organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(5-Oxo-3-phenyl-4,5-di­hydro-1H-pyrazol-1-yl)benzo­nitrile

aBioengineering College, Xihua University, Sichuan Provincial, People's Hospital, Chengdu 610039, People's Republic of China, and bDepartment of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial, People's Hospital, Chengdu 610072, People's Republic of China
*Correspondence e-mail: shijianyoude@126.com

(Received 31 May 2012; accepted 17 June 2012; online 27 June 2012)

In the title compound, C16H11N3O, the dihedral angles between the 3-cyano­benzene and benzene planes and the 1H-pyrazol-5(4H)-one plane are 4.97 (9) and 9.91 (9)°, respectively.

Related literature

For a similar structure, see: Paulis et al. (2006[Paulis, T., Hemstapat, K., Chen, Y. L., Zhang, Y. Q., Saleh, S., Alagille, D., Baldwin, R. M., Tamagnan, G. D. & Conn, P. J. (2006). J. Med. Chem. 49, 3332-3344.]).

[Scheme 1]

Experimental

Crystal data
  • C16H11N3O

  • Mr = 261.28

  • Monoclinic, P 21 /c

  • a = 7.6683 (3) Å

  • b = 17.8013 (7) Å

  • c = 9.7574 (4) Å

  • β = 106.506 (4)°

  • V = 1277.05 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.34 × 0.30 × 0.28 mm

Data collection
  • Agilent Xcalibur diffractometer with an Eos CCD detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.967, Tmax = 1.000

  • 5145 measured reflections

  • 2608 independent reflections

  • 1686 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.119

  • S = 1.02

  • 2608 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: OLEX2.solve (Bourhis et al., 2012[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2012). In preparation. ]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

In our research, 1,3-Diphenyl-1H-pyrazol-5(4H)-one is a member of a series of compounds which are being investigated for their potential as anticancer agents. In the analogous title compound, C16H11N3O, (Fig. 1), the dihedral angles between the 3-cyanobenzene and benzene planes and the 1H-pyrazol-5(4)-one plane are 4.97 (9)° and 9.91 (9)°, respectively. Present also in the structure are intramolecular aromatic C—H···N and C—H···O interactions (Table 1). A similar structure has been peviously been reported (Paulis et al., 2006).

Related literature top

For a similar structure, see: Paulis et al. (2006).

Experimental top

A mixture of 3-hydrazinylbenzonitrile hydrochloride (1.96 g, 0.01 mol) and ethyl 3-oxo-3-phenylpropanoate (1.92 g, 0.01 mol) in acetic acid (50 mL) was heated under reflux for 1.5 h, then poured into ice water. The precipitated product was filtered, giving the title compound as a powder. Single crystals were by obtained by room temperature evaporation of a solution in CH2Cl2–MeOH after 5 days.

Refinement top

H atoms were positioned geometrically (C—H = 0.95–0.98 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Structure description top

In our research, 1,3-Diphenyl-1H-pyrazol-5(4H)-one is a member of a series of compounds which are being investigated for their potential as anticancer agents. In the analogous title compound, C16H11N3O, (Fig. 1), the dihedral angles between the 3-cyanobenzene and benzene planes and the 1H-pyrazol-5(4)-one plane are 4.97 (9)° and 9.91 (9)°, respectively. Present also in the structure are intramolecular aromatic C—H···N and C—H···O interactions (Table 1). A similar structure has been peviously been reported (Paulis et al., 2006).

For a similar structure, see: Paulis et al. (2006).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: OLEX2.solve (Bourhis et al., 2012); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound showing atom numbering, with displacement ellipsoids drawn at the 40% probability level.
3-(5-Oxo-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl)benzonitrile top
Crystal data top
C16H11N3OF(000) = 544
Mr = 261.28Dx = 1.359 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.7107 Å
a = 7.6683 (3) ÅCell parameters from 1663 reflections
b = 17.8013 (7) Åθ = 3.0–29.1°
c = 9.7574 (4) ŵ = 0.09 mm1
β = 106.506 (4)°T = 293 K
V = 1277.05 (9) Å3Block, orange
Z = 40.34 × 0.30 × 0.28 mm
Data collection top
Agilent Xcalibur
diffractometer with an Eos CCD detector
2608 independent reflections
Radiation source: Enhance (Mo) X-ray Source1686 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 3.0°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1022
Tmin = 0.967, Tmax = 1.000l = 1211
5145 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0461P)2 + 0.0009P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2608 reflectionsΔρmax = 0.14 e Å3
182 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0083 (15)
Crystal data top
C16H11N3OV = 1277.05 (9) Å3
Mr = 261.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6683 (3) ŵ = 0.09 mm1
b = 17.8013 (7) ÅT = 293 K
c = 9.7574 (4) Å0.34 × 0.30 × 0.28 mm
β = 106.506 (4)°
Data collection top
Agilent Xcalibur
diffractometer with an Eos CCD detector
2608 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1686 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 1.000Rint = 0.023
5145 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.02Δρmax = 0.14 e Å3
2608 reflectionsΔρmin = 0.13 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.10361 (18)0.26129 (9)0.88140 (16)0.0787 (5)
N10.4410 (2)0.40574 (12)1.0212 (2)0.0843 (6)
N20.14347 (17)0.36652 (9)0.75427 (15)0.0460 (4)
N30.25680 (17)0.38881 (9)0.67037 (14)0.0453 (4)
C10.2203 (2)0.45145 (12)0.88230 (18)0.0505 (5)
C20.2216 (2)0.52432 (12)0.8356 (2)0.0588 (5)
H20.30150.55940.85470.071*
C30.1018 (2)0.54437 (13)0.7599 (2)0.0658 (6)
H30.10130.59340.72720.079*
C40.0173 (2)0.49230 (12)0.7321 (2)0.0574 (5)
H40.09640.50640.68000.069*
C50.0196 (2)0.41964 (11)0.78127 (17)0.0446 (5)
C60.1013 (2)0.39869 (12)0.85627 (17)0.0502 (5)
H60.10240.34960.88880.060*
C70.3450 (2)0.42714 (12)0.9599 (2)0.0597 (6)
C80.1780 (2)0.29424 (12)0.8051 (2)0.0521 (5)
C90.3237 (2)0.26591 (11)0.7431 (2)0.0535 (5)
H9A0.43130.25080.81760.064*
H9B0.28090.22390.67910.064*
C100.3602 (2)0.33246 (10)0.66476 (16)0.0413 (4)
C110.4987 (2)0.33671 (10)0.58749 (17)0.0415 (4)
C120.6261 (2)0.27999 (12)0.60224 (19)0.0518 (5)
H120.62240.23870.65980.062*
C130.7591 (2)0.28432 (12)0.5318 (2)0.0574 (6)
H130.84480.24620.54280.069*
C140.7649 (2)0.34450 (13)0.4461 (2)0.0622 (6)
H140.85420.34720.39870.075*
C150.6379 (2)0.40112 (12)0.4301 (2)0.0627 (6)
H150.64110.44200.37140.075*
C160.5064 (2)0.39714 (11)0.50101 (19)0.0527 (5)
H160.42180.43570.49040.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0755 (9)0.0780 (12)0.1024 (11)0.0167 (8)0.0571 (9)0.0415 (10)
N10.0917 (12)0.0754 (15)0.1115 (14)0.0126 (11)0.0702 (12)0.0119 (13)
N20.0474 (8)0.0476 (10)0.0511 (9)0.0017 (7)0.0271 (7)0.0071 (8)
N30.0486 (8)0.0450 (10)0.0495 (8)0.0003 (7)0.0256 (7)0.0014 (8)
C10.0449 (10)0.0616 (14)0.0504 (10)0.0010 (9)0.0222 (8)0.0041 (11)
C20.0574 (11)0.0548 (14)0.0718 (13)0.0049 (10)0.0310 (10)0.0039 (12)
C30.0687 (13)0.0503 (14)0.0912 (14)0.0033 (10)0.0436 (12)0.0046 (13)
C40.0591 (12)0.0523 (14)0.0727 (13)0.0005 (10)0.0380 (10)0.0022 (11)
C50.0407 (9)0.0496 (12)0.0464 (10)0.0001 (8)0.0171 (8)0.0023 (9)
C60.0515 (10)0.0528 (13)0.0532 (11)0.0004 (9)0.0264 (8)0.0018 (10)
C70.0591 (12)0.0620 (15)0.0681 (12)0.0062 (10)0.0345 (10)0.0010 (12)
C80.0482 (10)0.0575 (14)0.0555 (11)0.0037 (9)0.0227 (9)0.0151 (11)
C90.0534 (11)0.0523 (13)0.0606 (12)0.0079 (9)0.0257 (9)0.0132 (11)
C100.0420 (9)0.0424 (11)0.0408 (9)0.0002 (8)0.0141 (7)0.0007 (9)
C110.0414 (9)0.0431 (11)0.0420 (9)0.0018 (8)0.0153 (7)0.0044 (9)
C120.0559 (11)0.0524 (13)0.0503 (10)0.0055 (9)0.0203 (9)0.0023 (10)
C130.0493 (11)0.0630 (15)0.0632 (12)0.0073 (10)0.0214 (10)0.0177 (12)
C140.0557 (12)0.0697 (16)0.0726 (14)0.0102 (10)0.0366 (10)0.0184 (13)
C150.0710 (13)0.0543 (14)0.0783 (14)0.0056 (11)0.0464 (11)0.0027 (12)
C160.0563 (11)0.0451 (12)0.0658 (12)0.0016 (9)0.0319 (9)0.0011 (10)
Geometric parameters (Å, º) top
O1—C81.2105 (19)C8—C91.501 (2)
N1—C71.138 (2)C9—H9A0.9700
N2—N31.4096 (17)C9—H9B0.9700
N2—C51.417 (2)C9—C101.479 (2)
N2—C81.377 (2)C10—C111.468 (2)
N3—C101.289 (2)C11—C121.384 (2)
C1—C21.374 (3)C11—C161.379 (2)
C1—C61.382 (2)C12—H120.9300
C1—C71.445 (2)C12—C131.384 (2)
C2—H20.9300C13—H130.9300
C2—C31.379 (2)C13—C141.368 (3)
C3—H30.9300C14—H140.9300
C3—C41.381 (2)C14—C151.379 (3)
C4—H40.9300C15—H150.9300
C4—C51.378 (2)C15—C161.377 (2)
C5—C61.386 (2)C16—H160.9300
C6—H60.9300
N3—N2—C5118.46 (15)C8—C9—H9B111.3
C8—N2—N3112.64 (13)H9A—C9—H9B109.2
C8—N2—C5128.83 (14)C10—C9—C8102.19 (15)
C10—N3—N2107.08 (14)C10—C9—H9A111.3
C2—C1—C6121.59 (16)C10—C9—H9B111.3
C2—C1—C7120.86 (18)N3—C10—C9113.07 (14)
C6—C1—C7117.55 (19)N3—C10—C11121.66 (16)
C1—C2—H2120.7C11—C10—C9125.27 (15)
C1—C2—C3118.59 (18)C12—C11—C10120.09 (17)
C3—C2—H2120.7C16—C11—C10121.17 (16)
C2—C3—H3119.7C16—C11—C12118.73 (15)
C2—C3—C4120.6 (2)C11—C12—H12119.8
C4—C3—H3119.7C13—C12—C11120.39 (19)
C3—C4—H4119.8C13—C12—H12119.8
C5—C4—C3120.37 (17)C12—C13—H13119.9
C5—C4—H4119.8C14—C13—C12120.24 (18)
C4—C5—N2120.32 (15)C14—C13—H13119.9
C4—C5—C6119.48 (17)C13—C14—H14120.1
C6—C5—N2120.20 (17)C13—C14—C15119.82 (17)
C1—C6—C5119.32 (19)C15—C14—H14120.1
C1—C6—H6120.3C14—C15—H15120.0
C5—C6—H6120.3C16—C15—C14119.97 (19)
N1—C7—C1177.8 (2)C16—C15—H15120.0
O1—C8—N2126.74 (17)C11—C16—H16119.6
O1—C8—C9128.31 (18)C15—C16—C11120.84 (18)
N2—C8—C9104.95 (14)C15—C16—H16119.6
C8—C9—H9A111.3
C5—N2—N3—C10177.95 (14)C3—C4—C5—C61.4 (3)
C8—N2—N3—C100.94 (18)N2—C5—C6—C1179.60 (15)
N3—N2—C5—C43.1 (2)C4—C5—C6—C11.0 (2)
N3—N2—C5—C6176.29 (14)O1—C8—C9—C10178.40 (19)
C8—N2—C5—C4173.33 (17)N2—C8—C9—C102.61 (18)
C8—N2—C5—C67.3 (3)C8—C9—C10—N32.28 (19)
N3—N2—C8—O1178.67 (18)C8—C9—C10—C11177.51 (15)
N3—N2—C8—C92.32 (19)N3—C10—C11—C12169.70 (16)
C5—N2—C8—O12.0 (3)N3—C10—C11—C169.4 (2)
C5—N2—C8—C9178.95 (16)C9—C10—C11—C1210.1 (3)
N2—N3—C10—C90.97 (18)C9—C10—C11—C16170.82 (16)
N2—N3—C10—C11178.83 (14)C10—C11—C12—C13178.80 (16)
C6—C1—C2—C30.6 (3)C16—C11—C12—C130.3 (3)
C7—C1—C2—C3178.93 (17)C10—C11—C16—C15179.29 (16)
C2—C1—C6—C50.0 (3)C12—C11—C16—C150.2 (3)
C7—C1—C6—C5179.54 (16)C11—C12—C13—C140.5 (3)
C1—C2—C3—C40.2 (3)C12—C13—C14—C150.1 (3)
C2—C3—C4—C50.8 (3)C13—C14—C15—C160.4 (3)
C3—C4—C5—N2179.18 (16)C14—C15—C16—C110.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N30.932.442.785 (2)102
C6—H6···O10.932.242.880 (3)125

Experimental details

Crystal data
Chemical formulaC16H11N3O
Mr261.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.6683 (3), 17.8013 (7), 9.7574 (4)
β (°) 106.506 (4)
V3)1277.05 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.34 × 0.30 × 0.28
Data collection
DiffractometerAgilent Xcalibur
diffractometer with an Eos CCD detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.967, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5145, 2608, 1686
Rint0.023
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.119, 1.02
No. of reflections2608
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.13

Computer programs: CrysAlis PRO (Agilent, 2011), OLEX2.solve (Bourhis et al., 2012), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

This work was supported by the Key Scientific Research Fund, Xihua University (Z0820504), the Open Research Fund of the Key Laboratory of Food Biotechnology, Xihua University (SZJJ2012–006) and the Innovation Postgraduate Fund, Xihua University (YCJJ201243)

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2012). In preparation.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPaulis, T., Hemstapat, K., Chen, Y. L., Zhang, Y. Q., Saleh, S., Alagille, D., Baldwin, R. M., Tamagnan, G. D. & Conn, P. J. (2006). J. Med. Chem. 49, 3332–3344.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds