metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-bis­­(di­phenyl­phosphan­yl)methane-κ2P:P′]bis­­[(iso­quinoline-κN)silver(I)] bis­­(tri­fluoro­methane­sulfonate)–iso­quinoline (1/1)

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China, and bThe College of Materials Science and Engineering, Beijing University of Technology, Beijing 100022, People's Republic of China
*Correspondence e-mail: jinqh204@163.com

(Received 3 May 2012; accepted 27 June 2012; online 4 July 2012)

The title complex, [Ag2(C25H22P2)2(C9H7N)2](CF3SO3)2·C9H7N, was prepared by the reaction of silver(I) trifluoro­methane­sulfonate with isoquinoline and bis­(diphenyl­phosphan­yl)methane (dppm). The dinuclear mol­ecule is located about a center of inversion and the AgI atom is coordinated by two dppm P atoms and one isoquinoline N atom, forming an eight-membered metalla ring. In addition, in the asymmetric unit, there is a half-mol­ecule of isoquinoline located about a center of inversion. Since this mol­ecule does not possess this symmetry, for one position in the ring there is superposition of both a C atom of a C—H group and the isoquinoline N atom. In the structure, the Ag—P distances [2.4296 (9) and 2.4368 (9) Å] agree with the corresponding distances in related structures, while the Ag—N bond length [2.489 (3) Å] is slightly longer than that in related structures. On the other hand, the P—Ag—P angle [156.44 (3)°] is much larger than the corresponding angles in related structures. The trifluoro­methane­sulfonate anions do not coordinate to AgI atoms. As is usually found for these anions, the –CF3 group is disordered over two orientations [occupancies = 0.57 (12) and 0.43 (12)].

Related literature

For background to silver(I) complexes, see: Bowmaker et al. (1993[Bowmaker, G. A., Effendy, H. J. V., Healy, P. C., Skelton, B. W. & White, A. H. (1993). J. Chem. Soc. Dalton Trans. pp. 1387-1397.]); Cui et al. (2010a[Cui, L.-N., Hu, K.-Y., Jin, Q.-H. & Zhang, C.-L. (2010a). Acta Cryst. E66, m871.],b[Cui, L.-N., Jin, Q.-H., Hu, K.-Y. & Zhang, C.-L. (2010b). Acta Cryst. E66, m969.]); Jin et al. (2010a[Jin, Q. H., Hu, K. Y., Song, L. L., Wang, R., Zhang, C. L., Zuo, X. & Lu, X. M. (2010a). Polyhedron, 29, 441-445.],b[Jin, Q. H., Song, L. L., Hu, K. Y., Zhou, L. L., Zhang, Y. Y. & Wang, R. (2010b). Inorg. Chem. Commun. 13, 62-65.]); Meijboom et al. (2009[Meijboom, R., Bowen, R. J., Berners, P. & Susan, J. (2009). Coord. Chem. Rev. 253, 325-342.]); Mu et al. (2010[Mu, K. J., Wang, R., Hu, K. Y., Cui, L. N., Liu, H., Jin, Q. H. & Zhang, C. L. (2010). Z. Kristallogr. New Cryst. Struct. 225, 645-648.]). For related structures, see: Jin et al. (2008[Jin, Q. H., Hu, K. Y., Chen, L. M., Sun, J. J., Yang, L. & Li, P. Z. (2008). Z. Kristallogr. New Cryst. Struct. 223, 79-81.]); Song et al. (2010[Song, L.-L., Cui, L.-N., Jin, Q.-H. & Zhang, C.-L. (2010). Acta Cryst. E66, m1237-m1238.]); Wu et al. (2009[Wu, J.-Q., Jin, Q.-H., Hu, K.-Y. & Zhang, C.-L. (2009). Acta Cryst. E65, m1096-m1097.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C25H22P2)2(C9H7N)2](CF3O3S)2·C9H7N

  • Mr = 1670.08

  • Triclinic, [P \overline 1]

  • a = 11.7730 (11) Å

  • b = 11.9269 (12) Å

  • c = 15.4151 (17) Å

  • α = 106.696 (1)°

  • β = 100.382 (1)°

  • γ = 110.289 (2)°

  • V = 1847.9 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 298 K

  • 0.48 × 0.39 × 0.35 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.717, Tmax = 0.781

  • 9230 measured reflections

  • 6407 independent reflections

  • 4969 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.103

  • S = 1.03

  • 6407 reflections

  • 497 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.57 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The coordination chemistry of silver(I) is of considerable interest because of its luminescence properties and potential applications in catalysis, cyanide, photography antimicrobial activities and electrochemical processes (Bowmaker et al., 1993; Cui et al., 2010a, 2010b; Jin et al., 2010a, 2010b; Meijboom et al., 2009;). Nitrogen heterocyclic ligands play significant roles in the construction of d10 metal complexes with phosphine ligands. For examples,[Ag4(SCN)4(dppm)2] (Jin et al., 2008), [Ag(SCN)(dppm)]2 (Song et al., 2010), [Ag(ClO4)(PPh3)3] (Cui et al., 2010a), [Ag(ClO4)(PPh3)3(MeOH)] (Cui et al., 2010b) and [Ag(PPh3)(CH3COO)]2.H2O.CH3OH (Mu et al., 2010) were prepared under the catalysis of nitrogen heterocyclic ligands. Here we report the first silver (I) complex which combines isoquinoline and bis(diphenylphosphine)methane, [Ag2(dppm)2(C9H7N)2](CF3SO3)2.C9H7N

In the compound, C79H65Ag2F6N3O6P4S2, the molecule is located on a center of inversion and each silver atom is coordinated by two phosphorus atoms from dppm and one nitrogen from isoquinoline to form a eight-member ring. In addition, in the asymmetric unit there is half a molecule of isoquinoline located on a center of inversion. Since this molecule does not possess this symmetry, for one position in the ring there is superposition of both a C-H and N.

In the compound, Ag—P distances (2.4296 (2)–2.4368 (9) Å), agree with the corresponding distances in [Ag4(SCN)4(dppm)2] (2.399 Å) and [Ag(SCN)(dppm)]2 (2.450 (2),2.451 (2)). The Ag—N bond distance(2.489 (3) Å) is longer than that in [Ag(C12H8N2)(C18H15P)(2.376 (8) Å) (Wu et al., 2009). The P—Ag—P angle (156.44°) is much larger than the corresponding angles in [Ag(SCN)(dppm)]2 (120.0 and 120.8 (1)°). The trifluoromethanesulfonate anions do not coordinate to silver atoms. As is usually found for these anions, the CF3 group is disordered over two orientations with occupancies of 0.57 (12)/0.43 (12).

Related literature top

For background to silver(I) complexes, see: Bowmaker et al. (1993); Cui et al. (2010a,b); Jin et al. (2010a,b); Meijboom et al. (2009); Mu et al. (2010). For related structures, see: Jin et al. (2008); Song et al. (2010); Wu et al. (2009).

Experimental top

A mixture of silver(I) trifluoromethanesulfonate, bis(diphenylphosphanyl)methane (molar ratio 1:1) and isoquinoline (0.5 ml) in the mixed solution of CH3OH (5 ml) and CH2Cl2(5 ml) was stirred for 5 h at ambient temperature. The insoluble residues were removed by filtration, and the filtrate was evaporated slowly at room temperature for about one month to yield white crystals. Crystals suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared.

Refinement top

Metal atom centers were located from the E-maps and other non-hydrogen atoms were located in successive difference Fourier syntheses. The final refinements were performed by full matrix least-squares methods with anisotropic thermal parameters for non-hydrogen atoms on F2.

The final refinements were performed with isotropic thermal parameters. All hydrogen atoms were located in the calculated sites and included in the final refinement in the riding model approximation with displacement parameters derived from the parent atoms to which they were bonded.

Data collection: SMART (Bruker, 2007); cell refinement: SAINTPlus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Structure description top

The coordination chemistry of silver(I) is of considerable interest because of its luminescence properties and potential applications in catalysis, cyanide, photography antimicrobial activities and electrochemical processes (Bowmaker et al., 1993; Cui et al., 2010a, 2010b; Jin et al., 2010a, 2010b; Meijboom et al., 2009;). Nitrogen heterocyclic ligands play significant roles in the construction of d10 metal complexes with phosphine ligands. For examples,[Ag4(SCN)4(dppm)2] (Jin et al., 2008), [Ag(SCN)(dppm)]2 (Song et al., 2010), [Ag(ClO4)(PPh3)3] (Cui et al., 2010a), [Ag(ClO4)(PPh3)3(MeOH)] (Cui et al., 2010b) and [Ag(PPh3)(CH3COO)]2.H2O.CH3OH (Mu et al., 2010) were prepared under the catalysis of nitrogen heterocyclic ligands. Here we report the first silver (I) complex which combines isoquinoline and bis(diphenylphosphine)methane, [Ag2(dppm)2(C9H7N)2](CF3SO3)2.C9H7N

In the compound, C79H65Ag2F6N3O6P4S2, the molecule is located on a center of inversion and each silver atom is coordinated by two phosphorus atoms from dppm and one nitrogen from isoquinoline to form a eight-member ring. In addition, in the asymmetric unit there is half a molecule of isoquinoline located on a center of inversion. Since this molecule does not possess this symmetry, for one position in the ring there is superposition of both a C-H and N.

In the compound, Ag—P distances (2.4296 (2)–2.4368 (9) Å), agree with the corresponding distances in [Ag4(SCN)4(dppm)2] (2.399 Å) and [Ag(SCN)(dppm)]2 (2.450 (2),2.451 (2)). The Ag—N bond distance(2.489 (3) Å) is longer than that in [Ag(C12H8N2)(C18H15P)(2.376 (8) Å) (Wu et al., 2009). The P—Ag—P angle (156.44°) is much larger than the corresponding angles in [Ag(SCN)(dppm)]2 (120.0 and 120.8 (1)°). The trifluoromethanesulfonate anions do not coordinate to silver atoms. As is usually found for these anions, the CF3 group is disordered over two orientations with occupancies of 0.57 (12)/0.43 (12).

For background to silver(I) complexes, see: Bowmaker et al. (1993); Cui et al. (2010a,b); Jin et al. (2010a,b); Meijboom et al. (2009); Mu et al. (2010). For related structures, see: Jin et al. (2008); Song et al. (2010); Wu et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ionic entities of the title compound, showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level.
Bis[µ-bis(diphenylphosphanyl)methane- κ2P:P']bis[(isoquinoline-κN)silver(I)] bis(trifluoromethanesulfonate)–isoquinoline (1/1) top
Crystal data top
[Ag2(C25H22P2)2(C9H7N)2](CF3O3S)2·C9H7NZ = 1
Mr = 1670.08F(000) = 848
Triclinic, P1Dx = 1.501 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.7730 (11) ÅCell parameters from 4635 reflections
b = 11.9269 (12) Åθ = 2.5–28.1°
c = 15.4151 (17) ŵ = 0.74 mm1
α = 106.696 (1)°T = 298 K
β = 100.382 (1)°Prism, white
γ = 110.289 (2)°0.48 × 0.39 × 0.35 mm
V = 1847.9 (3) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
6407 independent reflections
Radiation source: fine-focus sealed tube4969 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
phi and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1314
Tmin = 0.717, Tmax = 0.781k = 1314
9230 measured reflectionsl = 1816
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0425P)2 + 1.3004P]
where P = (Fo2 + 2Fc2)/3
6407 reflections(Δ/σ)max = 0.001
497 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Ag2(C25H22P2)2(C9H7N)2](CF3O3S)2·C9H7Nγ = 110.289 (2)°
Mr = 1670.08V = 1847.9 (3) Å3
Triclinic, P1Z = 1
a = 11.7730 (11) ÅMo Kα radiation
b = 11.9269 (12) ŵ = 0.74 mm1
c = 15.4151 (17) ÅT = 298 K
α = 106.696 (1)°0.48 × 0.39 × 0.35 mm
β = 100.382 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
6407 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4969 reflections with I > 2σ(I)
Tmin = 0.717, Tmax = 0.781Rint = 0.026
9230 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.03Δρmax = 0.63 e Å3
6407 reflectionsΔρmin = 0.57 e Å3
497 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.52538 (2)0.63477 (3)0.59947 (2)0.04145 (11)
F10.401 (2)0.509 (5)0.1002 (15)0.115 (8)0.57 (12)
F20.194 (4)0.430 (4)0.0409 (18)0.099 (6)0.57 (12)
F30.283 (8)0.305 (4)0.0602 (16)0.114 (11)0.57 (12)
F1'0.225 (5)0.290 (3)0.061 (2)0.101 (7)0.43 (12)
F2'0.406 (3)0.450 (9)0.0954 (18)0.123 (12)0.43 (12)
F3'0.233 (7)0.462 (6)0.037 (2)0.095 (9)0.43 (12)
N10.5661 (3)0.8428 (3)0.7245 (2)0.0493 (8)
N20.641 (11)0.001 (13)0.139 (8)0.12 (12)0.50
O10.3089 (4)0.6036 (3)0.2444 (2)0.0848 (11)
O20.3653 (4)0.4369 (4)0.2676 (2)0.0887 (11)
O30.1465 (4)0.3951 (4)0.2050 (3)0.1093 (15)
P10.73017 (8)0.71398 (8)0.57100 (6)0.0300 (2)
P20.70533 (8)0.45711 (8)0.44043 (6)0.0304 (2)
S10.27513 (11)0.46881 (11)0.21639 (7)0.0556 (3)
C10.6518 (4)0.8795 (4)0.8064 (3)0.0489 (10)
H10.66670.81620.82380.059*
C20.5452 (4)0.9371 (4)0.7002 (3)0.0606 (12)
H20.48470.91230.64230.073*
C30.6075 (4)1.0645 (4)0.7555 (3)0.0618 (12)
H30.58921.12470.73570.074*
C40.7006 (4)1.1052 (4)0.8437 (3)0.0551 (11)
C50.7229 (4)1.0103 (4)0.8701 (3)0.0499 (10)
C60.8170 (5)1.0448 (5)0.9551 (3)0.0677 (13)
H60.83170.98140.97250.081*
C70.8866 (5)1.1717 (6)1.0119 (4)0.0865 (18)
H70.94911.19481.06830.104*
C80.8658 (6)1.2661 (6)0.9871 (4)0.0915 (19)
H80.91501.35231.02690.110*
C90.7745 (5)1.2365 (5)0.9052 (4)0.0777 (16)
H90.76091.30180.88990.093*
C100.8032 (3)0.5997 (3)0.5509 (2)0.0325 (8)
H10A0.81220.57270.60440.039*
H10B0.88760.64190.54650.039*
C110.8524 (3)0.8601 (3)0.6680 (2)0.0356 (8)
C120.8431 (4)0.9755 (4)0.6772 (3)0.0443 (9)
H120.77790.97610.63340.053*
C130.9295 (4)1.0896 (4)0.7509 (3)0.0587 (12)
H130.92221.16640.75650.070*
C141.0252 (5)1.0893 (5)0.8153 (3)0.0699 (15)
H141.08411.16620.86440.084*
C151.0349 (4)0.9760 (5)0.8078 (3)0.0684 (14)
H151.09990.97660.85250.082*
C160.9488 (4)0.8598 (4)0.7342 (3)0.0509 (10)
H160.95600.78330.72960.061*
C170.7319 (3)0.7611 (3)0.4689 (2)0.0335 (8)
C180.8460 (3)0.8180 (4)0.4524 (3)0.0412 (9)
H180.92230.83550.49530.049*
C190.8473 (4)0.8488 (4)0.3733 (3)0.0530 (11)
H190.92440.88750.36300.064*
C200.7351 (5)0.8226 (4)0.3095 (3)0.0579 (12)
H200.73620.84300.25570.069*
C210.6221 (5)0.7669 (4)0.3246 (3)0.0588 (12)
H210.54620.74880.28080.071*
C220.6197 (4)0.7370 (4)0.4048 (3)0.0439 (9)
H220.54250.70070.41560.053*
C230.7693 (3)0.4931 (3)0.3477 (2)0.0335 (8)
C240.8969 (4)0.5276 (4)0.3545 (3)0.0482 (10)
H240.95370.53610.40900.058*
C250.9397 (4)0.5496 (4)0.2798 (3)0.0609 (12)
H251.02470.57060.28370.073*
C260.8566 (5)0.5401 (4)0.2009 (3)0.0664 (14)
H260.88570.55560.15140.080*
C270.7308 (5)0.5080 (4)0.1941 (3)0.0601 (12)
H270.67520.50280.14030.072*
C280.6864 (4)0.4834 (4)0.2666 (3)0.0440 (9)
H280.60070.46020.26120.053*
C290.7519 (3)0.3338 (3)0.4608 (2)0.0341 (8)
C300.7968 (3)0.2631 (4)0.3987 (3)0.0419 (9)
H300.81260.28360.34700.050*
C310.8182 (4)0.1615 (4)0.4140 (3)0.0517 (10)
H310.84830.11450.37230.062*
C320.7953 (4)0.1303 (4)0.4895 (3)0.0565 (11)
H320.80930.06200.49900.068*
C330.7515 (4)0.1998 (4)0.5517 (3)0.0553 (11)
H330.73700.17910.60360.066*
C340.7290 (4)0.3006 (4)0.5373 (3)0.0433 (9)
H340.69820.34650.57910.052*
C350.2884 (7)0.4224 (6)0.0981 (4)0.0783 (16)
C360.641 (14)0.001 (15)0.139 (10)0.12 (14)0.50
H360.70010.02330.19690.144*0.50
C370.6164 (7)0.0911 (10)0.1179 (5)0.118 (3)
H370.65710.17560.16230.142*
C380.5330 (5)0.0643 (6)0.0327 (4)0.0837 (18)
C390.5054 (8)0.1618 (8)0.0075 (6)0.115 (2)
H390.54560.24810.04870.137*
C400.4179 (8)0.1228 (10)0.0790 (7)0.115 (3)
H400.39880.18410.09660.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.03004 (16)0.04394 (19)0.04563 (19)0.01163 (13)0.01270 (12)0.01485 (13)
F10.135 (9)0.147 (18)0.098 (6)0.068 (10)0.082 (6)0.057 (8)
F20.128 (14)0.105 (10)0.051 (5)0.035 (10)0.003 (7)0.045 (5)
F30.17 (3)0.111 (11)0.079 (5)0.102 (18)0.034 (11)0.014 (5)
F1'0.111 (17)0.098 (9)0.076 (7)0.068 (10)0.008 (8)0.007 (6)
F2'0.116 (10)0.16 (3)0.110 (9)0.069 (15)0.063 (8)0.034 (14)
F3'0.14 (2)0.099 (17)0.055 (6)0.057 (16)0.026 (11)0.039 (9)
N10.0474 (19)0.041 (2)0.046 (2)0.0123 (16)0.0156 (16)0.0056 (16)
N20.10 (18)0.2 (3)0.1 (2)0.06 (18)0.03 (15)0.03 (19)
O10.111 (3)0.057 (2)0.070 (2)0.032 (2)0.020 (2)0.0112 (17)
O20.099 (3)0.094 (3)0.065 (2)0.040 (2)0.0066 (19)0.039 (2)
O30.077 (3)0.116 (3)0.101 (3)0.003 (2)0.025 (2)0.044 (3)
P10.0269 (4)0.0286 (5)0.0297 (5)0.0088 (4)0.0092 (4)0.0081 (4)
P20.0277 (4)0.0300 (5)0.0302 (5)0.0111 (4)0.0088 (4)0.0081 (4)
S10.0579 (7)0.0556 (7)0.0409 (6)0.0125 (5)0.0092 (5)0.0192 (5)
C10.058 (3)0.040 (2)0.046 (2)0.017 (2)0.024 (2)0.0137 (19)
C20.046 (3)0.060 (3)0.060 (3)0.019 (2)0.011 (2)0.010 (2)
C30.056 (3)0.052 (3)0.077 (3)0.030 (2)0.018 (2)0.018 (2)
C40.054 (3)0.040 (2)0.060 (3)0.017 (2)0.024 (2)0.005 (2)
C50.054 (2)0.045 (2)0.041 (2)0.013 (2)0.0222 (19)0.0076 (19)
C60.076 (3)0.061 (3)0.049 (3)0.015 (3)0.018 (2)0.015 (2)
C70.081 (4)0.078 (4)0.053 (3)0.004 (3)0.013 (3)0.000 (3)
C80.089 (4)0.054 (4)0.077 (4)0.004 (3)0.019 (3)0.015 (3)
C90.077 (4)0.046 (3)0.089 (4)0.019 (3)0.027 (3)0.003 (3)
C100.0318 (18)0.0319 (19)0.0309 (18)0.0119 (15)0.0092 (14)0.0103 (15)
C110.0324 (18)0.033 (2)0.0344 (19)0.0063 (15)0.0166 (15)0.0091 (15)
C120.043 (2)0.038 (2)0.042 (2)0.0089 (18)0.0196 (17)0.0094 (17)
C130.061 (3)0.037 (2)0.054 (3)0.002 (2)0.026 (2)0.002 (2)
C140.068 (3)0.050 (3)0.047 (3)0.009 (2)0.020 (2)0.004 (2)
C150.054 (3)0.080 (4)0.038 (2)0.008 (3)0.000 (2)0.012 (2)
C160.047 (2)0.050 (3)0.040 (2)0.011 (2)0.0058 (18)0.0106 (19)
C170.0355 (19)0.0293 (19)0.0319 (18)0.0119 (15)0.0121 (15)0.0073 (15)
C180.040 (2)0.042 (2)0.041 (2)0.0151 (18)0.0146 (17)0.0155 (17)
C190.062 (3)0.048 (3)0.050 (2)0.016 (2)0.028 (2)0.022 (2)
C200.080 (3)0.051 (3)0.043 (2)0.023 (2)0.018 (2)0.024 (2)
C210.065 (3)0.058 (3)0.045 (2)0.026 (2)0.001 (2)0.019 (2)
C220.039 (2)0.043 (2)0.048 (2)0.0166 (18)0.0090 (17)0.0180 (18)
C230.0374 (19)0.0305 (19)0.0347 (19)0.0159 (16)0.0147 (15)0.0110 (15)
C240.043 (2)0.050 (2)0.048 (2)0.0163 (19)0.0166 (18)0.0155 (19)
C250.055 (3)0.058 (3)0.069 (3)0.017 (2)0.037 (2)0.021 (2)
C260.090 (4)0.058 (3)0.046 (3)0.020 (3)0.037 (3)0.017 (2)
C270.074 (3)0.062 (3)0.038 (2)0.022 (2)0.013 (2)0.021 (2)
C280.046 (2)0.045 (2)0.038 (2)0.0181 (19)0.0117 (17)0.0152 (17)
C290.0289 (17)0.0313 (19)0.0349 (19)0.0094 (15)0.0073 (15)0.0085 (15)
C300.044 (2)0.042 (2)0.039 (2)0.0192 (18)0.0142 (17)0.0125 (17)
C310.060 (3)0.046 (2)0.057 (3)0.032 (2)0.023 (2)0.017 (2)
C320.068 (3)0.047 (3)0.063 (3)0.033 (2)0.018 (2)0.023 (2)
C330.073 (3)0.052 (3)0.051 (2)0.029 (2)0.023 (2)0.028 (2)
C340.048 (2)0.043 (2)0.044 (2)0.0236 (19)0.0178 (18)0.0159 (18)
C350.109 (5)0.082 (4)0.051 (3)0.049 (4)0.022 (3)0.026 (3)
C360.1 (2)0.2 (4)0.1 (3)0.1 (2)0.03 (18)0.0 (2)
C370.095 (5)0.150 (8)0.081 (5)0.041 (5)0.030 (4)0.017 (5)
C380.064 (3)0.122 (5)0.055 (3)0.037 (3)0.030 (3)0.015 (3)
C390.115 (6)0.118 (6)0.099 (6)0.046 (5)0.049 (5)0.020 (5)
C400.123 (7)0.138 (8)0.108 (7)0.070 (6)0.052 (6)0.053 (6)
Geometric parameters (Å, º) top
Ag1—P2i2.4296 (9)C14—H140.9300
Ag1—P12.4368 (9)C15—C161.394 (6)
Ag1—N12.489 (3)C15—H150.9300
F1—C351.35 (2)C16—H160.9300
F2—C351.34 (3)C17—C221.381 (5)
F3—C351.33 (2)C17—C181.386 (5)
F1'—C351.37 (3)C18—C191.371 (6)
F2'—C351.32 (3)C18—H180.9300
F3'—C351.33 (4)C19—C201.371 (6)
N1—C11.312 (5)C19—H190.9300
N1—C21.366 (6)C20—C211.361 (6)
N2—C371.32 (13)C20—H200.9300
N2—C40ii1.33 (13)C21—C221.385 (6)
O1—S11.423 (4)C21—H210.9300
O2—S11.430 (3)C22—H220.9300
O3—S11.411 (4)C23—C241.388 (5)
P1—C171.818 (4)C23—C281.388 (5)
P1—C111.825 (3)C24—C251.392 (6)
P1—C101.833 (3)C24—H240.9300
P2—C231.820 (4)C25—C261.366 (7)
P2—C291.823 (4)C25—H250.9300
P2—C101.841 (3)C26—C271.371 (7)
P2—Ag1i2.4296 (9)C26—H260.9300
S1—C351.800 (5)C27—C281.380 (6)
C1—C51.420 (5)C27—H270.9300
C1—H10.9300C28—H280.9300
C2—C31.353 (6)C29—C341.388 (5)
C2—H20.9300C29—C301.391 (5)
C3—C41.414 (6)C30—C311.393 (5)
C3—H30.9300C30—H300.9300
C4—C51.396 (6)C31—C321.364 (6)
C4—C91.420 (6)C31—H310.9300
C5—C61.401 (6)C32—C331.374 (6)
C6—C71.360 (7)C32—H320.9300
C6—H60.9300C33—C341.386 (5)
C7—C81.371 (8)C33—H330.9300
C7—H70.9300C34—H340.9300
C8—C91.365 (8)C36—C371.32 (15)
C8—H80.9300C36—C40ii1.33 (15)
C9—H90.9300C36—H360.9300
C10—H10A0.9700C37—C381.367 (9)
C10—H10B0.9700C37—H370.9300
C11—C161.384 (5)C38—C38ii1.406 (12)
C11—C121.387 (5)C38—C391.443 (10)
C12—C131.383 (5)C39—C401.369 (10)
C12—H120.9300C39—H390.9300
C13—C141.363 (7)C40—N2ii1.33 (13)
C13—H130.9300C40—C36ii1.33 (15)
C14—C151.369 (7)C40—H400.9300
P2i—Ag1—P1156.44 (3)C21—C20—H20119.9
P2i—Ag1—N196.13 (8)C19—C20—H20119.9
P1—Ag1—N195.55 (8)C20—C21—C22120.2 (4)
C1—N1—C2117.3 (4)C20—C21—H21119.9
C1—N1—Ag1116.6 (3)C22—C21—H21119.9
C2—N1—Ag1120.8 (3)C17—C22—C21120.1 (4)
C37—N2—C40ii122 (8)C17—C22—H22119.9
C17—P1—C11101.96 (16)C21—C22—H22119.9
C17—P1—C10102.83 (16)C24—C23—C28119.1 (3)
C11—P1—C10104.74 (16)C24—C23—P2122.4 (3)
C17—P1—Ag1116.50 (12)C28—C23—P2118.4 (3)
C11—P1—Ag1114.01 (11)C23—C24—C25120.0 (4)
C10—P1—Ag1115.11 (12)C23—C24—H24120.0
C23—P2—C29105.89 (16)C25—C24—H24120.0
C23—P2—C10105.53 (16)C26—C25—C24119.9 (4)
C29—P2—C10102.69 (16)C26—C25—H25120.0
C23—P2—Ag1i115.97 (12)C24—C25—H25120.0
C29—P2—Ag1i105.64 (11)C25—C26—C27120.6 (4)
C10—P2—Ag1i119.53 (11)C25—C26—H26119.7
O3—S1—O1113.6 (3)C27—C26—H26119.7
O3—S1—O2115.2 (3)C26—C27—C28120.2 (4)
O1—S1—O2114.5 (2)C26—C27—H27119.9
O3—S1—C35104.9 (3)C28—C27—H27119.9
O1—S1—C35103.5 (3)C27—C28—C23120.2 (4)
O2—S1—C35103.2 (3)C27—C28—H28119.9
N1—C1—C5123.8 (4)C23—C28—H28119.9
N1—C1—H1118.1C34—C29—C30118.6 (3)
C5—C1—H1118.1C34—C29—P2117.6 (3)
C3—C2—N1123.8 (4)C30—C29—P2123.4 (3)
C3—C2—H2118.1C29—C30—C31120.1 (4)
N1—C2—H2118.1C29—C30—H30120.0
C2—C3—C4119.4 (4)C31—C30—H30120.0
C2—C3—H3120.3C32—C31—C30120.5 (4)
C4—C3—H3120.3C32—C31—H31119.7
C5—C4—C3117.7 (4)C30—C31—H31119.7
C5—C4—C9118.4 (5)C31—C32—C33120.0 (4)
C3—C4—C9123.8 (5)C31—C32—H32120.0
C4—C5—C6120.4 (4)C33—C32—H32120.0
C4—C5—C1118.0 (4)C32—C33—C34120.2 (4)
C6—C5—C1121.5 (4)C32—C33—H33119.9
C7—C6—C5119.5 (5)C34—C33—H33119.9
C7—C6—H6120.2C33—C34—C29120.5 (4)
C5—C6—H6120.2C33—C34—H34119.7
C6—C7—C8120.8 (6)C29—C34—H34119.7
C6—C7—H7119.6F2'—C35—F378.7 (12)
C8—C7—H7119.6F2'—C35—F3'107.9 (18)
C9—C8—C7121.5 (5)F3—C35—F3'115.2 (17)
C9—C8—H8119.3F2'—C35—F2128.4 (16)
C7—C8—H8119.3F3—C35—F2108 (2)
C8—C9—C4119.3 (5)F3'—C35—F222 (2)
C8—C9—H9120.3F2'—C35—F131.0 (17)
C4—C9—H9120.3F3—C35—F1108.1 (12)
P1—C10—P2110.79 (17)F3'—C35—F186 (2)
P1—C10—H10A109.5F2—C35—F1108.4 (12)
P2—C10—H10A109.5F2'—C35—F1'106.4 (17)
P1—C10—H10B109.5F3—C35—F1'27.7 (13)
P2—C10—H10B109.5F3'—C35—F1'106 (2)
H10A—C10—H10B108.1F2—C35—F1'90.4 (14)
C16—C11—C12119.2 (3)F1—C35—F1'135.2 (10)
C16—C11—P1123.3 (3)F2'—C35—S1114.4 (11)
C12—C11—P1117.3 (3)F3—C35—S1116.3 (13)
C13—C12—C11120.8 (4)F3'—C35—S1117.7 (18)
C13—C12—H12119.6F2—C35—S1107.8 (17)
C11—C12—H12119.6F1—C35—S1108.0 (13)
C14—C13—C12119.8 (5)F1'—C35—S1104 (2)
C14—C13—H13120.1C37—C36—C40ii122 (10)
C12—C13—H13120.1C37—C36—H36119.2
C13—C14—C15120.1 (4)C40ii—C36—H36119.2
C13—C14—H14120.0C36—C37—N20 (10)
C15—C14—H14120.0C36—C37—C38122 (6)
C14—C15—C16121.0 (5)N2—C37—C38122 (5)
C14—C15—H15119.5C36—C37—H37119.0
C16—C15—H15119.5N2—C37—H37119.1
C11—C16—C15119.0 (4)C38—C37—H37119.1
C11—C16—H16120.5C37—C38—C38ii119.1 (9)
C15—C16—H16120.5C37—C38—C39123.0 (7)
C22—C17—C18118.8 (3)C38ii—C38—C39117.9 (8)
C22—C17—P1120.8 (3)C40—C39—C38117.7 (7)
C18—C17—P1120.3 (3)C40—C39—H39121.2
C19—C18—C17120.6 (4)C38—C39—H39121.2
C19—C18—H18119.7N2ii—C40—C36ii0 (10)
C17—C18—H18119.7N2ii—C40—C39122 (5)
C20—C19—C18120.0 (4)C36ii—C40—C39122 (6)
C20—C19—H19120.0N2ii—C40—H40119.0
C18—C19—H19120.0C36ii—C40—H40119.1
C21—C20—C19120.3 (4)C39—C40—H40119.0
P2i—Ag1—N1—C1130.6 (3)C18—C17—C22—C211.5 (6)
P1—Ag1—N1—C169.9 (3)P1—C17—C22—C21176.4 (3)
P2i—Ag1—N1—C276.1 (3)C20—C21—C22—C171.4 (6)
P1—Ag1—N1—C283.4 (3)C29—P2—C23—C2453.5 (3)
P2i—Ag1—P1—C1720.80 (16)C10—P2—C23—C2455.0 (3)
N1—Ag1—P1—C1798.62 (15)Ag1i—P2—C23—C24170.2 (3)
P2i—Ag1—P1—C11139.21 (15)C29—P2—C23—C28125.5 (3)
N1—Ag1—P1—C1119.79 (16)C10—P2—C23—C28126.1 (3)
P2i—Ag1—P1—C1099.70 (14)Ag1i—P2—C23—C288.7 (3)
N1—Ag1—P1—C10140.87 (15)C28—C23—C24—C251.2 (6)
C2—N1—C1—C50.1 (6)P2—C23—C24—C25177.7 (3)
Ag1—N1—C1—C5154.2 (3)C23—C24—C25—C261.6 (6)
C1—N1—C2—C30.0 (6)C24—C25—C26—C270.6 (7)
Ag1—N1—C2—C3153.2 (4)C25—C26—C27—C280.8 (7)
N1—C2—C3—C40.4 (7)C26—C27—C28—C231.1 (6)
C2—C3—C4—C50.7 (7)C24—C23—C28—C270.1 (6)
C2—C3—C4—C9177.5 (4)P2—C23—C28—C27179.1 (3)
C3—C4—C5—C6177.8 (4)C23—P2—C29—C34171.9 (3)
C9—C4—C5—C60.5 (6)C10—P2—C29—C3461.4 (3)
C3—C4—C5—C10.6 (6)Ag1i—P2—C29—C3464.5 (3)
C9—C4—C5—C1177.7 (4)C23—P2—C29—C3014.8 (3)
N1—C1—C5—C40.2 (6)C10—P2—C29—C30125.2 (3)
N1—C1—C5—C6177.4 (4)Ag1i—P2—C29—C30108.8 (3)
C4—C5—C6—C70.0 (7)C34—C29—C30—C310.1 (5)
C1—C5—C6—C7177.1 (4)P2—C29—C30—C31173.4 (3)
C5—C6—C7—C80.1 (8)C29—C30—C31—C320.1 (6)
C6—C7—C8—C90.4 (9)C30—C31—C32—C330.4 (7)
C7—C8—C9—C40.9 (9)C31—C32—C33—C340.8 (7)
C5—C4—C9—C80.9 (7)C32—C33—C34—C290.9 (6)
C3—C4—C9—C8177.3 (5)C30—C29—C34—C330.6 (5)
C17—P1—C10—P263.0 (2)P2—C29—C34—C33174.2 (3)
C11—P1—C10—P2169.23 (18)O3—S1—C35—F2'161 (5)
Ag1—P1—C10—P264.76 (19)O1—S1—C35—F2'80 (5)
C23—P2—C10—P193.0 (2)O2—S1—C35—F2'40 (5)
C29—P2—C10—P1156.24 (18)O3—S1—C35—F372 (4)
Ag1i—P2—C10—P139.8 (2)O1—S1—C35—F3169 (4)
C17—P1—C11—C16131.7 (3)O2—S1—C35—F349 (4)
C10—P1—C11—C1624.8 (3)O3—S1—C35—F3'71 (4)
Ag1—P1—C11—C16101.9 (3)O1—S1—C35—F3'48 (4)
C17—P1—C11—C1251.4 (3)O2—S1—C35—F3'168 (4)
C10—P1—C11—C12158.3 (3)O3—S1—C35—F250 (2)
Ag1—P1—C11—C1275.0 (3)O1—S1—C35—F270 (2)
C16—C11—C12—C130.7 (5)O2—S1—C35—F2171 (2)
P1—C11—C12—C13177.7 (3)O3—S1—C35—F1167 (3)
C11—C12—C13—C140.1 (6)O1—S1—C35—F147 (3)
C12—C13—C14—C150.9 (7)O2—S1—C35—F172 (3)
C13—C14—C15—C160.8 (7)O3—S1—C35—F1'45 (2)
C12—C11—C16—C150.8 (6)O1—S1—C35—F1'165 (2)
P1—C11—C16—C15177.6 (3)O2—S1—C35—F1'76 (2)
C14—C15—C16—C110.0 (7)C40ii—C36—C37—N238 (100)
C11—P1—C17—C22132.8 (3)C40ii—C36—C37—C382 (16)
C10—P1—C17—C22118.8 (3)C40ii—N2—C37—C36142 (100)
Ag1—P1—C17—C228.0 (3)C40ii—N2—C37—C382 (13)
C11—P1—C17—C1849.4 (3)C36—C37—C38—C38ii3 (8)
C10—P1—C17—C1859.0 (3)N2—C37—C38—C38ii3 (7)
Ag1—P1—C17—C18174.2 (2)C36—C37—C38—C39180 (8)
C22—C17—C18—C190.6 (5)N2—C37—C38—C39179 (6)
P1—C17—C18—C19177.3 (3)C37—C38—C39—C40178.5 (7)
C17—C18—C19—C200.4 (6)C38ii—C38—C39—C400.9 (10)
C18—C19—C20—C210.5 (7)C38—C39—C40—N2ii0 (6)
C19—C20—C21—C220.4 (7)C38—C39—C40—C36ii0 (8)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ag2(C25H22P2)2(C9H7N)2](CF3O3S)2·C9H7N
Mr1670.08
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)11.7730 (11), 11.9269 (12), 15.4151 (17)
α, β, γ (°)106.696 (1), 100.382 (1), 110.289 (2)
V3)1847.9 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.48 × 0.39 × 0.35
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.717, 0.781
No. of measured, independent and
observed [I > 2σ(I)] reflections
9230, 6407, 4969
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.03
No. of reflections6407
No. of parameters497
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.57

Computer programs: SMART (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National Science Foundation of China (grant No. 21171119), the Committee of Education of the Beijing Foundation of China (grant No. KM201210028020) and the National High Technology Research and Development Program 863 of China (2012 A A063201).

References

First citationBowmaker, G. A., Effendy, H. J. V., Healy, P. C., Skelton, B. W. & White, A. H. (1993). J. Chem. Soc. Dalton Trans. pp. 1387–1397.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2007). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, L.-N., Hu, K.-Y., Jin, Q.-H. & Zhang, C.-L. (2010a). Acta Cryst. E66, m871.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCui, L.-N., Jin, Q.-H., Hu, K.-Y. & Zhang, C.-L. (2010b). Acta Cryst. E66, m969.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJin, Q. H., Hu, K. Y., Chen, L. M., Sun, J. J., Yang, L. & Li, P. Z. (2008). Z. Kristallogr. New Cryst. Struct. 223, 79–81.  CAS Google Scholar
First citationJin, Q. H., Hu, K. Y., Song, L. L., Wang, R., Zhang, C. L., Zuo, X. & Lu, X. M. (2010a). Polyhedron, 29, 441–445.  Web of Science CSD CrossRef CAS Google Scholar
First citationJin, Q. H., Song, L. L., Hu, K. Y., Zhou, L. L., Zhang, Y. Y. & Wang, R. (2010b). Inorg. Chem. Commun. 13, 62–65.  Web of Science CSD CrossRef CAS Google Scholar
First citationMeijboom, R., Bowen, R. J., Berners, P. & Susan, J. (2009). Coord. Chem. Rev. 253, 325–342.  Web of Science CrossRef CAS Google Scholar
First citationMu, K. J., Wang, R., Hu, K. Y., Cui, L. N., Liu, H., Jin, Q. H. & Zhang, C. L. (2010). Z. Kristallogr. New Cryst. Struct. 225, 645–648.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, L.-L., Cui, L.-N., Jin, Q.-H. & Zhang, C.-L. (2010). Acta Cryst. E66, m1237–m1238.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, J.-Q., Jin, Q.-H., Hu, K.-Y. & Zhang, C.-L. (2009). Acta Cryst. E65, m1096–m1097.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds