organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2-Bis(4-but­­oxy­phen­yl)-1,1,1-tri­chloro­ethane

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

(Received 17 July 2012; accepted 18 July 2012; online 25 July 2012)

In the structure of the title compound, C22H27Cl3O2, which is the 4-but­oxy­phenyl analogue of the insecticidally active 4-meth­oxy­phenyl compound meth­oxy­chlor, the dihedral angle between the two benzene rings is 79.61 (11)°. Present also in the structure is an intra­molecular aromatic C—H⋯Cl inter­action.

Related literature

For background to the mode of action of DDT analogues, see: Läuger et al. (1944[Läuger, P., Martin, H. & Müller, P. H. (1944). Helv. Chim. Acta, 47, 892-928.]); Kennard & Smith (1980[Kennard, C. H. L. & Smith, G. (1980). Chem. Aust. 47, 399-404.]). For the structures of the insecticides DDT and meth­oxy­chlor, see: DeLacy & Kennard (1972[DeLacy, T. P. & Kennard, C. H. L. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 2148-2152.]); Smith et al. (1976[Smith, G., Kennard, C. H. L. & White, A. H. (1976). Aust. J. Chem. 29, 743-747.]).

[Scheme 1]

Experimental

Crystal data
  • C22H27Cl3O2

  • Mr = 429.79

  • Monoclinic, P 21 /c

  • a = 5.7871 (1) Å

  • b = 18.3112 (5) Å

  • c = 20.3988 (4) Å

  • β = 91.160 (2)°

  • V = 2161.19 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 200 K

  • 0.15 × 0.15 × 0.10 mm

Data collection
  • Oxford Gemini-S CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.951, Tmax = 0.981

  • 14149 measured reflections

  • 4245 independent reflections

  • 3486 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.110

  • S = 1.07

  • 4245 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2B—H2B⋯Cl3 0.93 2.69 3.361 (2) 130

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The title compound, C22H27Cl302, is the 4-butoxyphenyl analogue of the insecticide DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane] as well as the 4-methoxyphenyl analogue, also an insecticide (methoxychlor). Criteria for insecticidal activity of the DDT analogues have been described (Läuger et al., 1944; Kennard & Smith, 1980). The crystal structures of both DDT (DeLacy & Kennard, 1972) and methoxychlor (Smith et al., 1976) have been reported but there are no other structures of 4-alkoxyphenyl DDT derivatives in the crystallographic literature.

In the structure of the title compound (Fig. 1), the dihedral angle between the two phenyl planes is 79.61 (11)° which compares with 77.7° in the structure of methoxychlor (Smith et al., 1976) and 64.7° in DDT (DeLacy & Kennard, 1972). The conformations of the two butoxy side chains relative to their phenyl rings (A and B) are essentially identical [comparative torsion angles C3—C4—O4—C11, C4—O4—C11–C21, O4—C11—C21—C31 and C11—C21—C31—C41 are -173.0 (2), 167.44 (19), -62.3 (3), -177.8 (2)° (A) and -170.0 (2), 168.5 (2), -63.9 (3), -171.1 (3)° (B), respectively]. The B ring conformation is stabilized by an intramolecular aromatic C2B—H···Cl3 interaction (Table 1). Present in the crystal packing is a relatively short intermolecular Cl···Cl contact [3.4302 (9) Å] but no other significant interactions are found (Fig. 2).

Related literature top

For background to the mode of action of DDT analogues, see: Läuger et al. (1944); Kennard & Smith (1980). For the structures of the insecticides DDT and methoxychlor, see: DeLacy & Kennard (1972); Smith et al. (1976).

Experimental top

The title compound was obtained as an analytical reference standard from the US Public Health Service. Colourless crystal blocks suitable for X-ray analysis were obtained by room temperature evaporation of a solution in ethanol.

Refinement top

Hydrogen atoms were included in the refinement at calculated positions [C—H = 0.93–0.98 Å, with Uiso(H) = 1.2Ueq(C)(aromatic, methylene and methine) or 1.5Ueq(C)(methyl), using a riding-model approximation.

Structure description top

The title compound, C22H27Cl302, is the 4-butoxyphenyl analogue of the insecticide DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane] as well as the 4-methoxyphenyl analogue, also an insecticide (methoxychlor). Criteria for insecticidal activity of the DDT analogues have been described (Läuger et al., 1944; Kennard & Smith, 1980). The crystal structures of both DDT (DeLacy & Kennard, 1972) and methoxychlor (Smith et al., 1976) have been reported but there are no other structures of 4-alkoxyphenyl DDT derivatives in the crystallographic literature.

In the structure of the title compound (Fig. 1), the dihedral angle between the two phenyl planes is 79.61 (11)° which compares with 77.7° in the structure of methoxychlor (Smith et al., 1976) and 64.7° in DDT (DeLacy & Kennard, 1972). The conformations of the two butoxy side chains relative to their phenyl rings (A and B) are essentially identical [comparative torsion angles C3—C4—O4—C11, C4—O4—C11–C21, O4—C11—C21—C31 and C11—C21—C31—C41 are -173.0 (2), 167.44 (19), -62.3 (3), -177.8 (2)° (A) and -170.0 (2), 168.5 (2), -63.9 (3), -171.1 (3)° (B), respectively]. The B ring conformation is stabilized by an intramolecular aromatic C2B—H···Cl3 interaction (Table 1). Present in the crystal packing is a relatively short intermolecular Cl···Cl contact [3.4302 (9) Å] but no other significant interactions are found (Fig. 2).

For background to the mode of action of DDT analogues, see: Läuger et al. (1944); Kennard & Smith (1980). For the structures of the insecticides DDT and methoxychlor, see: DeLacy & Kennard (1972); Smith et al. (1976).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular conformation and atom numbering scheme for the title compound, with displacement ellipsoids drawn at the 40% probability level.
[Figure 2] Fig. 2. A perspective view of the crystal packing in the unit cell viewed down a.
2,2-Bis(4-butoxyphenyl)-1,1,1-trichloroethane top
Crystal data top
C22H27Cl3O2F(000) = 904
Mr = 429.79Dx = 1.321 Mg m3
Monoclinic, P21/cMelting point = 321–323 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.7871 (1) ÅCell parameters from 4362 reflections
b = 18.3112 (5) Åθ = 3.2–28.8°
c = 20.3988 (4) ŵ = 0.44 mm1
β = 91.160 (2)°T = 200 K
V = 2161.19 (8) Å3Block, colourless
Z = 40.15 × 0.15 × 0.10 mm
Data collection top
Oxford Gemini-S CCD area-detector
diffractometer
4245 independent reflections
Radiation source: Enhance (Mo) X-ray source3486 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 2222
Tmin = 0.951, Tmax = 0.981l = 2325
14149 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.8549P]
where P = (Fo2 + 2Fc2)/3
4245 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C22H27Cl3O2V = 2161.19 (8) Å3
Mr = 429.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.7871 (1) ŵ = 0.44 mm1
b = 18.3112 (5) ÅT = 200 K
c = 20.3988 (4) Å0.15 × 0.15 × 0.10 mm
β = 91.160 (2)°
Data collection top
Oxford Gemini-S CCD area-detector
diffractometer
4245 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3486 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.981Rint = 0.035
14149 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.07Δρmax = 0.35 e Å3
4245 reflectionsΔρmin = 0.18 e Å3
244 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.48915 (12)0.34506 (4)0.74543 (3)0.0482 (2)
Cl20.56526 (11)0.19339 (4)0.77193 (3)0.0427 (2)
Cl30.11570 (10)0.24145 (4)0.72992 (3)0.0414 (2)
O4A0.2523 (3)0.03999 (8)0.55790 (8)0.0337 (5)
O4B0.2658 (3)0.45228 (9)0.44987 (8)0.0366 (5)
C10.4168 (4)0.25582 (13)0.71850 (11)0.0314 (7)
C1A0.4329 (4)0.16819 (12)0.62234 (11)0.0270 (6)
C1B0.4276 (4)0.30454 (11)0.59910 (11)0.0269 (6)
C20.4927 (4)0.24406 (12)0.64762 (11)0.0284 (7)
C2A0.2207 (4)0.15300 (12)0.59082 (11)0.0288 (7)
C2B0.2214 (4)0.34358 (12)0.59692 (11)0.0320 (7)
C3A0.1674 (4)0.08342 (12)0.56947 (11)0.0285 (7)
C3B0.1743 (4)0.39339 (12)0.54757 (11)0.0311 (7)
C4A0.3241 (4)0.02695 (12)0.57889 (11)0.0279 (7)
C4B0.3318 (4)0.40494 (11)0.49815 (11)0.0286 (7)
C5A0.5381 (4)0.04132 (13)0.60786 (12)0.0327 (7)
C5B0.5411 (4)0.36850 (12)0.50109 (11)0.0332 (7)
C6A0.5886 (4)0.11156 (12)0.62884 (12)0.0325 (7)
C6B0.5860 (4)0.31939 (12)0.55096 (11)0.0310 (7)
C11A0.3962 (4)0.10180 (12)0.57314 (12)0.0345 (7)
C11B0.4096 (5)0.45527 (14)0.39336 (12)0.0404 (8)
C21A0.2577 (4)0.16968 (12)0.55871 (12)0.0353 (8)
C21B0.2872 (5)0.49745 (15)0.34070 (13)0.0474 (9)
C31A0.0447 (4)0.17793 (14)0.59953 (13)0.0411 (8)
C31B0.0676 (5)0.46320 (17)0.31572 (15)0.0584 (11)
C41A0.0850 (5)0.24830 (15)0.58550 (15)0.0555 (10)
C41B0.0314 (7)0.5020 (2)0.25494 (19)0.0901 (16)
H20.661900.245000.650100.0340*
H2A0.114200.190400.584200.0340*
H2B0.113200.336000.629300.0380*
H3A0.025800.074400.548700.0340*
H3B0.036200.419400.547400.0370*
H5A0.646500.004200.613100.0390*
H5B0.651400.377100.469500.0400*
H6A0.732800.120900.648000.0390*
H6B0.727700.295400.552300.0370*
H11A0.443700.100700.619000.0410*
H11B0.441900.406200.378100.0480*
H12A0.533600.100900.546700.0410*
H12B0.555300.478700.404700.0480*
H21A0.356100.211900.565900.0420*
H21B0.390600.503500.304300.0570*
H22A0.211200.169300.512800.0420*
H22B0.252100.545700.357400.0570*
H31A0.057600.136900.591000.0490*
H31B0.045900.464400.350100.0700*
H32A0.089700.176600.645600.0490*
H32B0.096800.412400.305100.0700*
H41A0.218100.250900.612700.0830*
H41B0.172800.478600.241200.1350*
H42A0.014400.289200.594700.0830*
H42B0.077900.499400.220200.1350*
H43A0.133500.249400.540200.0830*
H43B0.061300.552200.265200.1350*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0668 (4)0.0431 (4)0.0344 (3)0.0102 (3)0.0077 (3)0.0077 (3)
Cl20.0421 (3)0.0535 (4)0.0324 (3)0.0020 (3)0.0047 (3)0.0116 (3)
Cl30.0317 (3)0.0603 (4)0.0324 (3)0.0021 (3)0.0060 (2)0.0022 (3)
O4A0.0360 (9)0.0260 (8)0.0385 (9)0.0029 (7)0.0114 (7)0.0006 (7)
O4B0.0472 (10)0.0334 (9)0.0294 (9)0.0045 (7)0.0049 (8)0.0043 (7)
C10.0288 (11)0.0377 (13)0.0276 (12)0.0036 (10)0.0033 (10)0.0003 (10)
C1A0.0239 (11)0.0311 (11)0.0262 (11)0.0030 (9)0.0027 (9)0.0033 (9)
C1B0.0284 (11)0.0252 (11)0.0270 (11)0.0071 (9)0.0008 (9)0.0051 (9)
C20.0239 (11)0.0325 (12)0.0287 (11)0.0032 (9)0.0003 (9)0.0013 (10)
C2A0.0265 (11)0.0299 (12)0.0298 (12)0.0034 (9)0.0025 (9)0.0040 (10)
C2B0.0288 (12)0.0381 (13)0.0292 (12)0.0021 (10)0.0063 (10)0.0004 (10)
C3A0.0242 (11)0.0327 (12)0.0284 (12)0.0009 (9)0.0049 (9)0.0017 (10)
C3B0.0286 (11)0.0322 (12)0.0327 (12)0.0016 (9)0.0030 (10)0.0035 (10)
C4A0.0306 (12)0.0280 (11)0.0252 (11)0.0004 (9)0.0002 (9)0.0020 (9)
C4B0.0362 (12)0.0229 (11)0.0267 (11)0.0048 (9)0.0011 (10)0.0033 (9)
C5A0.0258 (11)0.0342 (13)0.0378 (13)0.0036 (10)0.0035 (10)0.0041 (10)
C5B0.0355 (12)0.0340 (12)0.0305 (12)0.0028 (10)0.0089 (10)0.0012 (10)
C6A0.0223 (11)0.0383 (13)0.0369 (13)0.0027 (9)0.0026 (10)0.0031 (11)
C6B0.0292 (12)0.0312 (12)0.0326 (12)0.0003 (9)0.0022 (10)0.0030 (10)
C11A0.0340 (12)0.0343 (13)0.0352 (13)0.0057 (10)0.0023 (10)0.0053 (10)
C11B0.0507 (15)0.0379 (13)0.0329 (13)0.0036 (12)0.0093 (12)0.0008 (11)
C21A0.0439 (14)0.0260 (12)0.0359 (13)0.0054 (10)0.0034 (11)0.0011 (10)
C21B0.0691 (19)0.0395 (14)0.0340 (14)0.0006 (13)0.0078 (13)0.0041 (12)
C31A0.0454 (15)0.0387 (14)0.0389 (14)0.0053 (11)0.0031 (12)0.0008 (11)
C31B0.064 (2)0.0591 (19)0.0518 (18)0.0070 (15)0.0039 (15)0.0013 (15)
C41A0.0625 (18)0.0533 (17)0.0504 (17)0.0198 (14)0.0050 (15)0.0034 (14)
C41B0.105 (3)0.098 (3)0.066 (2)0.027 (2)0.031 (2)0.012 (2)
Geometric parameters (Å, º) top
Cl1—C11.771 (2)C2—H20.9800
Cl2—C11.787 (2)C2A—H2A0.9300
Cl3—C11.782 (2)C2B—H2B0.9300
O4A—C4A1.361 (3)C3A—H3A0.9300
O4A—C11A1.436 (3)C3B—H3B0.9300
O4B—C4B1.361 (3)C5A—H5A0.9300
O4B—C11B1.436 (3)C5B—H5B0.9300
C1—C21.535 (3)C6A—H6A0.9300
C1A—C21.519 (3)C6B—H6B0.9300
C1A—C2A1.402 (3)C11A—H11A0.9700
C1A—C6A1.378 (3)C11A—H12A0.9700
C1B—C21.527 (3)C11B—H11B0.9700
C1B—C2B1.391 (3)C11B—H12B0.9700
C1B—C6B1.384 (3)C21A—H21A0.9700
C2A—C3A1.379 (3)C21A—H22A0.9700
C2B—C3B1.382 (3)C21B—H21B0.9700
C3A—C4A1.386 (3)C21B—H22B0.9700
C3B—C4B1.389 (3)C31A—H31A0.9700
C4A—C5A1.387 (3)C31A—H32A0.9700
C4B—C5B1.383 (3)C31B—H31B0.9700
C5A—C6A1.385 (3)C31B—H32B0.9700
C5B—C6B1.379 (3)C41A—H41A0.9600
C11A—C21A1.505 (3)C41A—H42A0.9600
C11B—C21B1.490 (4)C41A—H43A0.9600
C21A—C31A1.509 (3)C41B—H41B0.9600
C21B—C31B1.497 (4)C41B—H42B0.9600
C31A—C41A1.516 (4)C41B—H43B0.9600
C31B—C41B1.530 (5)
C4A—O4A—C11A118.04 (18)C6A—C5A—H5A120.00
C4B—O4B—C11B116.51 (19)C4B—C5B—H5B120.00
Cl1—C1—Cl2107.05 (12)C6B—C5B—H5B120.00
Cl1—C1—Cl3108.74 (13)C1A—C6A—H6A119.00
Cl1—C1—C2110.56 (16)C5A—C6A—H6A119.00
Cl2—C1—Cl3106.56 (12)C1B—C6B—H6B119.00
Cl2—C1—C2109.97 (16)C5B—C6B—H6B119.00
Cl3—C1—C2113.68 (16)O4A—C11A—H11A110.00
C2—C1A—C2A121.9 (2)O4A—C11A—H12A110.00
C2—C1A—C6A120.8 (2)C21A—C11A—H11A110.00
C2A—C1A—C6A117.4 (2)C21A—C11A—H12A110.00
C2—C1B—C2B126.4 (2)H11A—C11A—H12A108.00
C2—C1B—C6B116.4 (2)O4B—C11B—H11B110.00
C2B—C1B—C6B117.2 (2)O4B—C11B—H12B110.00
C1—C2—C1A112.36 (19)C21B—C11B—H11B110.00
C1—C2—C1B115.93 (19)C21B—C11B—H12B110.00
C1A—C2—C1B113.05 (18)H11B—C11B—H12B108.00
C1A—C2A—C3A121.1 (2)C11A—C21A—H21A109.00
C1B—C2B—C3B121.3 (2)C11A—C21A—H22A109.00
C2A—C3A—C4A120.3 (2)C31A—C21A—H21A109.00
C2B—C3B—C4B120.5 (2)C31A—C21A—H22A109.00
O4A—C4A—C3A115.7 (2)H21A—C21A—H22A108.00
O4A—C4A—C5A124.7 (2)C11B—C21B—H21B109.00
C3A—C4A—C5A119.6 (2)C11B—C21B—H22B109.00
O4B—C4B—C3B116.3 (2)C31B—C21B—H21B109.00
O4B—C4B—C5B124.9 (2)C31B—C21B—H22B109.00
C3B—C4B—C5B118.8 (2)H21B—C21B—H22B108.00
C4A—C5A—C6A119.3 (2)C21A—C31A—H31A109.00
C4B—C5B—C6B119.9 (2)C21A—C31A—H32A109.00
C1A—C6A—C5A122.4 (2)C41A—C31A—H31A109.00
C1B—C6B—C5B122.3 (2)C41A—C31A—H32A109.00
O4A—C11A—C21A107.73 (18)H31A—C31A—H32A108.00
O4B—C11B—C21B108.9 (2)C21B—C31B—H31B109.00
C11A—C21A—C31A114.4 (2)C21B—C31B—H32B109.00
C11B—C21B—C31B114.6 (2)C41B—C31B—H31B109.00
C21A—C31A—C41A112.8 (2)C41B—C31B—H32B109.00
C21B—C31B—C41B112.5 (3)H31B—C31B—H32B108.00
C1—C2—H2105.00C31A—C41A—H41A109.00
C1A—C2—H2105.00C31A—C41A—H42A109.00
C1B—C2—H2105.00C31A—C41A—H43A109.00
C1A—C2A—H2A120.00H41A—C41A—H42A109.00
C3A—C2A—H2A119.00H41A—C41A—H43A109.00
C1B—C2B—H2B119.00H42A—C41A—H43A109.00
C3B—C2B—H2B119.00C31B—C41B—H41B109.00
C2A—C3A—H3A120.00C31B—C41B—H42B109.00
C4A—C3A—H3A120.00C31B—C41B—H43B110.00
C2B—C3B—H3B120.00H41B—C41B—H42B109.00
C4B—C3B—H3B120.00H41B—C41B—H43B110.00
C4A—C5A—H5A120.00H42B—C41B—H43B109.00
C11A—O4A—C4A—C3A173.0 (2)C6B—C1B—C2—C1144.1 (2)
C11A—O4A—C4A—C5A7.3 (3)C6B—C1B—C2—C1A84.1 (2)
C4A—O4A—C11A—C21A167.44 (19)C2—C1B—C2B—C3B175.0 (2)
C11B—O4B—C4B—C3B170.0 (2)C6B—C1B—C2B—C3B1.9 (3)
C11B—O4B—C4B—C5B10.1 (3)C2—C1B—C6B—C5B174.8 (2)
C4B—O4B—C11B—C21B168.5 (2)C2B—C1B—C6B—C5B2.5 (3)
Cl1—C1—C2—C1A179.73 (16)C1A—C2A—C3A—C4A0.0 (3)
Cl1—C1—C2—C1B47.6 (2)C1B—C2B—C3B—C4B0.9 (3)
Cl2—C1—C2—C1A62.3 (2)C2A—C3A—C4A—O4A178.1 (2)
Cl2—C1—C2—C1B165.60 (16)C2A—C3A—C4A—C5A2.2 (3)
Cl3—C1—C2—C1A57.1 (2)C2B—C3B—C4B—O4B176.8 (2)
Cl3—C1—C2—C1B75.0 (2)C2B—C3B—C4B—C5B3.3 (3)
C2A—C1A—C2—C189.6 (3)O4A—C4A—C5A—C6A178.2 (2)
C2A—C1A—C2—C1B44.0 (3)C3A—C4A—C5A—C6A2.1 (3)
C6A—C1A—C2—C191.4 (3)O4B—C4B—C5B—C6B177.3 (2)
C6A—C1A—C2—C1B135.1 (2)C3B—C4B—C5B—C6B2.8 (3)
C2—C1A—C2A—C3A178.6 (2)C4A—C5A—C6A—C1A0.4 (4)
C6A—C1A—C2A—C3A2.4 (3)C4B—C5B—C6B—C1B0.1 (3)
C2—C1A—C6A—C5A178.4 (2)O4A—C11A—C21A—C31A62.3 (3)
C2A—C1A—C6A—C5A2.5 (4)O4B—C11B—C21B—C31B63.9 (3)
C2B—C1B—C2—C138.9 (3)C11A—C21A—C31A—C41A177.8 (2)
C2B—C1B—C2—C1A92.9 (3)C11B—C21B—C31B—C41B171.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2B—H2B···Cl30.932.693.361 (2)130

Experimental details

Crystal data
Chemical formulaC22H27Cl3O2
Mr429.79
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)5.7871 (1), 18.3112 (5), 20.3988 (4)
β (°) 91.160 (2)
V3)2161.19 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.15 × 0.15 × 0.10
Data collection
DiffractometerOxford Gemini-S CCD area-detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.951, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
14149, 4245, 3486
Rint0.035
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.110, 1.07
No. of reflections4245
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.18

Computer programs: CrysAlis PRO (Agilent, 2012), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2B—H2B···Cl30.93002.69003.361 (2)130.00
 

Acknowledgements

The author acknowledges financial support from the Australian Research Council, and from the Science and Engineering Faculty and the University Library, Queensland University of Technology.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDeLacy, T. P. & Kennard, C. H. L. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 2148–2152.  CrossRef Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKennard, C. H. L. & Smith, G. (1980). Chem. Aust. 47, 399–404.  CAS Google Scholar
First citationLäuger, P., Martin, H. & Müller, P. H. (1944). Helv. Chim. Acta, 47, 892–928.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Kennard, C. H. L. & White, A. H. (1976). Aust. J. Chem. 29, 743–747.  CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds