organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{1′-Phenyl-1′,2′,5′,6′,7′,7a'-hexa­hydro­spiro­[indeno­[1,2-b]quinoxaline-11,3′-pyrrolizin]-2′-yl}(p-tol­yl)methanone

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 25 June 2012; accepted 10 July 2012; online 18 July 2012)

In the title compound, C35H29N3O, the quinoxaline and indene systems are essentially planar, with maximum deviations of 0.047 (2) and 0.032 (2) Å for C atoms, respectively. The quinoxaline system forms a dihedral angle of 4.75 (3)° with the indene system. The pyrrolizine system is folded. The substituted five-membered ring adopts an envelope conformation. In the other five-membered ring, one C atom is disordered with a site-occupancy ratio of 0.676 (12):0.324 (12). In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds involving the bifurcated carbonyl O atom.

Related literature

For the uses of pyrrolidine and quinoxaline derivatives, see: Amal Raj et al. (2003[Amal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-409.]); Zarranz et al. (2003[Zarranz, B., Jago, A., Aldana, I. & Monge, A. (2003). Bioorg. Med. Chem. 11, 2149-2156.]). For a related structure, see: Gayathri et al. (2005[Gayathri, D., Aravindan, P. G., Velmurugan, D., Ravikumar, K. & Sureshbabu, A. R. (2005). Acta Cryst. E61, o3124-o3126.]).;

[Scheme 1]

Experimental

Crystal data
  • C35H29N3O

  • Mr = 507.61

  • Orthorhombic, P b c a

  • a = 16.4102 (6) Å

  • b = 16.4371 (6) Å

  • c = 20.0648 (7) Å

  • V = 5412.2 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • 47718 measured reflections

  • 6643 independent reflections

  • 3751 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.144

  • S = 1.01

  • 6643 reflections

  • 363 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1C⋯O1i 0.96 2.56 3.483 (2) 161
C22—H22⋯O1ii 0.93 2.48 3.361 (3) 158
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrrolidine derivatives are found to have anticonvulsant, antimicrobial and antifungal activities against various pathogens (Amal Raj et al., 2003). Quinoxaline derivatives shown antibacterial, antiviral and anticancer properties (Zarranz et al., 2003). As spiro pyrrolidine compounds are of great medicinal properties, we have undertaken the three dimensional structure of the title compound.

X-ray analysis confirms the molecular structure and atom connectivity of the compound as illustrated in Fig. 1. The quinoxaline moiety is essentially planar with a maximum deviation of -0.0472 (23) Å for C21 atom, and it forms the dihedral angles of 4.75 (3), 54.94 (5) and 29.70 (6) ° with the indene moiety, phenyl rings (C2–C7) and (C30–C35), respectively. The indene moiety is also essentially planar with a maximum deviation of 0.0320 (16) Å for C18 atom, and it forms the dihedral angles of 51.75 (6) and 32.41 (6) ° with the phenyl rings (C2–C7) and (C30–C35), respectively.

The pyrrolizine moiety is folded and twisted about the N—C bond common to the two five membered rings. The indene fused with quinoxaline, subsituted five membered ring adopts twisted conformation on C9 and C29 atoms with the puckering parameters of Q2 = 0.3846 (17) Å, φ2 = 95.8 (3) °. The unsubsituted five-membered ring has a disordered C atom with occupancy factor of 0.676 (12)/0.324 (12). The five-membered ring (N1/C25/C26A/C27/C28) adopts an envelope conformation on C26A for major occupancy atom with the puckering parameters Q2 = 0.309 (4) Å, φ2 = 77.9 (5) °. The five-membered ring (N1/C25/C26B/C27/C28) adopts an envelope conformation on C26B for minor occupancy atom with the puckering parameters Q2 = 0.238 (6) Å, φ2 = 247.0 (10) °. The title compound exhibits structural similarities with the already reported related structures (Gayathri et al.2005).

In the crystal packing, molecules are linked via bifurcated C—H···O intermolecular hydrogen bonds involving the carbonyl group O atom as a single acceptor (Table. 1). The packing view of the compound is shown in Fig. 2.

Related literature top

For the uses of pyrrolidine and quinoxaline derivatives, see: Amal Raj et al. (2003); Zarranz et al. (2003). For a related structure, see: Gayathri et al. (2005).;

Experimental top

A mixture of ninhydrin (1 mmol) and 1, 2-phenylenediamine (1 mmol) was stirred for 10 min in 10 mL of toluene followed by the addition of L-proline (1 mmol) and a solution of (E)-3-phenyl-1-p-tolylprop-2-en-1-one (1 mmol) in 10 ml of toluene. The mixture was then refluxed until completion of the reaction as evidenced by TLC. The solvent was removed in vacuo and the crude product was subjected to column chromatography using petroleum ether/ethyl acetate (4:1) as eluent.

Refinement top

Hydrogen atoms were placed in calculated positions with C—H = 0.93 Å to 0.98 Å and refined using a riding model with fixed isotropic displacement parameters:Uiso(H) = 1.5Ueq(C) for methyl group and Uiso(H) = 1.2Ueq(C) for other groups. The distances between the disordered atoms and its neighbours were restrained to be equal with an effective e.s.d. of 0.01Å and the components of the ADP's of C25 and C26A in direction of the bond between them were restrained to be equal with an effective e.s.d. of 0.01Å2.

Structure description top

Pyrrolidine derivatives are found to have anticonvulsant, antimicrobial and antifungal activities against various pathogens (Amal Raj et al., 2003). Quinoxaline derivatives shown antibacterial, antiviral and anticancer properties (Zarranz et al., 2003). As spiro pyrrolidine compounds are of great medicinal properties, we have undertaken the three dimensional structure of the title compound.

X-ray analysis confirms the molecular structure and atom connectivity of the compound as illustrated in Fig. 1. The quinoxaline moiety is essentially planar with a maximum deviation of -0.0472 (23) Å for C21 atom, and it forms the dihedral angles of 4.75 (3), 54.94 (5) and 29.70 (6) ° with the indene moiety, phenyl rings (C2–C7) and (C30–C35), respectively. The indene moiety is also essentially planar with a maximum deviation of 0.0320 (16) Å for C18 atom, and it forms the dihedral angles of 51.75 (6) and 32.41 (6) ° with the phenyl rings (C2–C7) and (C30–C35), respectively.

The pyrrolizine moiety is folded and twisted about the N—C bond common to the two five membered rings. The indene fused with quinoxaline, subsituted five membered ring adopts twisted conformation on C9 and C29 atoms with the puckering parameters of Q2 = 0.3846 (17) Å, φ2 = 95.8 (3) °. The unsubsituted five-membered ring has a disordered C atom with occupancy factor of 0.676 (12)/0.324 (12). The five-membered ring (N1/C25/C26A/C27/C28) adopts an envelope conformation on C26A for major occupancy atom with the puckering parameters Q2 = 0.309 (4) Å, φ2 = 77.9 (5) °. The five-membered ring (N1/C25/C26B/C27/C28) adopts an envelope conformation on C26B for minor occupancy atom with the puckering parameters Q2 = 0.238 (6) Å, φ2 = 247.0 (10) °. The title compound exhibits structural similarities with the already reported related structures (Gayathri et al.2005).

In the crystal packing, molecules are linked via bifurcated C—H···O intermolecular hydrogen bonds involving the carbonyl group O atom as a single acceptor (Table. 1). The packing view of the compound is shown in Fig. 2.

For the uses of pyrrolidine and quinoxaline derivatives, see: Amal Raj et al. (2003); Zarranz et al. (2003). For a related structure, see: Gayathri et al. (2005).;

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down a axis. H-atoms not involved in H-bonds have been excluded for clarity.
{1'-Phenyl-1',2',5',6',7',7a'-hexahydrospiro[indeno[1,2-b]quinoxaline- 11,3'-pyrrolizin]-2'-yl}(p-tolyl)methanone top
Crystal data top
C35H29N3OF(000) = 2144
Mr = 507.61Dx = 1.246 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6643 reflections
a = 16.4102 (6) Åθ = 2.0–28.3°
b = 16.4371 (6) ŵ = 0.08 mm1
c = 20.0648 (7) ÅT = 293 K
V = 5412.2 (3) Å3Block, colourless
Z = 80.35 × 0.30 × 0.25 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3751 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 28.3°, θmin = 2.0°
ω and φ scansh = 1821
47718 measured reflectionsk = 2121
6643 independent reflectionsl = 2526
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0614P)2 + 1.0312P]
where P = (Fo2 + 2Fc2)/3
6643 reflections(Δ/σ)max < 0.001
363 parametersΔρmax = 0.26 e Å3
3 restraintsΔρmin = 0.25 e Å3
Crystal data top
C35H29N3OV = 5412.2 (3) Å3
Mr = 507.61Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.4102 (6) ŵ = 0.08 mm1
b = 16.4371 (6) ÅT = 293 K
c = 20.0648 (7) Å0.35 × 0.30 × 0.25 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3751 reflections with I > 2σ(I)
47718 measured reflectionsRint = 0.044
6643 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0493 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.01Δρmax = 0.26 e Å3
6643 reflectionsΔρmin = 0.25 e Å3
363 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.10252 (8)0.10058 (8)0.72132 (6)0.0618 (4)
N10.01215 (8)0.11050 (9)0.82474 (7)0.0508 (4)
N20.17619 (9)0.11583 (8)0.89736 (7)0.0494 (4)
N30.15224 (9)0.00304 (10)1.00457 (7)0.0574 (4)
C10.44254 (11)0.18403 (13)0.86999 (10)0.0686 (6)
H1A0.45390.15860.91210.103*
H1B0.43680.24170.87620.103*
H1C0.48660.17360.83970.103*
C20.36464 (10)0.14989 (11)0.84176 (8)0.0506 (4)
C30.30762 (11)0.19957 (11)0.81147 (10)0.0619 (5)
H30.31710.25530.80940.074*
C40.23703 (12)0.16835 (11)0.78430 (10)0.0588 (5)
H40.20030.20320.76350.071*
C50.21991 (10)0.08581 (10)0.78749 (7)0.0432 (4)
C60.27605 (10)0.03572 (10)0.81850 (8)0.0481 (4)
H60.26580.01980.82170.058*
C70.34726 (10)0.06738 (11)0.84484 (9)0.0525 (4)
H70.38440.03250.86510.063*
C80.14256 (10)0.05584 (10)0.75697 (8)0.0445 (4)
C90.11326 (9)0.03001 (10)0.77066 (7)0.0413 (4)
H90.16100.06580.77230.050*
C100.06490 (10)0.03986 (10)0.83808 (7)0.0436 (4)
C110.02337 (10)0.03781 (10)0.86317 (8)0.0482 (4)
C120.05057 (11)0.05879 (10)0.92674 (8)0.0503 (4)
C130.02162 (13)0.12754 (12)0.95904 (10)0.0685 (6)
H130.04010.14111.00140.082*
C140.03536 (15)0.17546 (13)0.92672 (12)0.0805 (7)
H140.05530.22200.94740.097*
C150.06280 (14)0.15450 (14)0.86396 (12)0.0767 (6)
H150.10150.18700.84310.092*
C160.03374 (12)0.08618 (13)0.83169 (10)0.0636 (5)
H160.05240.07290.78930.076*
C170.11145 (10)0.00050 (10)0.94844 (8)0.0461 (4)
C180.12229 (10)0.05761 (10)0.89607 (7)0.0425 (4)
C190.22135 (10)0.11977 (10)0.95527 (9)0.0510 (4)
C200.20808 (11)0.06546 (11)1.00866 (8)0.0547 (4)
C210.25522 (14)0.07419 (14)1.06687 (10)0.0742 (6)
H210.24620.03981.10290.089*
C220.31366 (15)0.13228 (15)1.07069 (12)0.0835 (7)
H220.34400.13761.10960.100*
C230.32873 (14)0.18387 (14)1.01731 (12)0.0807 (7)
H230.37030.22221.02030.097*
C240.28306 (13)0.17897 (12)0.96040 (10)0.0687 (6)
H240.29270.21460.92530.082*
C250.07181 (12)0.11437 (16)0.84711 (11)0.0787 (7)
H25A0.08550.06680.87340.094*0.676 (12)
H25B0.08090.16270.87390.094*0.676 (12)
H25C0.09540.06030.84840.094*0.324 (12)
H25D0.07470.13770.89150.094*0.324 (12)
C26A0.1208 (2)0.1172 (5)0.7858 (2)0.0808 (16)0.676 (12)
H26A0.13410.06260.77100.097*0.676 (12)
H26B0.17120.14670.79340.097*0.676 (12)
C26B0.1160 (5)0.1655 (8)0.7995 (4)0.065 (3)0.324 (12)
H26C0.17130.14600.79390.078*0.324 (12)
H26D0.11790.22140.81510.078*0.324 (12)
C270.06970 (12)0.15994 (16)0.73483 (10)0.0744 (6)
H27A0.08270.14150.69010.089*0.676 (12)
H27B0.07700.21840.73720.089*0.676 (12)
H27C0.09380.11930.70590.089*0.324 (12)
H27D0.06980.21190.71190.089*0.324 (12)
C280.01680 (10)0.13568 (11)0.75445 (8)0.0510 (4)
H280.05280.18300.75050.061*
C290.05461 (10)0.06337 (10)0.71784 (7)0.0441 (4)
H290.01200.02280.70990.053*
C300.09388 (10)0.08434 (11)0.65201 (8)0.0471 (4)
C310.06495 (14)0.05272 (14)0.59322 (9)0.0743 (6)
H310.02080.01730.59410.089*
C320.09995 (17)0.07242 (17)0.53289 (10)0.0934 (8)
H320.07890.05040.49380.112*
C330.16483 (15)0.12356 (15)0.52992 (10)0.0794 (7)
H330.18850.13650.48910.095*
C340.19473 (13)0.15567 (14)0.58740 (10)0.0720 (6)
H340.23920.19080.58590.086*
C350.15961 (11)0.13657 (13)0.64785 (9)0.0601 (5)
H350.18060.15930.68660.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0607 (8)0.0626 (8)0.0621 (8)0.0001 (7)0.0130 (6)0.0174 (6)
N10.0495 (8)0.0587 (9)0.0441 (8)0.0123 (7)0.0010 (6)0.0024 (6)
N20.0563 (8)0.0482 (8)0.0436 (8)0.0015 (7)0.0056 (7)0.0016 (6)
N30.0650 (9)0.0627 (9)0.0447 (8)0.0033 (8)0.0066 (7)0.0078 (7)
C10.0559 (11)0.0729 (13)0.0769 (14)0.0180 (10)0.0028 (10)0.0010 (11)
C20.0476 (10)0.0556 (10)0.0487 (10)0.0081 (9)0.0067 (8)0.0055 (8)
C30.0587 (11)0.0429 (10)0.0840 (14)0.0057 (9)0.0002 (10)0.0009 (9)
C40.0536 (11)0.0450 (10)0.0779 (13)0.0023 (9)0.0038 (9)0.0045 (9)
C50.0443 (9)0.0432 (9)0.0419 (9)0.0002 (7)0.0024 (7)0.0004 (7)
C60.0491 (9)0.0427 (9)0.0525 (10)0.0036 (8)0.0005 (8)0.0008 (7)
C70.0470 (9)0.0557 (11)0.0550 (10)0.0004 (9)0.0040 (8)0.0035 (8)
C80.0456 (9)0.0495 (9)0.0386 (8)0.0027 (8)0.0013 (7)0.0009 (7)
C90.0404 (8)0.0464 (9)0.0372 (8)0.0006 (7)0.0028 (7)0.0019 (7)
C100.0453 (9)0.0482 (9)0.0373 (8)0.0018 (8)0.0020 (7)0.0001 (7)
C110.0463 (9)0.0534 (10)0.0449 (9)0.0019 (8)0.0030 (7)0.0026 (8)
C120.0538 (10)0.0497 (10)0.0474 (10)0.0022 (8)0.0040 (8)0.0034 (8)
C130.0794 (14)0.0608 (12)0.0653 (13)0.0071 (11)0.0020 (11)0.0152 (10)
C140.0912 (16)0.0629 (13)0.0876 (16)0.0209 (12)0.0099 (13)0.0118 (12)
C150.0751 (14)0.0733 (14)0.0817 (15)0.0268 (12)0.0058 (12)0.0067 (12)
C160.0630 (12)0.0727 (13)0.0549 (11)0.0139 (10)0.0014 (9)0.0049 (10)
C170.0507 (9)0.0486 (9)0.0389 (9)0.0062 (8)0.0010 (7)0.0017 (7)
C180.0470 (9)0.0428 (9)0.0377 (8)0.0056 (8)0.0007 (7)0.0010 (7)
C190.0546 (10)0.0519 (10)0.0466 (10)0.0043 (8)0.0071 (8)0.0070 (8)
C200.0586 (11)0.0604 (11)0.0450 (10)0.0083 (9)0.0095 (8)0.0022 (8)
C210.0857 (15)0.0818 (15)0.0552 (12)0.0032 (13)0.0243 (11)0.0026 (10)
C220.0901 (16)0.0902 (17)0.0701 (15)0.0043 (14)0.0345 (13)0.0111 (13)
C230.0800 (15)0.0773 (15)0.0849 (16)0.0115 (12)0.0256 (13)0.0150 (13)
C240.0778 (14)0.0635 (12)0.0650 (13)0.0102 (11)0.0148 (11)0.0063 (10)
C250.0611 (12)0.1042 (18)0.0708 (14)0.0241 (12)0.0196 (10)0.0172 (12)
C26A0.0440 (18)0.124 (4)0.074 (2)0.007 (3)0.0019 (16)0.019 (3)
C26B0.047 (4)0.090 (7)0.059 (5)0.013 (5)0.009 (3)0.009 (4)
C270.0597 (12)0.1047 (17)0.0589 (12)0.0316 (12)0.0032 (10)0.0059 (12)
C280.0487 (10)0.0578 (10)0.0467 (10)0.0079 (8)0.0012 (8)0.0079 (8)
C290.0394 (8)0.0534 (10)0.0396 (8)0.0007 (8)0.0036 (7)0.0028 (7)
C300.0451 (9)0.0564 (10)0.0397 (9)0.0064 (8)0.0020 (7)0.0064 (8)
C310.0838 (14)0.0957 (16)0.0433 (11)0.0246 (13)0.0046 (10)0.0039 (10)
C320.121 (2)0.119 (2)0.0403 (11)0.0281 (18)0.0017 (12)0.0009 (12)
C330.0903 (16)0.1002 (18)0.0477 (12)0.0034 (14)0.0130 (11)0.0157 (11)
C340.0605 (12)0.0898 (16)0.0658 (13)0.0040 (11)0.0090 (10)0.0210 (12)
C350.0519 (10)0.0790 (13)0.0495 (10)0.0037 (10)0.0007 (8)0.0073 (9)
Geometric parameters (Å, º) top
O1—C81.2184 (19)C19—C201.411 (2)
N1—C251.450 (2)C20—C211.408 (2)
N1—C281.472 (2)C21—C221.355 (3)
N1—C101.473 (2)C21—H210.9300
N2—C181.303 (2)C22—C231.388 (3)
N2—C191.380 (2)C22—H220.9300
N3—C171.311 (2)C23—C241.368 (3)
N3—C201.378 (2)C23—H230.9300
C1—C21.507 (2)C24—H240.9300
C1—H1A0.9600C25—C26B1.464 (6)
C1—H1B0.9600C25—C26A1.470 (4)
C1—H1C0.9600C25—H25A0.9700
C2—C31.383 (3)C25—H25B0.9700
C2—C71.387 (2)C25—H25C0.9700
C3—C41.379 (3)C25—H25D0.9700
C3—H30.9300C26A—C271.499 (4)
C4—C51.387 (2)C26A—H26A0.9700
C4—H40.9300C26A—H26B0.9700
C5—C61.383 (2)C26B—C271.507 (6)
C5—C81.493 (2)C26B—H26C0.9700
C6—C71.384 (2)C26B—H26D0.9700
C6—H60.9300C27—C281.526 (2)
C7—H70.9300C27—H27A0.9700
C8—C91.516 (2)C27—H27B0.9700
C9—C291.533 (2)C27—H27C0.9700
C9—C101.577 (2)C27—H27D0.9700
C9—H90.9800C28—C291.529 (2)
C10—C181.525 (2)C28—H280.9800
C10—C111.532 (2)C29—C301.509 (2)
C11—C161.382 (2)C29—H290.9800
C11—C121.395 (2)C30—C311.374 (2)
C12—C131.386 (2)C30—C351.381 (2)
C12—C171.462 (2)C31—C321.378 (3)
C13—C141.384 (3)C31—H310.9300
C13—H130.9300C32—C331.358 (3)
C14—C151.381 (3)C32—H320.9300
C14—H140.9300C33—C341.360 (3)
C15—C161.381 (3)C33—H330.9300
C15—H150.9300C34—C351.379 (3)
C16—H160.9300C34—H340.9300
C17—C181.420 (2)C35—H350.9300
C19—C241.408 (3)
C25—N1—C28109.48 (14)C22—C23—H23119.7
C25—N1—C10122.45 (15)C23—C24—C19119.7 (2)
C28—N1—C10111.43 (12)C23—C24—H24120.1
C18—N2—C19114.56 (14)C19—C24—H24120.1
C17—N3—C20114.49 (15)N1—C25—C26B107.1 (3)
C2—C1—H1A109.5N1—C25—C26A105.2 (2)
C2—C1—H1B109.5N1—C25—H25A110.7
H1A—C1—H1B109.5C26B—C25—H25A134.7
C2—C1—H1C109.5C26A—C25—H25A110.7
H1A—C1—H1C109.5N1—C25—H25B110.7
H1B—C1—H1C109.5C26B—C25—H25B79.3
C3—C2—C7117.26 (16)C26A—C25—H25B110.7
C3—C2—C1121.29 (17)H25A—C25—H25B108.8
C7—C2—C1121.45 (17)N1—C25—H25C110.3
C4—C3—C2121.49 (17)C26B—C25—H25C110.3
C4—C3—H3119.3C26A—C25—H25C80.4
C2—C3—H3119.3H25B—C25—H25C132.4
C3—C4—C5121.05 (17)N1—C25—H25D110.3
C3—C4—H4119.5C26B—C25—H25D110.3
C5—C4—H4119.5C26A—C25—H25D136.8
C6—C5—C4117.91 (16)H25A—C25—H25D78.9
C6—C5—C8123.66 (15)H25C—C25—H25D108.6
C4—C5—C8118.43 (15)C25—C26A—C27106.2 (3)
C5—C6—C7120.68 (16)C25—C26A—H26A110.5
C5—C6—H6119.7C27—C26A—H26A110.5
C7—C6—H6119.7C25—C26A—H26B110.5
C6—C7—C2121.61 (17)C27—C26A—H26B110.5
C6—C7—H7119.2H26A—C26A—H26B108.7
C2—C7—H7119.2C25—C26B—C27106.1 (4)
O1—C8—C5120.02 (15)C25—C26B—H26C110.5
O1—C8—C9119.81 (15)C27—C26B—H26C110.5
C5—C8—C9120.18 (14)C25—C26B—H26D110.5
C8—C9—C29114.01 (13)C27—C26B—H26D110.5
C8—C9—C10114.25 (12)H26C—C26B—H26D108.7
C29—C9—C10103.91 (12)C26A—C27—C28102.8 (2)
C8—C9—H9108.1C26B—C27—C28105.2 (3)
C29—C9—H9108.1C26A—C27—H27A111.2
C10—C9—H9108.1C26B—C27—H27A134.8
N1—C10—C18110.53 (13)C28—C27—H27A111.2
N1—C10—C11117.08 (13)C26A—C27—H27B111.2
C18—C10—C11100.57 (12)C26B—C27—H27B80.5
N1—C10—C9102.76 (12)C28—C27—H27B111.2
C18—C10—C9111.31 (12)H27A—C27—H27B109.1
C11—C10—C9114.85 (13)C26A—C27—H27C81.8
C16—C11—C12119.52 (17)C26B—C27—H27C110.7
C16—C11—C10129.12 (16)C28—C27—H27C110.7
C12—C11—C10111.36 (14)H27B—C27—H27C131.5
C13—C12—C11121.29 (17)C26A—C27—H27D137.4
C13—C12—C17129.65 (17)C26B—C27—H27D110.7
C11—C12—C17109.04 (15)C28—C27—H27D110.7
C14—C13—C12118.4 (2)H27A—C27—H27D80.6
C14—C13—H13120.8H27C—C27—H27D108.8
C12—C13—H13120.8N1—C28—C27105.81 (14)
C15—C14—C13120.4 (2)N1—C28—C29105.24 (13)
C15—C14—H14119.8C27—C28—C29117.17 (16)
C13—C14—H14119.8N1—C28—H28109.4
C14—C15—C16121.2 (2)C27—C28—H28109.4
C14—C15—H15119.4C29—C28—H28109.4
C16—C15—H15119.4C30—C29—C28114.60 (14)
C15—C16—C11119.19 (19)C30—C29—C9114.75 (13)
C15—C16—H16120.4C28—C29—C9101.58 (12)
C11—C16—H16120.4C30—C29—H29108.5
N3—C17—C18123.40 (16)C28—C29—H29108.5
N3—C17—C12128.77 (15)C9—C29—H29108.5
C18—C17—C12107.82 (14)C31—C30—C35116.95 (16)
N2—C18—C17123.76 (14)C31—C30—C29121.17 (16)
N2—C18—C10125.07 (14)C35—C30—C29121.88 (15)
C17—C18—C10111.13 (14)C30—C31—C32121.4 (2)
N2—C19—C24118.70 (16)C30—C31—H31119.3
N2—C19—C20121.78 (16)C32—C31—H31119.3
C24—C19—C20119.51 (16)C33—C32—C31120.7 (2)
N3—C20—C21119.38 (17)C33—C32—H32119.6
N3—C20—C19121.89 (15)C31—C32—H32119.6
C21—C20—C19118.70 (18)C32—C33—C34119.07 (19)
C22—C21—C20120.5 (2)C32—C33—H33120.5
C22—C21—H21119.7C34—C33—H33120.5
C20—C21—H21119.7C33—C34—C35120.5 (2)
C21—C22—C23120.8 (2)C33—C34—H34119.8
C21—C22—H22119.6C35—C34—H34119.8
C23—C22—H22119.6C34—C35—C30121.40 (18)
C24—C23—C22120.7 (2)C34—C35—H35119.3
C24—C23—H23119.7C30—C35—H35119.3
C7—C2—C3—C41.2 (3)C11—C10—C18—N2175.19 (15)
C1—C2—C3—C4178.60 (18)C9—C10—C18—N253.1 (2)
C2—C3—C4—C51.2 (3)N1—C10—C18—C17121.43 (14)
C3—C4—C5—C60.3 (3)C11—C10—C18—C172.92 (16)
C3—C4—C5—C8179.86 (17)C9—C10—C18—C17125.04 (14)
C4—C5—C6—C70.6 (2)C18—N2—C19—C24177.85 (16)
C8—C5—C6—C7178.94 (15)C18—N2—C19—C201.2 (2)
C5—C6—C7—C20.6 (3)C17—N3—C20—C21179.83 (17)
C3—C2—C7—C60.3 (3)C17—N3—C20—C192.1 (2)
C1—C2—C7—C6179.50 (17)N2—C19—C20—N33.4 (3)
C6—C5—C8—O1168.12 (16)C24—C19—C20—N3175.65 (17)
C4—C5—C8—O111.4 (2)N2—C19—C20—C21178.59 (17)
C6—C5—C8—C912.4 (2)C24—C19—C20—C212.4 (3)
C4—C5—C8—C9168.10 (15)N3—C20—C21—C22176.3 (2)
O1—C8—C9—C2922.8 (2)C19—C20—C21—C221.8 (3)
C5—C8—C9—C29157.73 (13)C20—C21—C22—C230.5 (4)
O1—C8—C9—C1096.54 (17)C21—C22—C23—C242.2 (4)
C5—C8—C9—C1082.97 (17)C22—C23—C24—C191.5 (3)
C25—N1—C10—C18101.23 (19)N2—C19—C24—C23179.85 (19)
C28—N1—C10—C18126.38 (14)C20—C19—C24—C230.8 (3)
C25—N1—C10—C1113.1 (2)C28—N1—C25—C26B17.7 (7)
C28—N1—C10—C11119.32 (15)C10—N1—C25—C26B150.9 (7)
C25—N1—C10—C9139.91 (17)C28—N1—C25—C26A17.1 (4)
C28—N1—C10—C97.53 (16)C10—N1—C25—C26A116.0 (4)
C8—C9—C10—N1153.63 (13)N1—C25—C26A—C2730.8 (6)
C29—C9—C10—N128.79 (15)C26B—C25—C26A—C2767.3 (6)
C8—C9—C10—C1888.06 (16)N1—C25—C26B—C2725.4 (10)
C29—C9—C10—C18147.10 (13)C26A—C25—C26B—C2766.4 (6)
C8—C9—C10—C1125.37 (18)C25—C26A—C27—C26B66.4 (5)
C29—C9—C10—C1199.47 (15)C25—C26A—C27—C2831.9 (5)
N1—C10—C11—C1662.9 (2)C25—C26B—C27—C26A66.8 (6)
C18—C10—C11—C16177.41 (17)C25—C26B—C27—C2823.3 (10)
C9—C10—C11—C1657.8 (2)C25—N1—C28—C272.8 (2)
N1—C10—C11—C12117.55 (16)C10—N1—C28—C27141.40 (16)
C18—C10—C11—C122.19 (17)C25—N1—C28—C29121.90 (17)
C9—C10—C11—C12121.78 (15)C10—N1—C28—C2916.71 (17)
C16—C11—C12—C130.2 (3)C26A—C27—C28—N121.0 (4)
C10—C11—C12—C13179.43 (16)C26B—C27—C28—N112.6 (6)
C16—C11—C12—C17178.88 (16)C26A—C27—C28—C2995.9 (3)
C10—C11—C12—C170.76 (19)C26B—C27—C28—C29129.5 (6)
C11—C12—C13—C140.0 (3)N1—C28—C29—C30158.35 (13)
C17—C12—C13—C14178.36 (18)C27—C28—C29—C3084.43 (19)
C12—C13—C14—C150.4 (3)N1—C28—C29—C934.03 (16)
C13—C14—C15—C160.7 (4)C27—C28—C29—C9151.25 (16)
C14—C15—C16—C110.5 (3)C8—C9—C29—C3072.33 (18)
C12—C11—C16—C150.0 (3)C10—C9—C29—C30162.67 (14)
C10—C11—C16—C15179.59 (18)C8—C9—C29—C28163.45 (13)
C20—N3—C17—C180.9 (2)C10—C9—C29—C2838.46 (15)
C20—N3—C17—C12177.45 (16)C28—C29—C30—C31116.83 (19)
C13—C12—C17—N31.2 (3)C9—C29—C30—C31126.17 (19)
C11—C12—C17—N3179.73 (17)C28—C29—C30—C3562.5 (2)
C13—C12—C17—C18177.35 (18)C9—C29—C30—C3554.5 (2)
C11—C12—C17—C181.17 (19)C35—C30—C31—C320.1 (3)
C19—N2—C18—C171.9 (2)C29—C30—C31—C32179.2 (2)
C19—N2—C18—C10179.80 (14)C30—C31—C32—C330.5 (4)
N3—C17—C18—N23.2 (3)C31—C32—C33—C340.4 (4)
C12—C17—C18—N2175.48 (15)C32—C33—C34—C350.0 (4)
N3—C17—C18—C10178.68 (15)C33—C34—C35—C300.4 (3)
C12—C17—C18—C102.67 (18)C31—C30—C35—C340.3 (3)
N1—C10—C18—N260.5 (2)C29—C30—C35—C34179.62 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···O1i0.962.563.483 (2)161
C22—H22···O1ii0.932.483.361 (3)158
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC35H29N3O
Mr507.61
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)16.4102 (6), 16.4371 (6), 20.0648 (7)
V3)5412.2 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
47718, 6643, 3751
Rint0.044
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.144, 1.01
No. of reflections6643
No. of parameters363
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.25

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···O1i0.962.563.483 (2)161
C22—H22···O1ii0.932.483.361 (3)158
Symmetry codes: (i) x+1/2, y, z+3/2; (ii) x+1/2, y, z+1/2.
 

Acknowledgements

TS and DV thank TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for data collection and TS thanks DST for an Inspire fellowship.

References

First citationAmal Raj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–409.  Web of Science PubMed Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGayathri, D., Aravindan, P. G., Velmurugan, D., Ravikumar, K. & Sureshbabu, A. R. (2005). Acta Cryst. E61, o3124–o3126.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZarranz, B., Jago, A., Aldana, I. & Monge, A. (2003). Bioorg. Med. Chem. 11, 2149–2156.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds