organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-Benzyl-1,5-benzo­thia­zepin-4(5H)-one

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Chennai 600 025, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

(Received 18 June 2012; accepted 26 June 2012; online 4 July 2012)

In the crystal structure of the title compound, C16H13NOS, mol­ecules are linked into cyclic centrosymmetric R22(8) dimers via pairs of N—H⋯O hydrogen bonds. The seven-membered ring adopts a boat conformation.

Related literature

For the pharmaceutical properties of thia­zepin derivatives, see: Tomascovic et al. (2000[Tomascovic, L. L., Arneri, R. S., Brundic, A. H., Nagl, A., Mintas, M. & Sandtrom, J. (2000). Helv. Chim. Acta, 83, 479-493.]); Rajsner et al. (1971[Rajsner, M., Protiva, M. & Metysova, J. (1971). Czech. Patent Appl. CS 143737.]); Metys et al. (1965[Metys, J., Metysova, J. & Votava, Z. (1965). Acta Biol. Med. Ger. 15, 871-873.]). For conformations of thia­zepin derivatives, see: Huang et al. (2011[Huang, Z.-H., Chu, Y. & Ye, D.-Y. (2011). Acta Cryst. E67, o168.]). For a related structure, see: Sabari et al. (2012[Sabari, V., Selvakumar, R., Bakthadoss, M. & Aravindhan, S. (2012). Acta Cryst. E68, o2283.]).For graph-set analysis of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13NOS

  • Mr = 267.33

  • Monoclinic, P 21 /c

  • a = 9.3409 (6) Å

  • b = 11.7876 (7) Å

  • c = 11.8310 (6) Å

  • β = 94.727 (3)°

  • V = 1298.24 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 293 K

  • 0.32 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.990

  • 11696 measured reflections

  • 3220 independent reflections

  • 2700 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.100

  • S = 1.03

  • 3220 reflections

  • 224 parameters

  • All H-atom parameters refined

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H⋯O1i 0.847 (18) 2.098 (19) 2.9407 (15) 173.1 (16)
Symmetry code: (i) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound is used as an intermediate for the synthesis of dosulepin, which is an antidepressant of the tricyclic family. Dosulepin prevents reabsorbing of serotonin and noradrenaline in the brain, helps to prolong the mood lightening effect of any released noradrenaline and serotonin, thus relieving depression. The dibenzo[c,e]thiazepin derivatives exhibit chiroptical properties (Tomascovic et al., 2000). Dibenzo[b,e]thiazepin-5,5-dioxide derivatives possess antihistaminic and antiallergenic activities (Rajsner et al., 1971). Benzene thiazepin derivatives are identified as a new type of effective antihistaminic compounds (Metys et al., 1965). Considering the wide range of biological activities of the thiazepin derivatives, we determined the crystal structure of the title compound.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The seven membered thiazepin ring adopts a boat conformation (Huang et al., 2011). The atom O1 deviates by 1.0431 (11) Å from the least-squares plane of the thiazepin ring. The sum of the bond angles around the N1 atom (357.73°) of the thiazepin ring is in agreement with sp2 hybridization. The molecules are linked into cyclic centrosymmetric dimers via N—H···O hydrogen bonds with the motif R22(8) (Bernstein et al., 1995).

Related literature top

For the pharmaceutical properties of thiazepin derivatives, see: Tomascovic et al. (2000); Rajsner et al. (1971); Metys et al. (1965). For a related structure, see: Sabari <it> et al.</it> (2012). For conformations of thiazepin derivatives, see: Huang et al. (2011). For graph-set analysis of hydrogen bonds, see: Bernstein et al. (1995).

Experimental top

A mixture of (Z)-methyl 2-(bromomethyl)-3-phenylacrylate (2 mmol) and o-aminothiophenol (2 mmol) in the presence of potassium tert-butoxide (4.8 mmol) in dry THF (10 ml) was stirred at room temperature for 1 h. After the completion of the reaction as indicated by TLC, the reaction mixture was concentrated and the resulting crude mass was diluted with water (20 ml) and extracted with ethyl acetate (3 x 20 ml). The organic layer was washed with brine (2 x 20 ml) and dried over anhydrous sodium sulfate. The organic layer was concentrated, which successfully provide the crude final product ((Z)-3-benzylbenzo[b][1,4]thiazepin-4(5H)-one). The final product was purified by column chromatography on silica gel to afford the title compound 41% yields.

Refinement top

H atoms were freely refined.

Structure description top

The title compound is used as an intermediate for the synthesis of dosulepin, which is an antidepressant of the tricyclic family. Dosulepin prevents reabsorbing of serotonin and noradrenaline in the brain, helps to prolong the mood lightening effect of any released noradrenaline and serotonin, thus relieving depression. The dibenzo[c,e]thiazepin derivatives exhibit chiroptical properties (Tomascovic et al., 2000). Dibenzo[b,e]thiazepin-5,5-dioxide derivatives possess antihistaminic and antiallergenic activities (Rajsner et al., 1971). Benzene thiazepin derivatives are identified as a new type of effective antihistaminic compounds (Metys et al., 1965). Considering the wide range of biological activities of the thiazepin derivatives, we determined the crystal structure of the title compound.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The seven membered thiazepin ring adopts a boat conformation (Huang et al., 2011). The atom O1 deviates by 1.0431 (11) Å from the least-squares plane of the thiazepin ring. The sum of the bond angles around the N1 atom (357.73°) of the thiazepin ring is in agreement with sp2 hybridization. The molecules are linked into cyclic centrosymmetric dimers via N—H···O hydrogen bonds with the motif R22(8) (Bernstein et al., 1995).

For the pharmaceutical properties of thiazepin derivatives, see: Tomascovic et al. (2000); Rajsner et al. (1971); Metys et al. (1965). For a related structure, see: Sabari <it> et al.</it> (2012). For conformations of thiazepin derivatives, see: Huang et al. (2011). For graph-set analysis of hydrogen bonds, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the crystal packing. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
(Z)-3-Benzyl-1,5-benzothiazepin-4(5H)-one top
Crystal data top
C16H13NOSF(000) = 560
Mr = 267.33Dx = 1.368 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8725 reflections
a = 9.3409 (6) Åθ = 2.8–29.1°
b = 11.7876 (7) ŵ = 0.24 mm1
c = 11.8310 (6) ÅT = 293 K
β = 94.727 (3)°Monoclinic, colourless
V = 1298.24 (13) Å30.32 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
3220 independent reflections
Radiation source: fine-focus sealed tube2700 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 15.9948 pixels mm-1θmax = 28.3°, θmin = 2.2°
ω and φ scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1215
Tmin = 0.980, Tmax = 0.990l = 1515
11696 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.3853P]
where P = (Fo2 + 2Fc2)/3
3220 reflections(Δ/σ)max = 0.001
224 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C16H13NOSV = 1298.24 (13) Å3
Mr = 267.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3409 (6) ŵ = 0.24 mm1
b = 11.7876 (7) ÅT = 293 K
c = 11.8310 (6) Å0.32 × 0.20 × 0.10 mm
β = 94.727 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3220 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2700 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.990Rint = 0.024
11696 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.100All H-atom parameters refined
S = 1.03Δρmax = 0.25 e Å3
3220 reflectionsΔρmin = 0.31 e Å3
224 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H10A0.9319 (19)0.4199 (16)1.0576 (15)0.054 (5)*
H141.158 (2)0.0216 (19)1.2706 (18)0.071 (6)*
H131.253 (3)0.210 (2)1.287 (2)0.090 (7)*
H20.520 (2)0.0349 (17)0.7510 (18)0.067 (6)*
H40.264 (2)0.0652 (19)1.0082 (18)0.075 (6)*
H30.341 (2)0.0401 (19)0.8584 (18)0.078 (6)*
H50.367 (2)0.2445 (15)1.0477 (16)0.051 (5)*
H90.906 (2)0.2452 (13)0.8225 (15)0.047 (4)*
H121.152 (2)0.3537 (18)1.1720 (16)0.066 (6)*
H160.8605 (18)0.1324 (14)1.0263 (14)0.048 (4)*
H150.960 (2)0.0149 (19)1.1441 (18)0.075 (6)*
H0.4802 (19)0.4003 (15)0.9656 (14)0.050 (5)*
H10B1.0195 (19)0.3709 (15)0.9641 (15)0.053 (5)*
S10.67169 (4)0.23482 (4)0.74334 (3)0.04629 (13)
O10.69525 (11)0.49768 (9)1.00015 (11)0.0515 (3)
N10.54541 (12)0.35755 (9)0.94400 (10)0.0376 (3)
C90.81284 (15)0.27217 (12)0.84256 (12)0.0377 (3)
C10.54547 (14)0.18101 (11)0.83286 (11)0.0361 (3)
C80.80771 (13)0.33382 (10)0.93653 (11)0.0326 (3)
C70.67881 (14)0.40033 (11)0.96316 (11)0.0345 (3)
C100.94322 (15)0.35387 (12)1.01201 (13)0.0397 (3)
C60.49997 (14)0.24447 (10)0.92206 (11)0.0332 (3)
C110.99742 (13)0.25642 (11)1.08739 (11)0.0335 (3)
C160.94145 (15)0.14763 (12)1.08123 (12)0.0396 (3)
C121.11413 (16)0.27689 (16)1.16571 (13)0.0490 (4)
C50.39623 (16)0.20069 (14)0.98728 (14)0.0448 (3)
C141.11727 (19)0.08314 (19)1.22626 (15)0.0599 (5)
C131.17296 (18)0.1913 (2)1.23380 (15)0.0628 (5)
C20.48567 (18)0.07488 (14)0.80956 (15)0.0511 (4)
C151.00050 (19)0.06142 (15)1.15013 (14)0.0508 (4)
C40.33594 (18)0.09600 (16)0.96179 (17)0.0568 (4)
C30.37969 (19)0.03362 (15)0.87283 (18)0.0613 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0532 (2)0.0562 (2)0.02983 (18)0.00076 (17)0.00540 (15)0.00396 (14)
O10.0427 (6)0.0312 (5)0.0809 (8)0.0002 (4)0.0071 (5)0.0154 (5)
N10.0322 (6)0.0297 (5)0.0512 (7)0.0043 (4)0.0054 (5)0.0075 (5)
C90.0372 (7)0.0390 (7)0.0381 (7)0.0021 (5)0.0096 (5)0.0012 (5)
C10.0350 (6)0.0356 (7)0.0370 (6)0.0033 (5)0.0019 (5)0.0029 (5)
C80.0327 (6)0.0275 (6)0.0382 (6)0.0004 (5)0.0067 (5)0.0038 (5)
C70.0363 (6)0.0280 (6)0.0396 (6)0.0018 (5)0.0054 (5)0.0013 (5)
C100.0339 (7)0.0322 (7)0.0530 (8)0.0054 (5)0.0037 (6)0.0020 (6)
C60.0301 (6)0.0311 (6)0.0377 (6)0.0021 (5)0.0018 (5)0.0018 (5)
C110.0258 (6)0.0411 (7)0.0340 (6)0.0021 (5)0.0057 (5)0.0062 (5)
C160.0374 (7)0.0402 (7)0.0403 (7)0.0027 (6)0.0011 (5)0.0001 (6)
C120.0338 (7)0.0670 (10)0.0457 (8)0.0105 (7)0.0010 (6)0.0089 (7)
C50.0367 (7)0.0492 (8)0.0489 (8)0.0044 (6)0.0063 (6)0.0045 (7)
C140.0478 (9)0.0839 (13)0.0477 (9)0.0169 (9)0.0033 (7)0.0187 (9)
C130.0374 (8)0.1029 (16)0.0461 (9)0.0014 (9)0.0081 (7)0.0013 (9)
C20.0507 (9)0.0421 (8)0.0593 (9)0.0009 (7)0.0025 (7)0.0175 (7)
C150.0534 (9)0.0482 (9)0.0509 (8)0.0051 (7)0.0045 (7)0.0096 (7)
C40.0458 (9)0.0543 (10)0.0705 (11)0.0141 (7)0.0066 (8)0.0015 (8)
C30.0529 (10)0.0412 (9)0.0888 (13)0.0142 (7)0.0001 (9)0.0104 (9)
Geometric parameters (Å, º) top
S1—C91.7479 (15)C11—C121.392 (2)
S1—C11.7663 (14)C16—C151.388 (2)
O1—C71.2332 (16)C16—H160.972 (17)
N1—C71.3460 (17)C12—C131.377 (3)
N1—C61.4165 (16)C12—H120.97 (2)
N1—H0.846 (18)C5—C41.379 (2)
C9—C81.3324 (19)C5—H50.942 (19)
C9—H90.976 (18)C14—C131.377 (3)
C1—C21.388 (2)C14—C151.380 (3)
C1—C61.3885 (18)C14—H140.96 (2)
C8—C71.4920 (17)C13—H130.96 (3)
C8—C101.5064 (19)C2—C31.378 (3)
C10—C111.515 (2)C2—H20.92 (2)
C10—H10A0.958 (19)C15—H150.98 (2)
C10—H10B0.968 (18)C4—C31.373 (3)
C6—C51.387 (2)C4—H40.97 (2)
C11—C161.3845 (19)C3—H30.95 (2)
C9—S1—C1101.05 (6)C11—C16—C15121.13 (14)
C7—N1—C6129.99 (11)C11—C16—H16118.4 (10)
C7—N1—H114.0 (12)C15—C16—H16120.4 (10)
C6—N1—H113.8 (12)C13—C12—C11121.01 (17)
C8—C9—S1128.37 (11)C13—C12—H12120.7 (12)
C8—C9—H9118.4 (10)C11—C12—H12118.2 (12)
S1—C9—H9113.2 (10)C4—C5—C6120.17 (15)
C2—C1—C6119.54 (13)C4—C5—H5121.1 (11)
C2—C1—S1118.81 (11)C6—C5—H5118.7 (11)
C6—C1—S1121.57 (10)C13—C14—C15119.21 (16)
C9—C8—C7123.22 (12)C13—C14—H14122.2 (13)
C9—C8—C10119.61 (12)C15—C14—H14118.5 (13)
C7—C8—C10116.46 (12)C14—C13—C12120.67 (16)
O1—C7—N1119.66 (12)C14—C13—H13121.2 (15)
O1—C7—C8119.00 (12)C12—C13—H13118.1 (15)
N1—C7—C8121.30 (11)C3—C2—C1120.36 (15)
C8—C10—C11116.97 (11)C3—C2—H2122.7 (13)
C8—C10—H10A109.6 (11)C1—C2—H2117.0 (13)
C11—C10—H10A109.4 (11)C14—C15—C16120.12 (17)
C8—C10—H10B107.9 (10)C14—C15—H15120.0 (12)
C11—C10—H10B106.0 (11)C16—C15—H15119.9 (13)
H10A—C10—H10B106.3 (15)C3—C4—C5120.30 (16)
C5—C6—C1119.61 (13)C3—C4—H4119.7 (13)
C5—C6—N1117.44 (12)C5—C4—H4120.0 (13)
C1—C6—N1122.71 (12)C4—C3—C2119.98 (16)
C16—C11—C12117.84 (14)C4—C3—H3119.7 (13)
C16—C11—C10124.38 (12)C2—C3—H3120.2 (13)
C12—C11—C10117.75 (13)
C1—S1—C9—C849.95 (14)C7—N1—C6—C156.6 (2)
C9—S1—C1—C2128.63 (12)C8—C10—C11—C168.3 (2)
C9—S1—C1—C654.52 (12)C8—C10—C11—C12173.77 (12)
S1—C9—C8—C711.3 (2)C12—C11—C16—C150.6 (2)
S1—C9—C8—C10178.70 (10)C10—C11—C16—C15177.38 (14)
C6—N1—C7—O1167.26 (14)C16—C11—C12—C130.8 (2)
C6—N1—C7—C815.0 (2)C10—C11—C12—C13177.31 (14)
C9—C8—C7—O1135.97 (15)C1—C6—C5—C41.7 (2)
C10—C8—C7—O134.35 (18)N1—C6—C5—C4172.74 (14)
C9—C8—C7—N141.8 (2)C15—C14—C13—C120.6 (3)
C10—C8—C7—N1147.91 (13)C11—C12—C13—C140.2 (3)
C9—C8—C10—C1176.59 (17)C6—C1—C2—C31.4 (2)
C7—C8—C10—C11112.72 (14)S1—C1—C2—C3175.52 (14)
C2—C1—C6—C50.5 (2)C13—C14—C15—C160.8 (3)
S1—C1—C6—C5177.32 (11)C11—C16—C15—C140.2 (2)
C2—C1—C6—N1173.63 (13)C6—C5—C4—C31.0 (3)
S1—C1—C6—N13.20 (18)C5—C4—C3—C20.9 (3)
C7—N1—C6—C5129.13 (16)C1—C2—C3—C42.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H···O1i0.847 (18)2.098 (19)2.9407 (15)173.1 (16)
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC16H13NOS
Mr267.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.3409 (6), 11.7876 (7), 11.8310 (6)
β (°) 94.727 (3)
V3)1298.24 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.32 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.980, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
11696, 3220, 2700
Rint0.024
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.100, 1.03
No. of reflections3220
No. of parameters224
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.25, 0.31

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H···O1i0.847 (18)2.098 (19)2.9407 (15)173.1 (16)
Symmetry code: (i) x+1, y+1, z+2.
 

Acknowledgements

SA thanks the UGC, India, for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHuang, Z.-H., Chu, Y. & Ye, D.-Y. (2011). Acta Cryst. E67, o168.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMetys, J., Metysova, J. & Votava, Z. (1965). Acta Biol. Med. Ger. 15, 871–873.  CAS PubMed Web of Science Google Scholar
First citationRajsner, M., Protiva, M. & Metysova, J. (1971). Czech. Patent Appl. CS 143737.  Google Scholar
First citationSabari, V., Selvakumar, R., Bakthadoss, M. & Aravindhan, S. (2012). Acta Cryst. E68, o2283.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomascovic, L. L., Arneri, R. S., Brundic, A. H., Nagl, A., Mintas, M. & Sandtrom, J. (2000). Helv. Chim. Acta, 83, 479–493.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds