metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Propane-1,3-di­ammonium dichromate(VI)

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bPetrochemical Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
*Correspondence e-mail: houda_marouani@voila.fr

(Received 25 June 2012; accepted 7 July 2012; online 14 July 2012)

The title compound, (C3H12N2)[Cr2O7], consists of a discrete dichromate anion with an eclipsed conformation and a propane-1,3-diammonium cation. Both kinds of ions have a mirror plane passing through the bridging O atom and the central methyl­ene C atom of the Cr2O72− and C3H12N22+ moieties, respectively. Anions and cations are alternately stacked to form columns parallel to the b axis. Ions are linked by intra- and inter-column hydrogen bonds of types N—H⋯O and C—H⋯O, involving O atoms of the dichromate anions as acceptors, and ammonium or methyl­ene groups as donors.

Related literature

For related structures, see: Akriche & Rzaigui (2009[Akriche, S. & Rzaigui, M. (2009). Acta Cryst. E65, m123.]); Sieroń (2007[Sieroń, L. (2007). Acta Cryst. E63, m2068.]); Khadhrani et al. (2006[Khadhrani, H., Ben Smaïl, R., Driss, A. & Jouini, T. (2006). Acta Cryst. E62, m146-m148.]); Kallel et al. (1980[Kallel, A., Fail, J., Fuess, H. & Daoud, A. (1980). Acta Cryst. B36, 2788-2790.]); Pritchard et al. (1992[Pritchard, R. G., McAuliffe, C. A., Nabhan, A. A. J., Parish, R. V., Ashmawy, F. M., Garcia-Deibe, A., Sousa, A. & Bermejo, M. R. (1992). Acta Cryst. C48, 191-193.]). For a discussion on hydrogen bonding, see: Brown (1976[Brown, I. D. (1976). Acta Cryst. A32, 24-31.]); Blessing (1986[Blessing, R. H. (1986). Acta Cryst. B42, 613-621.]). For background on CrVI species as industrial waste, see: Wani et al. (2007[Wani, R., Kodam, K. M., Gawai, K. R. & Dhakephalkar, P. K. (2007). Appl. Microbiol. Biotechnol. 75, 627-632.]).

[Scheme 1]

Experimental

Crystal data
  • (C3H12N2)[Cr2O7]

  • Mr = 292.15

  • Orthorhombic, P n m a

  • a = 8.818 (2) Å

  • b = 13.764 (2) Å

  • c = 7.918 (2) Å

  • V = 961.1 (4) Å3

  • Z = 4

  • Ag Kα radiation

  • λ = 0.56083 Å

  • μ = 1.18 mm−1

  • T = 293 K

  • 0.30 × 0.15 × 0.10 mm

Data collection
  • Enraf–Nonius CAD4 diffractometer

  • 4877 measured reflections

  • 2430 independent reflections

  • 1811 reflections with I > 2σ(I)

  • Rint = 0.020

  • 2 standard reflections every 120 min intensity decay: 3%

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.096

  • S = 1.10

  • 2430 reflections

  • 69 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.61 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.89 2.12 2.9609 (19) 156
N1—H1B⋯O2ii 0.89 1.99 2.8168 (19) 154
N1—H1C⋯O4 0.89 2.17 2.955 (2) 147
N1—H1C⋯O2iii 0.89 2.44 2.9844 (19) 120
C1—H1D⋯O3 0.97 2.51 3.405 (2) 153
C1—H1E⋯O2iv 0.97 2.59 3.176 (2) 119
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+1; (iii) [-x+{\script{3\over 2}}, -y, z-{\script{1\over 2}}]; (iv) x, y, z-1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND, Crystal impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Hexavalent chromium is a predominant waste product of several metal finishing, petroleum refining and steel industries (Wani et al., 2007). It exists as chromate in basic and neutral medium and as dichromate in acidic environment.

In presence of 1,3-diaminopropane in water, the chromic acid is condensed into dichromate to form the hybrid title compound, (C3H12N2)Cr2O7. The observed molecular structure is depicted in Fig. 1. To counter-balance the electric charge of Cr2O72-, the used 1,3-diaminopropane has been doubly protonated. The title compound crystallizes in the orthorhombic Pnma space group, so that the dichromate anion and 1,3-diammoniumpropane should be symmetrical with respect to the symmetry plane (m). Owing of the passage of the latter through the bridging atoms O1 and C2 of Cr2O7 and C3H12N2 respectively, the asymmetric unit is built by one independent CrO4 group and the half of a 1,3-diammoniumpropane cation. The main geometrical features of Cr2O72- agree with those previously observed for this group in other compounds (Akriche & Rzaigui, 2009; Sieroń, 2007; Khadhrani et al., 2006).

The bond lengths and the angles within the cation are comparable with those observed in other 1,3-diammoniumpropane salts such as [C3H12N2]ZnCl4 (Kallel et al., 1980) and [C3H12N2](ClO4)2 (Pritchard et al., 1992). In this structure, the cations and anions are alternately stacked to form columns parallel to the axis b (Fig. 2). The electrostatic interactions and H-bonds intra and inter columns keep up the three-dimensional network cohesion. The established weak H-bonds (Brown, 1976; Blessing, 1986) of types N—H···O and C—H···O involve oxygen atoms of the dichromate anions as acceptors, and the protonated nitrogen atoms and carbon atoms of 1,3-diammoniumpropane as donors.

Related literature top

For related structures, see: Akriche & Rzaigui (2009); Sieroń (2007); Khadhrani et al. (2006); Kallel et al. (1980); Pritchard et al. (1992). For a discussion on hydrogen bonding, see: Brown (1976); Blessing (1986). For background on CrVI species as industrial waste, see: Wani et al. (2007).

Experimental top

Single crystals of the title compound were prepared at room temperature by dissolving CrO3 (0.10 g, 1 mmol) and 1,3-diaminopropane (0.07 g, 1 mmol) in distilled water (20 ml). The resulting solution was stirred during 30 min. and then evaporated slowly at room temperature until the formation of orange prismatic single crystals.

Refinement top

All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C—H = 0.97 Å (methylene) and N—H = 0.89 Å. Isotropic displacement parameters for H atoms were calculated as Uiso(H) = 1.2Ueq(C) for CH2 groups and Uiso(H) = 1.5Ueq(N1) for the ammonium group.

Structure description top

Hexavalent chromium is a predominant waste product of several metal finishing, petroleum refining and steel industries (Wani et al., 2007). It exists as chromate in basic and neutral medium and as dichromate in acidic environment.

In presence of 1,3-diaminopropane in water, the chromic acid is condensed into dichromate to form the hybrid title compound, (C3H12N2)Cr2O7. The observed molecular structure is depicted in Fig. 1. To counter-balance the electric charge of Cr2O72-, the used 1,3-diaminopropane has been doubly protonated. The title compound crystallizes in the orthorhombic Pnma space group, so that the dichromate anion and 1,3-diammoniumpropane should be symmetrical with respect to the symmetry plane (m). Owing of the passage of the latter through the bridging atoms O1 and C2 of Cr2O7 and C3H12N2 respectively, the asymmetric unit is built by one independent CrO4 group and the half of a 1,3-diammoniumpropane cation. The main geometrical features of Cr2O72- agree with those previously observed for this group in other compounds (Akriche & Rzaigui, 2009; Sieroń, 2007; Khadhrani et al., 2006).

The bond lengths and the angles within the cation are comparable with those observed in other 1,3-diammoniumpropane salts such as [C3H12N2]ZnCl4 (Kallel et al., 1980) and [C3H12N2](ClO4)2 (Pritchard et al., 1992). In this structure, the cations and anions are alternately stacked to form columns parallel to the axis b (Fig. 2). The electrostatic interactions and H-bonds intra and inter columns keep up the three-dimensional network cohesion. The established weak H-bonds (Brown, 1976; Blessing, 1986) of types N—H···O and C—H···O involve oxygen atoms of the dichromate anions as acceptors, and the protonated nitrogen atoms and carbon atoms of 1,3-diammoniumpropane as donors.

For related structures, see: Akriche & Rzaigui (2009); Sieroń (2007); Khadhrani et al. (2006); Kallel et al. (1980); Pritchard et al. (1992). For a discussion on hydrogen bonding, see: Brown (1976); Blessing (1986). For background on CrVI species as industrial waste, see: Wani et al. (2007).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP view of the title compound with displacement ellipsoids at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Symmetry code: (i) x, y-1, z
[Figure 2] Fig. 2. Projection of the crystal structure along the c axis.
Propane-1,3-diammonium dichromate(VI) top
Crystal data top
(C3H12N2)[Cr2O7]F(000) = 592
Mr = 292.15Dx = 2.019 Mg m3
Orthorhombic, PnmaAg Kα radiation, λ = 0.56083 Å
Hall symbol: -P 2ac 2nCell parameters from 25 reflections
a = 8.818 (2) Åθ = 9–11°
b = 13.764 (2) ŵ = 1.18 mm1
c = 7.918 (2) ÅT = 293 K
V = 961.1 (4) Å3Prism, orange
Z = 40.30 × 0.15 × 0.10 mm
Data collection top
Enraf–Nonius CAD4
diffractometer
Rint = 0.020
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.3°
Graphite monochromatorh = 143
non–profiled ω scansk = 233
4877 measured reflectionsl = 313
2430 independent reflections2 standard reflections every 120 min
1811 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.243P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2430 reflectionsΔρmax = 0.79 e Å3
69 parametersΔρmin = 0.61 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.024 (2)
Primary atom site location: structure-invariant direct methods
Crystal data top
(C3H12N2)[Cr2O7]V = 961.1 (4) Å3
Mr = 292.15Z = 4
Orthorhombic, PnmaAg Kα radiation, λ = 0.56083 Å
a = 8.818 (2) ŵ = 1.18 mm1
b = 13.764 (2) ÅT = 293 K
c = 7.918 (2) Å0.30 × 0.15 × 0.10 mm
Data collection top
Enraf–Nonius CAD4
diffractometer
Rint = 0.020
4877 measured reflections2 standard reflections every 120 min
2430 independent reflections intensity decay: 3%
1811 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.10Δρmax = 0.79 e Å3
2430 reflectionsΔρmin = 0.61 e Å3
69 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr0.58026 (3)0.131997 (16)0.65346 (3)0.01952 (8)
O20.59121 (13)0.05330 (8)0.80635 (15)0.0271 (2)
O40.72115 (14)0.11753 (9)0.52532 (16)0.0324 (3)
O30.42366 (14)0.11686 (10)0.55239 (19)0.0388 (3)
O10.5853 (2)0.25000.7434 (2)0.0322 (4)
N10.66136 (15)0.07105 (9)0.16706 (17)0.0263 (2)
H1A0.72770.07160.08240.039*
H1B0.60160.01920.15780.039*
H1C0.71090.06870.26490.039*
C20.6661 (2)0.25000.1633 (3)0.0237 (3)
H2A0.73270.25000.06580.028*
H2B0.72850.25000.26420.028*
C10.56785 (16)0.16037 (11)0.16067 (19)0.0231 (2)
H1D0.49950.16150.25670.028*
H1E0.50700.16010.05860.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr0.02104 (11)0.01893 (11)0.01860 (11)0.00012 (7)0.00096 (8)0.00048 (7)
O20.0335 (5)0.0232 (4)0.0245 (4)0.0013 (4)0.0003 (4)0.0043 (4)
O40.0308 (6)0.0386 (6)0.0277 (5)0.0028 (4)0.0079 (5)0.0010 (5)
O30.0285 (6)0.0481 (7)0.0398 (7)0.0008 (5)0.0122 (5)0.0022 (6)
O10.0481 (10)0.0202 (6)0.0282 (7)0.0000.0002 (7)0.000
N10.0279 (6)0.0220 (5)0.0289 (6)0.0000 (5)0.0022 (5)0.0018 (5)
C20.0207 (8)0.0216 (7)0.0287 (9)0.0000.0028 (7)0.000
C10.0206 (6)0.0235 (6)0.0252 (6)0.0010 (4)0.0002 (5)0.0005 (5)
Geometric parameters (Å, º) top
Cr—O31.6096 (13)N1—H1C0.8900
Cr—O41.6165 (13)C2—C11.5077 (19)
Cr—O21.6274 (12)C2—C1i1.5077 (19)
Cr—O11.7740 (8)C2—H2A0.9700
O1—Cri1.7740 (8)C2—H2B0.9700
N1—C11.481 (2)C1—H1D0.9700
N1—H1A0.8900C1—H1E0.9700
N1—H1B0.8900
O3—Cr—O4109.35 (8)C1—C2—C1i109.83 (17)
O3—Cr—O2109.55 (7)C1—C2—H2A109.7
O4—Cr—O2109.84 (6)C1i—C2—H2A109.7
O3—Cr—O1109.85 (8)C1—C2—H2B109.7
O4—Cr—O1110.21 (8)C1i—C2—H2B109.7
O2—Cr—O1108.02 (7)H2A—C2—H2B108.2
Cr—O1—Cri132.57 (11)N1—C1—C2111.03 (13)
C1—N1—H1A109.5N1—C1—H1D109.4
C1—N1—H1B109.5C2—C1—H1D109.4
H1A—N1—H1B109.5N1—C1—H1E109.4
C1—N1—H1C109.5C2—C1—H1E109.4
H1A—N1—H1C109.5H1D—C1—H1E108.0
H1B—N1—H1C109.5
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2ii0.892.512.9326 (19)110
N1—H1A···O3iii0.892.122.9609 (19)156
N1—H1B···O2iv0.891.992.8168 (19)154
N1—H1C···O40.892.172.955 (2)147
N1—H1C···O2v0.892.442.9844 (19)120
C1—H1D···O30.972.513.405 (2)153
C1—H1E···O2ii0.972.593.176 (2)119
Symmetry codes: (ii) x, y, z1; (iii) x+1/2, y, z+1/2; (iv) x+1, y, z+1; (v) x+3/2, y, z1/2.

Experimental details

Crystal data
Chemical formula(C3H12N2)[Cr2O7]
Mr292.15
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)8.818 (2), 13.764 (2), 7.918 (2)
V3)961.1 (4)
Z4
Radiation typeAg Kα, λ = 0.56083 Å
µ (mm1)1.18
Crystal size (mm)0.30 × 0.15 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4877, 2430, 1811
Rint0.020
(sin θ/λ)max1)0.836
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.096, 1.10
No. of reflections2430
No. of parameters69
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 0.61

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.892.122.9609 (19)156.3
N1—H1B···O2ii0.891.992.8168 (19)153.5
N1—H1C···O40.892.172.955 (2)146.7
N1—H1C···O2iii0.892.442.9844 (19)119.5
C1—H1D···O30.972.513.405 (2)153.1
C1—H1E···O2iv0.972.593.176 (2)119.1
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1, y, z+1; (iii) x+3/2, y, z1/2; (iv) x, y, z1.
 

Acknowledgements

This work was supported by the Tunisian Ministry of H.E.Sc.R. The authors are also grateful to the Deanship of Scientific Research at King Saud University for funding the paper through the Research Group Project No. RGP-VPP-089.

References

First citationAkriche, S. & Rzaigui, M. (2009). Acta Cryst. E65, m123.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1986). Acta Cryst. B42, 613–621.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND, Crystal impact GbR, Bonn, Germany.  Google Scholar
First citationBrown, I. D. (1976). Acta Cryst. A32, 24–31.  CrossRef IUCr Journals Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKallel, A., Fail, J., Fuess, H. & Daoud, A. (1980). Acta Cryst. B36, 2788–2790.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKhadhrani, H., Ben Smaïl, R., Driss, A. & Jouini, T. (2006). Acta Cryst. E62, m146–m148.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPritchard, R. G., McAuliffe, C. A., Nabhan, A. A. J., Parish, R. V., Ashmawy, F. M., Garcia-Deibe, A., Sousa, A. & Bermejo, M. R. (1992). Acta Cryst. C48, 191–193.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSieroń, L. (2007). Acta Cryst. E63, m2068.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWani, R., Kodam, K. M., Gawai, K. R. & Dhakephalkar, P. K. (2007). Appl. Microbiol. Biotechnol. 75, 627–632.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds