metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[penta­aqua­(μ4-pyridine-2,4,6-tri­carboxyl­ato)(μ3-pyridine-2,4,6-tri­carboxyl­ato)diterbium(III)] mono­hydrate]

aCenter of Applied Solid State Chemistry Research, Ningbo University, Ningbo, Zhejiang 315211, People's Republic of China
*Correspondence e-mail: zhuhonglin1@nbu.edu.cn

(Received 23 May 2012; accepted 20 July 2012; online 28 July 2012)

The three-dimensional title coordination polymer, {[Tb2(C8H2NO6)2(H2O)5]·H2O}n, was hydro­thermally synthesized by reacting the corresponding rare-earth salt with pyridine-2,4,6-tricarb­oxy­lic acid (H3ptc). There are two independent TbIII atoms in the structure, one of which is nine-coordinated, forming a monocapped NO8 square-anti­prism and the other is eight-coordinated exhibiting a 4,4-bicapped NO7 trigonal–prismatic environment. The complex units are inter­connected through the ptc3− anions acting in different coordination modes, resulting in a three-dimensional coordin­ation polymer. The crystal structure features extensive O—H⋯O hydrogen bonds.

Related literature

For general background to the design and synthesis of metal organic frameworks (MOFs) with lanthanides, see: Wang et al. (2007[Wang, H.-S., Zhao, B., Zhai, B., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). Cryst. Growth Des. 7, 1851-1857.]); Fu & Xu (2008[Fu, D.-W. & Xu, H.-J. (2008). Acta Cryst. E64, m35.]); Das et al. (2009[Das, M. C., Ghosh, S. K., Saũdoand, E. C. & Bharadwaj, P. K. (2009). Dalton Trans. pp. 1644-1658.]). For related structures, see: Lin et al. (2011[Lin, J.-L., Xu, W., Zhao, L. & Zheng, Y.-Q. (2011). Z. Naturforsch Teil B, 66, 570-576.]).

[Scheme 1]

Experimental

Crystal data
  • [Tb2(C8H2NO6)2(H2O)5]·H2O

  • Mr = 842.15

  • Monoclinic, P 21 /n

  • a = 18.426 (4) Å

  • b = 6.9082 (14) Å

  • c = 18.583 (4) Å

  • β = 111.98 (3)°

  • V = 2193.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.50 mm−1

  • T = 293 K

  • 0.38 × 0.34 × 0.31 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.101, Tmax = 0.128

  • 20352 measured reflections

  • 4912 independent reflections

  • 4764 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.045

  • S = 1.20

  • 4912 reflections

  • 344 parameters

  • H-atom parameters constrained

  • Δρmax = 1.07 e Å−3

  • Δρmin = −1.34 e Å−3

Table 1
Selected bond lengths (Å)

Tb1—O1i 2.508 (2)
Tb1—O2 2.400 (2)
Tb1—O6 2.378 (2)
Tb1—O7 2.426 (2)
Tb1—O8 2.406 (2)
Tb1—O9 2.431 (2)
Tb1—O12 2.590 (2)
Tb1—O13 2.489 (2)
Tb1—N1 2.534 (2)
Tb2—O3ii 2.365 (2)
Tb2—O4iii 2.387 (2)
Tb2—O10iv 2.336 (2)
Tb2—O11 2.403 (2)
Tb2—O15 2.384 (2)
Tb2—O16 2.430 (2)
Tb2—O17 2.358 (2)
Tb2—N2 2.507 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y, z+1; (iii) -x+1, -y+1, -z+1; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O14v 0.84 1.86 2.700 (3) 174.4
O7—H7B⋯O2i 0.87 1.80 2.651 (3) 164.8
O8—H8A⋯O12iii 0.85 1.89 2.741 (3) 176.0
O8—H8B⋯O9vi 0.86 2.39 2.844 (3) 113.0
O9—H9A⋯O5v 0.85 2.56 3.057 (3) 119.0
O9—H9A⋯O6v 0.85 1.86 2.711 (3) 176.0
O9—H9B⋯O5v 0.85 2.56 3.057 (3) 118.0
O16—H16A⋯O4v 0.85 2.30 3.101 (3) 156.2
O16—H16B⋯O15vii 0.81 1.96 2.766 (3) 171.0
O17—H17A⋯O18iv 0.87 1.84 2.705 (4) 173.9
O17—H17B⋯O5viii 0.82 1.95 2.759 (3) 163.6
O18—H18A⋯O14ix 0.87 2.04 2.911 (4) 175.7
O18—H18B⋯O13 0.83 1.92 2.745 (4) 167.1
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x+1, -y, -z+1; (vi) x, y+1, z; (vii) -x+1, -y, -z+2; (viii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ix) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, the design and synthesis of metal organic frameworks (MOFs) with lanthanide have become an fascinating field due to their potential applications in luminescent materials, magnetic, catalyst and gas absorption (Wang et al., 2007). Multicarboxylic acids were widely used as organic linkers in the syntheses of MOFs such as phthalic acid, trimesic acid and pyromellitic acid. In addition, pyridine-2,4,6-tricarboxylato(H3ptc) is a good building unit for constructing MFOs due to the existence of both N and O atoms in the ligands (Fu et al., 2008). Another reason for choosing H3ptc is the inherent negative charge associated with them that helps in the charge compensation of the metal ion in the framework (Das et al., 2009). At the same time, Lanthanide complexes with aromatic carboxylic acids show higher thermal or luminescence stabilities for practical application than other lanthanide complex systems. Thus we design and synthesis the title compound prepared from Tb4O7 and pyridine-2, 4, 6-tricarboxylic acid.

The asymmetric unit of [Tb2(H2O)5(ptc)2]n.nH2O consists of two Tb3+ ions (Tb1,Tb2), two ptc3- ions, five aqua ligands, and a lattice water as illustrated in Fig. 1. Its worth to mention,The Tb1 atoms is nine-coordinated fashion by three aqua ligands (O7, O8 and O9) as well as three ptc ligands to generate a distorted monocapped squarean-tiprismatic DyNO8 chromophore with d(Tb1—N1) = 2.517 (2) Å and d(Tb1—O) = 2.366–2.566 Å, and Tb2 is eight-coordinated fashion by two aqua ligands (O4 and O9) as well as three ptc ligands texhibit a 4,4-bicapped trigonal prismatic TbNO7 chromophore with d(Tb2—N2) = 2.486 (2) Å and d(Tb2—O) = 2.320–2.415 Å, respectively (Lin et al., 2011). Interestingly, the C7—O14 distance in pyridine-2, 4, 6-tricarboxylic acid is significantly shorter than that of corresponding C—O distance due to the the adjacent molecular's close packing. The three-dimensional polymer is constructed by the Tb2 building units through ptc3- anions in different coordination modes.

Related literature top

For general background to the design and synthesis of metal organic frameworks (MOFs) with lanthanides, see: Wang et al., (2007); Fu et al. (2008); Das et al. (2009). For related structures, see: Lin et al. (2011)

Experimental top

Pale green powder of TbCl3.nH2O was obtained by slow evaporation of a solution of Tb4O7(0.25 mmol, 0.185 g) dissolved in 10 ml HCl(1 M) under water boiling condition. The freshly prepared TbCl3.nH2O, H3ptc(0.054 g, 0.25 mmol), malonic acid(0.026 g, 0.25 mmol),15 ml H2O and 1 ml NaOH(1 M) were sealed in a 23 ml Teflon-lined stainless autoclave, which was heated at 453 K for three days and thereafter cooled slowly to room temperature, and Pale green crystals were seperated by filtering and washing.

Refinement top

H atoms bonded to C atoms were palced in geometrically calculated position and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O—H distances fixed as initially found and with Uiso(H) values set at 1.2 Ueq(O).

Structure description top

In recent years, the design and synthesis of metal organic frameworks (MOFs) with lanthanide have become an fascinating field due to their potential applications in luminescent materials, magnetic, catalyst and gas absorption (Wang et al., 2007). Multicarboxylic acids were widely used as organic linkers in the syntheses of MOFs such as phthalic acid, trimesic acid and pyromellitic acid. In addition, pyridine-2,4,6-tricarboxylato(H3ptc) is a good building unit for constructing MFOs due to the existence of both N and O atoms in the ligands (Fu et al., 2008). Another reason for choosing H3ptc is the inherent negative charge associated with them that helps in the charge compensation of the metal ion in the framework (Das et al., 2009). At the same time, Lanthanide complexes with aromatic carboxylic acids show higher thermal or luminescence stabilities for practical application than other lanthanide complex systems. Thus we design and synthesis the title compound prepared from Tb4O7 and pyridine-2, 4, 6-tricarboxylic acid.

The asymmetric unit of [Tb2(H2O)5(ptc)2]n.nH2O consists of two Tb3+ ions (Tb1,Tb2), two ptc3- ions, five aqua ligands, and a lattice water as illustrated in Fig. 1. Its worth to mention,The Tb1 atoms is nine-coordinated fashion by three aqua ligands (O7, O8 and O9) as well as three ptc ligands to generate a distorted monocapped squarean-tiprismatic DyNO8 chromophore with d(Tb1—N1) = 2.517 (2) Å and d(Tb1—O) = 2.366–2.566 Å, and Tb2 is eight-coordinated fashion by two aqua ligands (O4 and O9) as well as three ptc ligands texhibit a 4,4-bicapped trigonal prismatic TbNO7 chromophore with d(Tb2—N2) = 2.486 (2) Å and d(Tb2—O) = 2.320–2.415 Å, respectively (Lin et al., 2011). Interestingly, the C7—O14 distance in pyridine-2, 4, 6-tricarboxylic acid is significantly shorter than that of corresponding C—O distance due to the the adjacent molecular's close packing. The three-dimensional polymer is constructed by the Tb2 building units through ptc3- anions in different coordination modes.

For general background to the design and synthesis of metal organic frameworks (MOFs) with lanthanides, see: Wang et al., (2007); Fu et al. (2008); Das et al. (2009). For related structures, see: Lin et al. (2011)

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. ORTEP view of the title compound, The dispalcement ellipsoids are drawn at 45% probability dispalcement ellipsoids. Symmetry codes: (i) -x + 1/2, y - 1/2, -z + 1/2; (ii) x, y, z + 1; (iii) -x + 1, -y + 1, -z + 1; (iv) -x + 1/2, y - 1/2, -z + 3/2.
[Figure 2] Fig. 2. the three-dimensional structure of title complex.
Poly[[pentaaqua(µ4-pyridine-2,4,6-tricarboxylato)(µ3-pyridine- 2,4,6-tricarboxylato)diterbium(III)] monohydrate] top
Crystal data top
[Tb2(C8H2NO6)2(H2O)5]·H2OZ = 4
Mr = 842.15F(000) = 1600
Monoclinic, P21/nDx = 2.550 Mg m3
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 18.426 (4) Åθ = 3.2–27.5°
b = 6.9082 (14) ŵ = 6.50 mm1
c = 18.583 (4) ÅT = 293 K
β = 111.98 (3)°Block, colorless
V = 2193.6 (8) Å30.38 × 0.34 × 0.31 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4912 independent reflections
Radiation source: fine-focus sealed tube4764 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 27.3°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2223
Tmin = 0.101, Tmax = 0.128k = 88
20352 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.045 w = 1/[σ2(Fo2) + (0.P)2 + 4.3115P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max = 0.002
4912 reflectionsΔρmax = 1.07 e Å3
344 parametersΔρmin = 1.33 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00271 (8)
Crystal data top
[Tb2(C8H2NO6)2(H2O)5]·H2OV = 2193.6 (8) Å3
Mr = 842.15Z = 4
Monoclinic, P21/nMo Kα radiation
a = 18.426 (4) ŵ = 6.50 mm1
b = 6.9082 (14) ÅT = 293 K
c = 18.583 (4) Å0.38 × 0.34 × 0.31 mm
β = 111.98 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4912 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4764 reflections with I > 2σ(I)
Tmin = 0.101, Tmax = 0.128Rint = 0.041
20352 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.045H-atom parameters constrained
S = 1.20Δρmax = 1.07 e Å3
4912 reflectionsΔρmin = 1.33 e Å3
344 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Tb10.373479 (7)0.223057 (19)0.377229 (7)0.00937 (5)
Tb20.375301 (8)0.251927 (17)0.896094 (8)0.00979 (5)
N10.42976 (13)0.3322 (3)0.27869 (13)0.0120 (4)
C10.38349 (15)0.4121 (4)0.21132 (16)0.0114 (5)
C20.40676 (16)0.4340 (4)0.14843 (16)0.0133 (5)
H2A0.37340.48800.10200.016*
C30.48211 (16)0.3717 (4)0.15760 (16)0.0118 (5)
C40.53247 (16)0.3018 (4)0.22990 (16)0.0124 (5)
H4A0.58380.26830.23810.015*
C50.50402 (16)0.2835 (4)0.28911 (17)0.0117 (5)
C60.30262 (16)0.4654 (4)0.20976 (16)0.0129 (5)
O10.25948 (12)0.5738 (3)0.15823 (12)0.0172 (4)
O20.28622 (12)0.3911 (3)0.26523 (12)0.0199 (5)
C70.50831 (16)0.3728 (4)0.08905 (15)0.0118 (5)
O30.45963 (13)0.3158 (3)0.02548 (12)0.0209 (4)
O40.57796 (12)0.4253 (3)0.10240 (12)0.0161 (4)
C80.55027 (16)0.2057 (4)0.36969 (16)0.0128 (5)
O50.62146 (12)0.1821 (4)0.39036 (13)0.0265 (5)
O60.50974 (12)0.1686 (3)0.41138 (12)0.0177 (4)
O70.36674 (12)0.0446 (3)0.29048 (12)0.0209 (5)
H7B0.31780.07430.26540.025*
H7A0.38760.05040.25740.025*
O80.40741 (13)0.5604 (3)0.39763 (14)0.0258 (5)
H8A0.45270.60960.42000.031*
H8B0.36820.59860.40830.031*
O90.37823 (13)0.0719 (3)0.45020 (12)0.0213 (5)
H9A0.41490.09840.49340.026*
H9B0.34200.11050.46490.026*
N20.38187 (14)0.2851 (3)0.76431 (14)0.0118 (5)
C90.31950 (16)0.3532 (4)0.70517 (16)0.0127 (5)
C100.31708 (17)0.3629 (4)0.62886 (16)0.0148 (6)
H10A0.27270.40690.58850.018*
C110.38337 (16)0.3044 (4)0.61552 (16)0.0134 (5)
C120.44858 (17)0.2370 (4)0.67751 (17)0.0124 (6)
H12A0.49380.20060.66990.015*
C130.44498 (17)0.2250 (4)0.75132 (17)0.0122 (5)
C140.25274 (16)0.4193 (4)0.72878 (16)0.0138 (5)
O100.19299 (12)0.4879 (3)0.67646 (12)0.0202 (4)
O110.26267 (12)0.3988 (3)0.79939 (12)0.0215 (5)
C150.38344 (17)0.3049 (4)0.53373 (16)0.0144 (5)
O120.44733 (13)0.2845 (3)0.52418 (13)0.0209 (5)
O130.31908 (12)0.3159 (3)0.47642 (12)0.0194 (4)
C160.50943 (16)0.1457 (4)0.82340 (16)0.0121 (5)
O140.57132 (12)0.0860 (3)0.81932 (12)0.0194 (4)
O150.49393 (12)0.1463 (3)0.88514 (11)0.0184 (4)
O160.39547 (13)0.0436 (3)0.97204 (12)0.0226 (5)
H16B0.42510.06761.01620.027*
H16A0.38980.15700.95290.027*
O170.28287 (12)0.3108 (4)0.95346 (13)0.0257 (5)
H17B0.23580.31320.92610.031*
H17A0.28060.24650.99290.031*
O180.21272 (15)0.6101 (4)0.42001 (15)0.0346 (6)
H18B0.23890.51060.43670.041*
H18A0.16880.55500.39080.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.00889 (8)0.01244 (7)0.00678 (8)0.00037 (4)0.00293 (6)0.00027 (4)
Tb20.00709 (8)0.01571 (8)0.00572 (8)0.00047 (4)0.00141 (6)0.00003 (4)
N10.0092 (11)0.0155 (12)0.0108 (11)0.0008 (9)0.0032 (10)0.0015 (9)
C10.0086 (13)0.0135 (13)0.0111 (13)0.0009 (10)0.0023 (11)0.0012 (10)
C20.0116 (13)0.0156 (14)0.0097 (13)0.0002 (10)0.0005 (11)0.0028 (10)
C30.0130 (13)0.0123 (13)0.0105 (13)0.0037 (10)0.0050 (11)0.0019 (9)
C40.0102 (13)0.0136 (13)0.0129 (14)0.0026 (10)0.0040 (11)0.0009 (10)
C50.0099 (13)0.0134 (13)0.0105 (14)0.0017 (10)0.0025 (12)0.0005 (10)
C60.0095 (13)0.0166 (14)0.0106 (13)0.0004 (10)0.0016 (11)0.0001 (10)
O10.0122 (10)0.0235 (11)0.0148 (10)0.0044 (8)0.0038 (9)0.0062 (8)
O20.0130 (10)0.0310 (12)0.0174 (11)0.0059 (8)0.0076 (9)0.0106 (9)
C70.0139 (13)0.0121 (13)0.0093 (13)0.0016 (10)0.0044 (11)0.0018 (9)
O30.0208 (11)0.0298 (12)0.0091 (10)0.0040 (9)0.0022 (9)0.0026 (9)
O40.0141 (10)0.0208 (11)0.0154 (10)0.0023 (8)0.0080 (9)0.0000 (8)
C80.0106 (13)0.0146 (13)0.0114 (13)0.0002 (10)0.0021 (12)0.0003 (10)
O50.0103 (11)0.0439 (15)0.0230 (13)0.0050 (9)0.0037 (10)0.0105 (10)
O60.0130 (10)0.0271 (12)0.0133 (10)0.0051 (8)0.0051 (9)0.0060 (8)
O70.0140 (10)0.0330 (12)0.0176 (11)0.0037 (9)0.0081 (9)0.0103 (9)
O80.0238 (12)0.0199 (12)0.0321 (13)0.0043 (9)0.0086 (11)0.0055 (9)
O90.0241 (12)0.0237 (11)0.0151 (11)0.0032 (9)0.0063 (10)0.0067 (8)
N20.0100 (11)0.0143 (11)0.0097 (12)0.0011 (9)0.0022 (10)0.0004 (9)
C90.0130 (13)0.0137 (13)0.0104 (13)0.0008 (10)0.0033 (11)0.0008 (10)
C100.0136 (14)0.0191 (14)0.0092 (13)0.0036 (10)0.0013 (12)0.0026 (10)
C110.0159 (14)0.0146 (13)0.0095 (14)0.0004 (11)0.0043 (12)0.0023 (10)
C120.0125 (14)0.0157 (14)0.0096 (14)0.0016 (9)0.0049 (12)0.0007 (9)
C130.0114 (14)0.0120 (13)0.0128 (14)0.0002 (10)0.0039 (12)0.0005 (10)
C140.0130 (13)0.0150 (13)0.0127 (13)0.0021 (10)0.0038 (12)0.0001 (10)
O100.0159 (10)0.0283 (12)0.0122 (10)0.0099 (9)0.0006 (9)0.0038 (8)
O110.0154 (11)0.0391 (13)0.0102 (10)0.0086 (9)0.0052 (9)0.0039 (9)
C150.0191 (15)0.0151 (14)0.0095 (13)0.0016 (11)0.0060 (12)0.0002 (10)
O120.0166 (11)0.0344 (12)0.0119 (11)0.0012 (9)0.0056 (10)0.0019 (9)
O130.0169 (11)0.0307 (12)0.0095 (10)0.0043 (9)0.0036 (9)0.0018 (9)
C160.0107 (13)0.0140 (13)0.0099 (13)0.0010 (10)0.0021 (11)0.0005 (10)
O140.0131 (10)0.0293 (12)0.0167 (11)0.0063 (8)0.0067 (9)0.0022 (8)
O150.0125 (10)0.0332 (12)0.0091 (10)0.0071 (8)0.0035 (9)0.0043 (8)
O160.0265 (12)0.0206 (11)0.0132 (11)0.0038 (9)0.0011 (10)0.0027 (8)
O170.0107 (10)0.0488 (15)0.0182 (12)0.0049 (10)0.0060 (10)0.0052 (10)
O180.0298 (14)0.0369 (15)0.0294 (14)0.0125 (11)0.0023 (12)0.0028 (11)
Geometric parameters (Å, º) top
Tb1—O1i2.508 (2)O4—Tb2iii2.387 (2)
Tb1—O22.400 (2)C8—O51.232 (3)
Tb1—O62.378 (2)C8—O61.287 (3)
Tb1—O72.426 (2)O7—H7B0.8706
Tb1—O82.406 (2)O7—H7A0.8392
Tb1—O92.431 (2)O8—H8A0.8514
Tb1—O122.590 (2)O8—H8B0.8583
Tb1—O132.489 (2)O9—H9A0.8538
Tb1—N12.534 (2)O9—H9B0.8526
Tb2—O3ii2.365 (2)N2—C131.339 (4)
Tb2—O4iii2.387 (2)N2—C91.343 (4)
Tb2—O10iv2.336 (2)C9—C101.404 (4)
Tb2—O112.403 (2)C9—C141.523 (4)
Tb2—O152.384 (2)C10—C111.394 (4)
Tb2—O162.430 (2)C10—H10A0.9300
Tb2—O172.358 (2)C11—C121.397 (4)
Tb2—N22.507 (2)C11—C151.520 (4)
N1—C11.342 (3)C12—C131.400 (4)
N1—C51.351 (4)C12—H12A0.9300
C1—C21.396 (4)C13—C161.521 (4)
C1—C61.525 (4)C14—O101.257 (3)
C2—C31.402 (4)C14—O111.263 (3)
C2—H2A0.9300O10—Tb2vii2.336 (2)
C3—C41.402 (4)C15—O121.262 (4)
C3—C71.522 (4)C15—O131.265 (4)
C4—C51.390 (4)C16—O141.241 (3)
C4—H4A0.9300C16—O151.282 (3)
C5—C81.517 (4)O16—H16B0.8149
C6—O11.241 (3)O16—H16A0.8500
C6—O21.285 (3)O17—H17B0.8253
O1—Tb1v2.508 (2)O17—H17A0.8714
C7—O31.250 (3)O18—H18B0.8298
C7—O41.266 (3)O18—H18A0.8749
O3—Tb2vi2.365 (2)
O6—Tb1—O2127.28 (7)C2—C1—C6124.2 (2)
O6—Tb1—O885.70 (8)C1—C2—C3117.8 (2)
O2—Tb1—O873.64 (8)C1—C2—H2A121.1
O6—Tb1—O780.97 (7)C3—C2—H2A121.1
O2—Tb1—O786.64 (8)C2—C3—C4119.5 (2)
O8—Tb1—O7142.08 (8)C2—C3—C7120.4 (2)
O6—Tb1—O984.53 (7)C4—C3—C7120.0 (2)
O2—Tb1—O9139.62 (7)C5—C4—C3118.6 (3)
O8—Tb1—O9140.44 (8)C5—C4—H4A120.7
O7—Tb1—O973.38 (8)C3—C4—H4A120.7
O6—Tb1—O13121.38 (7)N1—C5—C4121.7 (3)
O2—Tb1—O13101.12 (7)N1—C5—C8113.2 (2)
O8—Tb1—O1377.68 (8)C4—C5—C8125.1 (3)
O7—Tb1—O13138.92 (7)O1—C6—O2125.8 (3)
O9—Tb1—O1375.12 (7)O1—C6—C1120.0 (2)
O6—Tb1—O1i146.61 (7)O2—C6—C1114.2 (2)
O2—Tb1—O1i72.52 (7)C6—O1—Tb1v137.01 (18)
O8—Tb1—O1i127.62 (7)C6—O2—Tb1127.35 (17)
O7—Tb1—O1i73.14 (7)O3—C7—O4126.3 (3)
O9—Tb1—O1i68.26 (8)O3—C7—C3116.7 (2)
O13—Tb1—O1i71.10 (7)O4—C7—C3117.0 (2)
O6—Tb1—N164.09 (7)C7—O3—Tb2vi170.3 (2)
O2—Tb1—N163.37 (7)C7—O4—Tb2iii127.23 (17)
O8—Tb1—N170.91 (8)O5—C8—O6125.2 (3)
O7—Tb1—N171.31 (7)O5—C8—C5119.6 (3)
O9—Tb1—N1135.54 (7)O6—C8—C5115.2 (2)
O13—Tb1—N1147.75 (8)C8—O6—Tb1126.89 (18)
O1i—Tb1—N1123.80 (7)Tb1—O7—H7B108.7
O6—Tb1—O1270.06 (7)Tb1—O7—H7A126.8
O2—Tb1—O12138.79 (8)H7B—O7—H7A105.2
O8—Tb1—O1270.86 (8)Tb1—O8—H8A127.8
O7—Tb1—O12134.56 (7)Tb1—O8—H8B98.2
O9—Tb1—O1269.76 (7)H8A—O8—H8B121.3
O13—Tb1—O1251.34 (7)Tb1—O9—H9A123.7
O1i—Tb1—O12114.86 (7)Tb1—O9—H9B124.9
N1—Tb1—O12121.18 (7)H9A—O9—H9B94.1
O6—Tb1—C1595.68 (8)C13—N2—C9119.7 (2)
O2—Tb1—C15123.08 (8)C13—N2—Tb2120.68 (19)
O8—Tb1—C1574.82 (8)C9—N2—Tb2119.46 (18)
O7—Tb1—C15141.56 (8)N2—C9—C10122.5 (2)
O9—Tb1—C1568.18 (8)N2—C9—C14113.9 (2)
O13—Tb1—C1525.73 (8)C10—C9—C14123.6 (2)
O1i—Tb1—C1591.86 (8)C11—C10—C9117.8 (3)
N1—Tb1—C15141.02 (8)C11—C10—H10A121.1
O12—Tb1—C1525.80 (8)C9—C10—H10A121.1
O10iv—Tb2—O1794.09 (8)C10—C11—C12119.4 (2)
O10iv—Tb2—O3ii137.68 (8)C10—C11—C15120.4 (2)
O17—Tb2—O3ii79.58 (8)C12—C11—C15120.2 (2)
O10iv—Tb2—O1591.41 (8)C11—C12—C13119.1 (3)
O17—Tb2—O15158.69 (7)C11—C12—H12A120.5
O3ii—Tb2—O1582.50 (8)C13—C12—H12A120.5
O10iv—Tb2—O4iii148.23 (7)N2—C13—C12121.4 (3)
O17—Tb2—O4iii98.76 (8)N2—C13—C16113.4 (2)
O3ii—Tb2—O4iii73.56 (7)C12—C13—C16125.2 (2)
O15—Tb2—O4iii87.06 (7)O10—C14—O11126.2 (3)
O10iv—Tb2—O1176.71 (8)O10—C14—C9117.3 (2)
O17—Tb2—O1172.40 (7)O11—C14—C9116.6 (2)
O3ii—Tb2—O11137.43 (8)C14—O10—Tb2vii150.1 (2)
O15—Tb2—O11128.91 (7)C14—O11—Tb2124.96 (18)
O4iii—Tb2—O1179.69 (8)O12—C15—O13121.2 (3)
O10iv—Tb2—O1667.14 (8)O12—C15—C11119.3 (3)
O17—Tb2—O1682.04 (8)O13—C15—C11119.4 (2)
O3ii—Tb2—O1670.54 (8)O12—C15—Tb163.24 (15)
O15—Tb2—O1681.17 (8)O13—C15—Tb158.67 (14)
O4iii—Tb2—O16143.32 (7)C11—C15—Tb1168.1 (2)
O11—Tb2—O16133.68 (8)C15—O12—Tb190.96 (18)
O10iv—Tb2—N273.74 (7)C15—O13—Tb195.60 (16)
O17—Tb2—N2137.12 (8)O14—C16—O15125.0 (3)
O3ii—Tb2—N2136.26 (8)O14—C16—C13119.9 (2)
O15—Tb2—N264.13 (8)O15—C16—C13115.2 (2)
O4iii—Tb2—N277.11 (7)C16—O15—Tb2126.57 (18)
O11—Tb2—N264.84 (7)Tb2—O16—H16B130.9
O16—Tb2—N2126.24 (8)Tb2—O16—H16A124.3
C1—N1—C5119.5 (2)H16B—O16—H16A99.5
C1—N1—Tb1120.52 (17)Tb2—O17—H17B119.8
C5—N1—Tb1119.27 (18)Tb2—O17—H17A124.3
N1—C1—C2122.6 (2)H17B—O17—H17A99.1
N1—C1—C6113.1 (2)H18B—O18—H18A98.3
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1/2, y1/2, z+3/2; (v) x+1/2, y+1/2, z+1/2; (vi) x, y, z1; (vii) x+1/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O14viii0.841.862.700 (3)174.4
O7—H7B···O2i0.871.802.651 (3)164.8
O8—H8A···O12iii0.851.892.741 (3)176.0
O8—H8B···O9ix0.862.392.844 (3)113.0
O9—H9A···O5viii0.852.563.057 (3)119.0
O9—H9A···O6viii0.851.862.711 (3)176.0
O9—H9B···O5viii0.852.563.057 (3)118.0
O16—H16A···O4viii0.852.303.101 (3)156.2
O16—H16B···O15x0.811.962.766 (3)171.0
O17—H17A···O18iv0.871.842.705 (4)173.9
O17—H17B···O5xi0.821.952.759 (3)163.6
O18—H18A···O14xii0.872.042.911 (4)175.7
O18—H18B···O130.831.922.745 (4)167.1
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1/2, y1/2, z+3/2; (viii) x+1, y, z+1; (ix) x, y+1, z; (x) x+1, y, z+2; (xi) x1/2, y+1/2, z+1/2; (xii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Tb2(C8H2NO6)2(H2O)5]·H2O
Mr842.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)18.426 (4), 6.9082 (14), 18.583 (4)
β (°) 111.98 (3)
V3)2193.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)6.50
Crystal size (mm)0.38 × 0.34 × 0.31
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.101, 0.128
No. of measured, independent and
observed [I > 2σ(I)] reflections
20352, 4912, 4764
Rint0.041
(sin θ/λ)max1)0.646
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.045, 1.20
No. of reflections4912
No. of parameters344
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.07, 1.33

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008.

Selected bond lengths (Å) top
Tb1—O1i2.508 (2)Tb2—O3ii2.365 (2)
Tb1—O22.400 (2)Tb2—O4iii2.387 (2)
Tb1—O62.378 (2)Tb2—O10iv2.336 (2)
Tb1—O72.426 (2)Tb2—O112.403 (2)
Tb1—O82.406 (2)Tb2—O152.384 (2)
Tb1—O92.431 (2)Tb2—O162.430 (2)
Tb1—O122.590 (2)Tb2—O172.358 (2)
Tb1—O132.489 (2)Tb2—N22.507 (2)
Tb1—N12.534 (2)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O14v0.841.862.700 (3)174.4
O7—H7B···O2i0.871.802.651 (3)164.8
O8—H8A···O12iii0.851.892.741 (3)176.0
O8—H8B···O9vi0.862.392.844 (3)113.0
O9—H9A···O5v0.852.563.057 (3)119.0
O9—H9A···O6v0.851.862.711 (3)176.0
O9—H9B···O5v0.852.563.057 (3)118.0
O16—H16A···O4v0.852.303.101 (3)156.2
O16—H16B···O15vii0.811.962.766 (3)171.0
O17—H17A···O18iv0.871.842.705 (4)173.9
O17—H17B···O5viii0.821.952.759 (3)163.6
O18—H18A···O14ix0.872.042.911 (4)175.7
O18—H18B···O130.831.922.745 (4)167.1
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1/2, y1/2, z+3/2; (v) x+1, y, z+1; (vi) x, y+1, z; (vii) x+1, y, z+2; (viii) x1/2, y+1/2, z+1/2; (ix) x1/2, y+1/2, z1/2.
 

Acknowledgements

This project was supported by the K. C. Wong Magna Fund in Ningbo University.

References

First citationDas, M. C., Ghosh, S. K., Saũdoand, E. C. & Bharadwaj, P. K. (2009). Dalton Trans. pp. 1644–1658.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W. & Xu, H.-J. (2008). Acta Cryst. E64, m35.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLin, J.-L., Xu, W., Zhao, L. & Zheng, Y.-Q. (2011). Z. Naturforsch Teil B, 66, 570–576.  CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H.-S., Zhao, B., Zhai, B., Shi, W., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2007). Cryst. Growth Des. 7, 1851–1857.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds