2) and 179.6 (2)°, respectively].

No specific intermolecular interactions are evident in the crystal structure. Globally, molecules lie in layers in the ab plane which stack along the c axis, Fig. 2.

Related literature top

For the chemotherapeutic activity of pyrimidine derivatives see: Ghoshal & Jacob (1997); De Corte (2005); Al-Omar et al. (2010); Al-Abdullah et al. (2011); Al-Turkistani et al. (2011). For a related pyrimidine structure, see: El-Emam et al. (2012).

Experimental top

To a solution of 2-(benzylsulfanyl)-4-chloro-6-(n-pentyl)pyrimidine-5-carbonitrile (665 mg, 2 mmol) in dry pyridine (3 ml), 4-thiocresol (248 mg, 2 mmol) was added and the mixture was heated under reflux for 6 h. On cooling, the solvent was then distilled off in vacuo and water (5 ml) was added to the residue. The separated precipitate was collected by filtration, washed with cold water, dried and recrystallized from ethanol to yield 747 mg (89%) of the title compound as colourless crystals. M.p.: 384–386 K. Single crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of the title compound in CHCl3:EtOH (1:1, 5 ml) at room temperature. 1H NMR (DMSO-d6, 500.13 MHz): δ 0.85 (t, 3H, CH3, J = 7.0 Hz), 1.26–1.34 (m, 4H, CH2CH2CH3), 1.64–1.69 (m, 2H, CH2CH2CH2CH3), 2.27 (s, 3H, Ar—CH3), 2.76 (t, 2H, CH2CH2CH2CH2CH3, J = 7.0 Hz), 4.02 (s, 2H, CH2S), 6.98–6.99 (m, 2H, Ar—H), 7.21–7.23 (m, 3H, Ar—H), 7.28 (d, 2H, Ar—H, J = 8.0 Hz), 7.51 (d, 2H, Ar—H, J = 8.0 Hz). 13C NMR (DMSO-d6, 125.76 MHz): δ 14.16 (CH3), 21.29 (CH2CH3), 22.29 (ArCH3), 27.39 (CH2CH2CH3), 31.13 (CH2CH2CH2CH3), 34.51 (CH2CH2CH2CH2CH3), 36.12 (CH2S), 99.14 (C-5), 114.69 (CN), 122.19, 127.56, 128.74, 129.01, 130.67, 136.20, 137.58, 140.99 (Ar—C), 172.81, 173.15, 173.37 (C-2, C-4 & C-6).

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.93 to 0.97 Å, Uiso(H) = 1.2–1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

A view in projection down the a axis of the unit-cell contents for the title compound.
2-Benzylsulfanyl-4-[(4-methylphenyl)sulfanyl]-6-pentylpyrimidine-5-carbonitrile top
Crystal data top
C24H25N3S2F(000) = 888
Mr = 419.59Dx = 1.208 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybcCell parameters from 3374 reflections
a = 9.9178 (2) Åθ = 4.6–76.5°
b = 8.2235 (2) ŵ = 2.19 mm1
c = 28.4388 (8) ÅT = 294 K
β = 96.115 (2)°Prism, colourless
V = 2306.24 (10) Å30.40 × 0.20 × 0.10 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
4746 independent reflections
Radiation source: SuperNova (Cu) X-ray Source3720 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.017
Detector resolution: 10.4041 pixels mm-1θmax = 76.7°, θmin = 5.6°
ω scanh = 1210
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1010
Tmin = 0.689, Tmax = 1.000l = 3529
9523 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.0721P)2 + 0.1537P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4746 reflectionsΔρmax = 0.18 e Å3
264 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0040 (4)
Crystal data top
C24H25N3S2V = 2306.24 (10) Å3
Mr = 419.59Z = 4
Monoclinic, P21/cCu Kα radiation
a = 9.9178 (2) ŵ = 2.19 mm1
b = 8.2235 (2) ÅT = 294 K
c = 28.4388 (8) Å0.40 × 0.20 × 0.10 mm
β = 96.115 (2)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
4746 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3720 reflections with I > 2σ(I)
Tmin = 0.689, Tmax = 1.000Rint = 0.017
9523 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.03Δρmax = 0.18 e Å3
4746 reflectionsΔρmin = 0.24 e Å3
264 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.78263 (6)0.31009 (7)0.67270 (2)0.0889 (2)
S20.60772 (5)0.79595 (6)0.773134 (19)0.08036 (18)
N10.68705 (13)0.56138 (17)0.71826 (5)0.0665 (3)
N20.58228 (15)0.79774 (19)0.68118 (6)0.0764 (4)
N30.6892 (3)0.4609 (4)0.55333 (8)0.1323 (9)
C10.70156 (16)0.4995 (2)0.67609 (7)0.0696 (4)
C20.62755 (16)0.7066 (2)0.71888 (7)0.0678 (4)
C30.59644 (18)0.7347 (3)0.63894 (8)0.0775 (5)
C40.65498 (17)0.5814 (3)0.63450 (7)0.0745 (5)
C50.6733 (2)0.5142 (3)0.58931 (8)0.0940 (6)
C60.84843 (18)0.2845 (2)0.73261 (7)0.0729 (5)
C70.97186 (19)0.3532 (3)0.74887 (8)0.0858 (6)
H71.02170.40960.72830.103*
C81.0201 (2)0.3376 (3)0.79569 (9)0.0886 (6)
H81.10300.38470.80640.106*
C90.9493 (2)0.2538 (3)0.82738 (8)0.0825 (5)
C100.8272 (2)0.1824 (3)0.80980 (8)0.0846 (6)
H100.77860.12290.83010.102*
C110.77708 (18)0.1978 (2)0.76337 (8)0.0787 (5)
H110.69480.14970.75250.094*
C121.0013 (3)0.2400 (4)0.87868 (10)0.1206 (9)
H12A1.02330.12870.88610.181*
H12B0.93290.27670.89770.181*
H12C1.08110.30590.88510.181*
C130.6781 (3)0.6417 (3)0.81484 (8)0.0932 (6)
H13A0.61020.55950.81890.112*
H13B0.75500.58920.80280.112*
C140.7221 (2)0.7210 (2)0.86107 (7)0.0781 (5)
C150.8585 (3)0.7470 (4)0.87499 (10)0.1021 (7)
H150.92280.71520.85530.123*
C160.8998 (3)0.8197 (4)0.91789 (13)0.1233 (10)
H160.99180.83650.92670.148*
C170.8086 (4)0.8667 (4)0.94725 (11)0.1249 (10)
H170.83780.91480.97610.150*
C180.6744 (4)0.8435 (3)0.93449 (10)0.1126 (8)
H180.61120.87620.95450.135*
C190.6317 (2)0.7711 (3)0.89167 (9)0.0911 (6)
H190.53940.75570.88330.109*
C200.5482 (2)0.8344 (3)0.59621 (8)0.0928 (6)
H20A0.59960.80450.57040.111*
H20B0.56530.94840.60330.111*
C210.3988 (2)0.8112 (3)0.58083 (8)0.0843 (5)
H21A0.34620.85830.60430.101*
H21B0.37850.69590.57870.101*
C220.3585 (2)0.8912 (3)0.53285 (7)0.0885 (6)
H22A0.38911.00330.53420.106*
H22B0.40490.83600.50910.106*
C230.2100 (2)0.8882 (4)0.51799 (9)0.1024 (7)
H23A0.16320.94290.54170.123*
H23B0.17920.77620.51620.123*
C240.1729 (3)0.9695 (4)0.47047 (8)0.1191 (9)
H24A0.07620.96740.46290.179*
H24B0.21510.91240.44650.179*
H24C0.20381.08020.47190.179*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0998 (4)0.0797 (3)0.0874 (4)0.0206 (3)0.0105 (3)0.0054 (3)
S20.0877 (3)0.0652 (3)0.0881 (3)0.0125 (2)0.0093 (2)0.0008 (2)
N10.0611 (7)0.0595 (7)0.0790 (9)0.0001 (6)0.0086 (6)0.0046 (7)
N20.0701 (8)0.0691 (9)0.0894 (11)0.0054 (7)0.0059 (7)0.0147 (8)
N30.160 (2)0.153 (2)0.0858 (13)0.0146 (18)0.0225 (14)0.0026 (15)
C10.0595 (8)0.0677 (9)0.0822 (11)0.0005 (7)0.0107 (8)0.0044 (9)
C20.0556 (8)0.0622 (9)0.0855 (11)0.0011 (7)0.0069 (7)0.0079 (8)
C30.0629 (9)0.0820 (12)0.0871 (13)0.0012 (9)0.0061 (8)0.0159 (10)
C40.0656 (9)0.0816 (11)0.0763 (11)0.0025 (8)0.0076 (8)0.0072 (9)
C50.0948 (14)0.1054 (17)0.0820 (13)0.0045 (12)0.0112 (11)0.0084 (13)
C60.0685 (9)0.0600 (9)0.0909 (12)0.0119 (8)0.0116 (8)0.0009 (9)
C70.0723 (11)0.0789 (12)0.1077 (16)0.0043 (9)0.0165 (11)0.0062 (11)
C80.0663 (10)0.0827 (12)0.1157 (17)0.0002 (9)0.0046 (10)0.0039 (12)
C90.0767 (11)0.0776 (11)0.0935 (14)0.0201 (10)0.0096 (10)0.0055 (10)
C100.0753 (11)0.0795 (12)0.1015 (15)0.0072 (9)0.0207 (10)0.0103 (11)
C110.0645 (9)0.0689 (10)0.1023 (15)0.0031 (8)0.0074 (9)0.0035 (10)
C120.1118 (19)0.148 (3)0.0993 (18)0.0205 (18)0.0022 (14)0.0077 (18)
C130.1218 (17)0.0681 (11)0.0882 (14)0.0101 (11)0.0048 (12)0.0053 (10)
C140.0911 (12)0.0633 (10)0.0812 (12)0.0077 (9)0.0148 (10)0.0089 (9)
C150.0923 (14)0.1062 (17)0.1091 (18)0.0028 (13)0.0160 (13)0.0138 (15)
C160.114 (2)0.117 (2)0.132 (3)0.0128 (17)0.0209 (19)0.0136 (19)
C170.173 (3)0.0932 (18)0.102 (2)0.002 (2)0.014 (2)0.0037 (15)
C180.160 (3)0.0864 (15)0.0962 (17)0.0159 (17)0.0345 (17)0.0002 (13)
C190.0950 (14)0.0792 (12)0.1008 (16)0.0110 (11)0.0191 (12)0.0042 (12)
C200.0897 (13)0.0930 (14)0.0945 (15)0.0018 (11)0.0043 (11)0.0267 (12)
C210.0856 (12)0.0820 (12)0.0841 (13)0.0078 (10)0.0038 (10)0.0106 (10)
C220.0912 (13)0.0908 (14)0.0825 (13)0.0047 (11)0.0050 (10)0.0070 (11)
C230.0898 (13)0.1191 (19)0.0964 (15)0.0044 (13)0.0022 (11)0.0204 (14)
C240.1070 (16)0.148 (2)0.0972 (17)0.0055 (17)0.0142 (13)0.0290 (17)
Geometric parameters (Å, º) top
S1—C11.7601 (19)C13—H13A0.9700
S1—C61.771 (2)C13—H13B0.9700
S2—C21.739 (2)C14—C191.377 (3)
S2—C131.824 (2)C14—C151.385 (3)
N1—C11.325 (2)C15—C161.381 (4)
N1—C21.333 (2)C15—H150.9300
N2—C31.329 (3)C16—C171.352 (5)
N2—C21.345 (2)C16—H160.9300
N3—C51.140 (3)C17—C181.355 (4)
C1—C41.396 (3)C17—H170.9300
C3—C41.399 (3)C18—C191.381 (4)
C3—C201.501 (3)C18—H180.9300
C4—C51.428 (3)C19—H190.9300
C6—C71.383 (3)C20—C211.511 (3)
C6—C111.381 (3)C20—H20A0.9700
C7—C81.372 (3)C20—H20B0.9700
C7—H70.9300C21—C221.529 (3)
C8—C91.384 (3)C21—H21A0.9700
C8—H80.9300C21—H21B0.9700
C9—C101.390 (3)C22—C231.489 (3)
C9—C121.499 (3)C22—H22A0.9700
C10—C111.366 (3)C22—H22B0.9700
C10—H100.9300C23—C241.518 (3)
C11—H110.9300C23—H23A0.9700
C12—H12A0.9600C23—H23B0.9700
C12—H12B0.9600C24—H24A0.9600
C12—H12C0.9600C24—H24B0.9600
C13—C141.491 (3)C24—H24C0.9600
C1—S1—C6100.16 (9)C19—C14—C13122.7 (2)
C2—S2—C13102.22 (9)C15—C14—C13120.3 (2)
C1—N1—C2116.55 (16)C16—C15—C14120.5 (3)
C3—N2—C2116.38 (17)C16—C15—H15119.7
N1—C1—C4121.56 (17)C14—C15—H15119.7
N1—C1—S1118.93 (13)C17—C16—C15121.0 (3)
C4—C1—S1119.50 (15)C17—C16—H16119.5
N1—C2—N2126.81 (19)C15—C16—H16119.5
N1—C2—S2118.82 (14)C16—C17—C18119.8 (3)
N2—C2—S2114.34 (14)C16—C17—H17120.1
N2—C3—C4121.19 (18)C18—C17—H17120.1
N2—C3—C20117.6 (2)C17—C18—C19119.8 (3)
C4—C3—C20121.2 (2)C17—C18—H18120.1
C1—C4—C3117.46 (18)C19—C18—H18120.1
C1—C4—C5120.89 (19)C14—C19—C18121.8 (3)
C3—C4—C5121.57 (19)C14—C19—H19119.1
N3—C5—C4179.3 (3)C18—C19—H19119.1
C7—C6—C11119.6 (2)C3—C20—C21112.55 (18)
C7—C6—S1119.71 (16)C3—C20—H20A109.1
C11—C6—S1120.65 (16)C21—C20—H20A109.1
C8—C7—C6119.4 (2)C3—C20—H20B109.1
C8—C7—H7120.3C21—C20—H20B109.1
C6—C7—H7120.3H20A—C20—H20B107.8
C7—C8—C9122.0 (2)C20—C21—C22111.03 (18)
C7—C8—H8119.0C20—C21—H21A109.4
C9—C8—H8119.0C22—C21—H21A109.4
C8—C9—C10117.3 (2)C20—C21—H21B109.4
C8—C9—C12121.7 (2)C22—C21—H21B109.4
C10—C9—C12121.0 (2)H21A—C21—H21B108.0
C11—C10—C9121.5 (2)C23—C22—C21113.75 (19)
C11—C10—H10119.3C23—C22—H22A108.8
C9—C10—H10119.3C21—C22—H22A108.8
C10—C11—C6120.11 (19)C23—C22—H22B108.8
C10—C11—H11119.9C21—C22—H22B108.8
C6—C11—H11119.9H22A—C22—H22B107.7
C9—C12—H12A109.5C22—C23—C24112.6 (2)
C9—C12—H12B109.5C22—C23—H23A109.1
H12A—C12—H12B109.5C24—C23—H23A109.1
C9—C12—H12C109.5C22—C23—H23B109.1
H12A—C12—H12C109.5C24—C23—H23B109.1
H12B—C12—H12C109.5H23A—C23—H23B107.8
C14—C13—S2108.96 (14)C23—C24—H24A109.5
C14—C13—H13A109.9C23—C24—H24B109.5
S2—C13—H13A109.9H24A—C24—H24B109.5
C14—C13—H13B109.9C23—C24—H24C109.5
S2—C13—H13B109.9H24A—C24—H24C109.5
H13A—C13—H13B108.3H24B—C24—H24C109.5
C19—C14—C15117.1 (2)
C2—N1—C1—C40.9 (2)C6—C7—C8—C90.4 (3)
C2—N1—C1—S1178.62 (12)C7—C8—C9—C101.2 (3)
C6—S1—C1—N110.82 (15)C7—C8—C9—C12178.7 (2)
C6—S1—C1—C4168.75 (14)C8—C9—C10—C111.7 (3)
C1—N1—C2—N20.9 (3)C12—C9—C10—C11178.3 (2)
C1—N1—C2—S2179.06 (12)C9—C10—C11—C60.6 (3)
C3—N2—C2—N11.2 (3)C7—C6—C11—C101.1 (3)
C3—N2—C2—S2179.48 (13)S1—C6—C11—C10178.29 (15)
C13—S2—C2—N11.69 (16)C2—S2—C13—C14156.66 (16)
C13—S2—C2—N2179.92 (14)S2—C13—C14—C1975.3 (2)
C2—N2—C3—C40.2 (3)S2—C13—C14—C15104.8 (2)
C2—N2—C3—C20179.37 (16)C19—C14—C15—C160.2 (4)
N1—C1—C4—C32.2 (3)C13—C14—C15—C16179.7 (2)
S1—C1—C4—C3177.32 (13)C14—C15—C16—C170.1 (5)
N1—C1—C4—C5179.03 (17)C15—C16—C17—C180.4 (5)
S1—C1—C4—C50.5 (2)C16—C17—C18—C190.4 (4)
N2—C3—C4—C11.9 (3)C15—C14—C19—C180.2 (3)
C20—C3—C4—C1177.73 (17)C13—C14—C19—C18179.6 (2)
N2—C3—C4—C5178.63 (18)C17—C18—C19—C140.0 (4)
C20—C3—C4—C51.0 (3)N2—C3—C20—C2185.7 (2)
C1—S1—C6—C785.01 (17)C4—C3—C20—C2194.7 (2)
C1—S1—C6—C1194.37 (16)C3—C20—C21—C22170.5 (2)
C11—C6—C7—C81.6 (3)C20—C21—C22—C23173.8 (2)
S1—C6—C7—C8177.82 (16)C21—C22—C23—C24179.6 (2)

Experimental details

Crystal data
Chemical formulaC24H25N3S2
Mr419.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)9.9178 (2), 8.2235 (2), 28.4388 (8)
β (°) 96.115 (2)
V3)2306.24 (10)
Z4
Radiation typeCu Kα
µ (mm1)2.19
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.689, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9523, 4746, 3720
Rint0.017
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.138, 1.03
No. of reflections4746
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.24

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

Footnotes

Additional correspondence author, e-mail: elemam5@hotmail.com.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, is greatly appreciated. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM·C/HIR/MOHE/SC/12).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
First citationAl-Abdullah, E. S., Al-Obaid, A. M., Al-Deeb, O. A., Habib, E. E. & El-Emam, A. A. (2011). Eur. J. Med. Chem. 46, 4642–4647.  Web of Science CAS PubMed
First citationAl-Omar, M. A., Al-Obaid, A. M., El-Brollosy, N. R. & El-Emam, A. A. (2010). Synth. Commun. 40, 1530–1538.  CAS
First citationAl-Turkistani, A. A., Al-Deeb, O. A., El-Brollosy, N. R. & El-Emam, A. A. (2011). Molecules, 16, 4764–4774.  Web of Science CAS PubMed
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
First citationDe Corte, B. L. (2005). J. Med. Chem. 48, 1689–1696.  Web of Science CrossRef PubMed CAS
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Turkistani, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2055–o2056.  CSD CrossRef IUCr Journals
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationGhoshal, K. & Jacob, S. T. (1997). Biochem. Pharmacol. 53, 1569–1575.  CrossRef CAS PubMed Web of Science
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds