organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(Dihy­dr­oxy­bor­yl)anilinium 6-carb­­oxy­pyridine-2-carboxyl­ate

aCollege of Chemistry, Liaoning University, Shenyang, Liaoning 110036, People's Republic of China
*Correspondence e-mail: xdzhang@lnu.edu.cn

(Received 11 June 2012; accepted 12 July 2012; online 25 July 2012)

In the anion of the title molecular salt, C6H9BNO2+·C7H4NO4, the dihedral angles between the –COO2− and –CO2H groups and their attached ring are 4.02 (13) and 21.41 (10)°, respectively. The B atom in the cation adopts a synsyn geometry and the dihedral angle between the –B(OH)2 group and its attached ring is 11.06 (5)°. In the crystal, O—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds link the components into a three-dimensional network.

Related literature

For general background, see: Hall (2005[Hall, D. G. (2005). Editor. Boronic Acids. Preparation and Application in Organic Synthesis and Medicine. New York: Wiley VCH.]). For related structures, see: Li et al. (1995[Li, H. F., Wang, X. Y., Yang, Q. C. & Liu, Y. F. (1995). Chem. J. Chin. Univ. 16, 1841-1843.]); SeethaLekshmi & Pedireddi (2006[SeethaLekshmi, N. & Pedireddi, V. R. (2006). Inorg. Chem. 45, 2400-2402.]); Sokolov & MacGillivray (2006[Sokolov, A. N. & MacGillivray, L. R. (2006). Cryst. Growth Des. 6, 2615-2624.]); Vega et al. (2010[Vega, A., Luna, R., Tlahuext, H. & Höpfl, H. (2010). Acta Cryst. E66, o1035-o1036.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9BNO2+·C7H4NO4

  • Mr = 304.06

  • Monoclinic, P 21 /n

  • a = 7.7065 (6) Å

  • b = 14.0473 (10) Å

  • c = 13.0852 (10) Å

  • β = 106.963 (1)°

  • V = 1354.92 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.28 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.958, Tmax = 0.989

  • 8330 measured reflections

  • 2677 independent reflections

  • 2260 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.05

  • 2677 reflections

  • 206 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3i 0.96 (2) 1.47 (3) 2.429 (2) 173 (2)
N2—H2A⋯O1i 0.89 2.42 2.808 (2) 107
N2—H2A⋯O3i 0.89 2.42 2.835 (2) 109
N2—H2A⋯N1i 0.89 2.08 2.955 (2) 169
N2—H2B⋯O3i 0.89 2.49 2.835 (2) 104
N2—H2B⋯O2 0.89 2.03 2.907 (2) 170
N2—H2C⋯O6ii 0.89 2.15 2.947 (2) 149
O5—H5⋯O2iii 0.82 2.04 2.712 (2) 139
O6—H6⋯O4iv 0.82 1.91 2.694 (2) 158
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) x+1, y, z; (iii) -x+1, -y+2, -z; (iv) x-2, y, z-1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), SHELXL97 and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Boronic acid and its derivates have attracted great interest in various areas of materials science, catalysis, surface chemistry, organic synthesis, biochemistry, and luminosity (Hall, 2005). Boronic acid has been utilized to controucted covalent macrocycles compounds and organic frameworks as building block. Intermolecular interactions of boronic acid have now been well explored in the rapid development of organic supramolecular assemblies. A large variety of boronic acids have shown the application as new building blocks in crystal engineering through hydrogen-bonding interactions. 4-Carboxyphenylboronic acid was shown to produce second-sphere coordination networks with transition metals (SeethaLekshmi & Pedireddi, 2006). Cocrystallization of trans-1,2-bis(4-pyridyl)ethylene with phenylboronic acid could generate one-dimensional hydrogen bonded infinite ladder (Sokolov & MacGillivray, 2006). In the crystal of 3-aminophenyl boronic acid hydrochloride, each chloride ion is connected four organic ions by N—H···Cl and O—H···Cl hydrogen bonds (Li et al., 1995). Bis[3-(dihydroxyboryl)anilinium] sulfate can provide a complex three-dimensional supramolecular network by hydrogen bonds (Vega et al., 2010).

Here, we present the title compound - an organic salt of 3-(dihydroxyboryl)anilinium and 6-carboxypyridine-2-carboxylate (Fig. 1). In the crystal, intermolecular O—H···O, N—H···O and N—H···N interactions (Table 1) generate hydrogen-bonding network, which link cations and anions into three-dimensional structure.

Related literature top

For general background, see: Hall (2005). For related structures, see: Li et al. (1995); SeethaLekshmi & Pedireddi (2006); Sokolov & MacGillivray (2006); Vega et al. (2010).

Experimental top

An ethanolic solution of 2,6-pyridinedicarboxylic acid(0.5 mmol in 10 ml e thanol)was added dropwise to 3-aminophenyl boronic acid monohydrate (0.5 mmol in 5 ml e thanol) with stirring. Single crystals suitable for X-ray analysis were obtained by slow evaporation of the solvent at room temperature.

Refinement top

Atom H1A was located in a difference Fourier map and refined with a distance restraint O—H = 0.96 (2) Å. All other H atoms were positioned geometrically and refined using riding model, with C—H = 0.93 Å, O—H = 0.82 Å, N—H = 0.89 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(O).

Structure description top

Boronic acid and its derivates have attracted great interest in various areas of materials science, catalysis, surface chemistry, organic synthesis, biochemistry, and luminosity (Hall, 2005). Boronic acid has been utilized to controucted covalent macrocycles compounds and organic frameworks as building block. Intermolecular interactions of boronic acid have now been well explored in the rapid development of organic supramolecular assemblies. A large variety of boronic acids have shown the application as new building blocks in crystal engineering through hydrogen-bonding interactions. 4-Carboxyphenylboronic acid was shown to produce second-sphere coordination networks with transition metals (SeethaLekshmi & Pedireddi, 2006). Cocrystallization of trans-1,2-bis(4-pyridyl)ethylene with phenylboronic acid could generate one-dimensional hydrogen bonded infinite ladder (Sokolov & MacGillivray, 2006). In the crystal of 3-aminophenyl boronic acid hydrochloride, each chloride ion is connected four organic ions by N—H···Cl and O—H···Cl hydrogen bonds (Li et al., 1995). Bis[3-(dihydroxyboryl)anilinium] sulfate can provide a complex three-dimensional supramolecular network by hydrogen bonds (Vega et al., 2010).

Here, we present the title compound - an organic salt of 3-(dihydroxyboryl)anilinium and 6-carboxypyridine-2-carboxylate (Fig. 1). In the crystal, intermolecular O—H···O, N—H···O and N—H···N interactions (Table 1) generate hydrogen-bonding network, which link cations and anions into three-dimensional structure.

For general background, see: Hall (2005). For related structures, see: Li et al. (1995); SeethaLekshmi & Pedireddi (2006); Sokolov & MacGillivray (2006); Vega et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: Mercury (Macrae et al., 2006), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
3-(Dihydroxyboryl)anilinium 6-carboxypyridine-2-carboxylate top
Crystal data top
C6H9BNO2+·C7H4NO4F(000) = 632
Mr = 304.06Dx = 1.491 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ynCell parameters from 58 reflections
a = 7.7065 (6) Åθ = 2.3–22.7°
b = 14.0473 (10) ŵ = 0.12 mm1
c = 13.0852 (10) ÅT = 293 K
β = 106.963 (1)°Block, colourless
V = 1354.92 (18) Å30.28 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2677 independent reflections
Radiation source: fine-focus sealed tube2260 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 98
Tmin = 0.958, Tmax = 0.989k = 1717
8330 measured reflectionsl = 1613
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.416P]
where P = (Fo2 + 2Fc2)/3
2677 reflections(Δ/σ)max < 0.001
206 parametersΔρmax = 0.25 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C6H9BNO2+·C7H4NO4V = 1354.92 (18) Å3
Mr = 304.06Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.7065 (6) ŵ = 0.12 mm1
b = 14.0473 (10) ÅT = 293 K
c = 13.0852 (10) Å0.28 × 0.25 × 0.20 mm
β = 106.963 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2677 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2260 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.989Rint = 0.018
8330 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.25 e Å3
2677 reflectionsΔρmin = 0.20 e Å3
206 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.99515 (15)0.89532 (8)0.27933 (8)0.0301 (3)
B10.1026 (2)0.91402 (12)0.06619 (13)0.0257 (4)
C11.19186 (19)0.93213 (10)0.45205 (11)0.0227 (3)
C21.1728 (2)1.02978 (11)0.43673 (12)0.0300 (4)
H21.09861.05440.37290.036*
C31.2659 (2)1.08965 (11)0.51780 (14)0.0363 (4)
H31.25341.15530.51010.044*
C41.3776 (2)1.05063 (11)0.61038 (13)0.0319 (4)
H41.44591.08940.66500.038*
C51.38602 (19)0.95208 (10)0.62036 (12)0.0248 (3)
C61.5061 (2)0.90725 (10)0.72088 (12)0.0266 (3)
C71.09722 (19)0.86419 (10)0.36402 (11)0.0233 (3)
C80.57150 (19)0.81556 (10)0.09336 (11)0.0212 (3)
C90.5358 (2)0.76762 (10)0.17760 (12)0.0246 (3)
H90.62740.73500.22740.030*
C100.3611 (2)0.76933 (11)0.18593 (12)0.0280 (3)
H100.33450.73880.24260.034*
C110.2256 (2)0.81672 (11)0.10949 (12)0.0273 (3)
H110.10850.81680.11570.033*
C120.2593 (2)0.86417 (10)0.02364 (12)0.0241 (3)
C130.43773 (19)0.86366 (10)0.01759 (11)0.0230 (3)
H130.46620.89580.03760.028*
H1A1.070 (4)0.7337 (19)0.329 (2)0.103 (10)*
N11.29358 (16)0.89300 (8)0.54318 (9)0.0222 (3)
N20.75722 (16)0.81145 (8)0.08587 (10)0.0230 (3)
H2A0.78320.75200.07190.034*
H2B0.83410.83020.14750.034*
H2C0.76730.84970.03370.034*
O11.13249 (15)0.77632 (8)0.38493 (8)0.0309 (3)
O31.46409 (15)0.82127 (8)0.73569 (9)0.0334 (3)
O41.63185 (16)0.95337 (9)0.77863 (10)0.0424 (3)
O50.15502 (15)0.96244 (9)0.14174 (9)0.0371 (3)
H50.06610.98720.18370.056*
O60.07164 (14)0.90249 (8)0.06323 (8)0.0312 (3)
H60.14160.92450.11780.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0322 (6)0.0294 (6)0.0216 (5)0.0028 (4)0.0035 (5)0.0030 (4)
B10.0264 (9)0.0232 (8)0.0244 (9)0.0018 (7)0.0023 (7)0.0019 (6)
C10.0208 (7)0.0259 (7)0.0204 (7)0.0005 (6)0.0045 (6)0.0007 (6)
C20.0350 (9)0.0271 (8)0.0235 (8)0.0021 (6)0.0016 (7)0.0039 (6)
C30.0485 (10)0.0207 (7)0.0351 (9)0.0004 (7)0.0050 (8)0.0015 (7)
C40.0376 (9)0.0249 (8)0.0277 (8)0.0041 (7)0.0008 (7)0.0043 (6)
C50.0222 (7)0.0256 (7)0.0242 (8)0.0002 (6)0.0030 (6)0.0014 (6)
C60.0263 (8)0.0265 (8)0.0231 (8)0.0017 (6)0.0014 (6)0.0030 (6)
C70.0227 (7)0.0261 (7)0.0203 (7)0.0012 (6)0.0050 (6)0.0022 (6)
C80.0190 (7)0.0210 (7)0.0220 (7)0.0012 (5)0.0033 (5)0.0029 (5)
C90.0237 (7)0.0250 (7)0.0216 (7)0.0014 (6)0.0012 (6)0.0013 (6)
C100.0287 (8)0.0318 (8)0.0237 (8)0.0001 (6)0.0080 (6)0.0043 (6)
C110.0201 (7)0.0328 (8)0.0290 (8)0.0016 (6)0.0071 (6)0.0001 (6)
C120.0237 (8)0.0217 (7)0.0245 (8)0.0009 (6)0.0033 (6)0.0025 (6)
C130.0247 (8)0.0225 (7)0.0208 (7)0.0001 (6)0.0051 (6)0.0013 (5)
N10.0193 (6)0.0241 (6)0.0209 (6)0.0004 (5)0.0024 (5)0.0007 (5)
N20.0203 (6)0.0241 (6)0.0223 (6)0.0000 (5)0.0026 (5)0.0001 (5)
O10.0382 (7)0.0241 (5)0.0228 (6)0.0001 (5)0.0031 (5)0.0002 (4)
O30.0369 (7)0.0280 (6)0.0261 (6)0.0019 (5)0.0052 (5)0.0029 (4)
O40.0396 (7)0.0342 (6)0.0369 (7)0.0055 (5)0.0145 (5)0.0009 (5)
O50.0291 (6)0.0446 (7)0.0344 (7)0.0090 (5)0.0042 (5)0.0160 (5)
O60.0234 (6)0.0377 (6)0.0270 (6)0.0021 (5)0.0010 (4)0.0063 (5)
Geometric parameters (Å, º) top
O2—C71.2367 (17)C8—C131.381 (2)
B1—O51.355 (2)C8—C91.386 (2)
B1—O61.365 (2)C8—N21.4640 (18)
B1—C121.582 (2)C9—C101.382 (2)
C1—N11.3391 (18)C9—H90.9300
C1—C21.388 (2)C10—C111.387 (2)
C1—C71.510 (2)C10—H100.9300
C2—C31.380 (2)C11—C121.394 (2)
C2—H20.9300C11—H110.9300
C3—C41.379 (2)C12—C131.400 (2)
C3—H30.9300C13—H130.9300
C4—C51.390 (2)N2—H2A0.8900
C4—H40.9300N2—H2B0.8900
C5—N11.3403 (19)N2—H2C0.8900
C5—C61.507 (2)O1—H1A0.963 (18)
C6—O41.2260 (19)O5—H50.8200
C6—O31.2796 (19)O6—H60.8200
C7—O11.2763 (18)
O5—B1—O6125.84 (14)C9—C8—N2117.31 (12)
O5—B1—C12116.05 (14)C10—C9—C8118.56 (14)
O6—B1—C12118.08 (13)C10—C9—H9120.7
N1—C1—C2122.97 (13)C8—C9—H9120.7
N1—C1—C7116.54 (12)C9—C10—C11119.81 (14)
C2—C1—C7120.48 (13)C9—C10—H10120.1
C3—C2—C1118.82 (14)C11—C10—H10120.1
C3—C2—H2120.6C10—C11—C12122.15 (14)
C1—C2—H2120.6C10—C11—H11118.9
C4—C3—C2118.99 (14)C12—C11—H11118.9
C4—C3—H3120.5C11—C12—C13117.39 (13)
C2—C3—H3120.5C11—C12—B1121.94 (13)
C3—C4—C5118.59 (14)C13—C12—B1120.64 (13)
C3—C4—H4120.7C8—C13—C12120.12 (13)
C5—C4—H4120.7C8—C13—H13119.9
N1—C5—C4123.08 (14)C12—C13—H13119.9
N1—C5—C6117.05 (13)C1—N1—C5117.46 (12)
C4—C5—C6119.86 (13)C8—N2—H2A109.5
O4—C6—O3126.49 (14)C8—N2—H2B109.5
O4—C6—C5119.39 (14)H2A—N2—H2B109.5
O3—C6—C5114.12 (13)C8—N2—H2C109.5
O2—C7—O1125.03 (14)H2A—N2—H2C109.5
O2—C7—C1119.97 (13)H2B—N2—H2C109.5
O1—C7—C1114.99 (12)C7—O1—H1A114.1 (18)
C13—C8—C9121.94 (13)B1—O5—H5109.5
C13—C8—N2120.73 (13)B1—O6—H6109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.96 (2)1.47 (3)2.429 (2)173 (2)
N2—H2A···O1i0.892.422.808 (2)107
N2—H2A···O3i0.892.422.835 (2)109
N2—H2A···N1i0.892.082.955 (2)169
N2—H2B···O3i0.892.492.835 (2)104
N2—H2B···O20.892.032.907 (2)170
N2—H2C···O6ii0.892.152.947 (2)149
O5—H5···O2iii0.822.042.712 (2)139
O6—H6···O4iv0.821.912.694 (2)158
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1, y, z; (iii) x+1, y+2, z; (iv) x2, y, z1.

Experimental details

Crystal data
Chemical formulaC6H9BNO2+·C7H4NO4
Mr304.06
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.7065 (6), 14.0473 (10), 13.0852 (10)
β (°) 106.963 (1)
V3)1354.92 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.28 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.958, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
8330, 2677, 2260
Rint0.018
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.05
No. of reflections2677
No. of parameters206
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.20

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2006), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O3i0.96 (2)1.47 (3)2.429 (2)173 (2)
N2—H2A···O1i0.892.422.808 (2)107
N2—H2A···O3i0.892.422.835 (2)109
N2—H2A···N1i0.892.082.955 (2)169
N2—H2B···O3i0.892.492.835 (2)104
N2—H2B···O20.892.032.907 (2)170
N2—H2C···O6ii0.892.152.947 (2)149
O5—H5···O2iii0.822.042.712 (2)139
O6—H6···O4iv0.821.912.694 (2)158
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1, y, z; (iii) x+1, y+2, z; (iv) x2, y, z1.
 

Acknowledgements

This work was supported by the Liaoning Provincial Science and Technology Foundation of China and the Foundation of the 211 Project for Innovative Talents Training, Liaoning University.

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHall, D. G. (2005). Editor. Boronic Acids. Preparation and Application in Organic Synthesis and Medicine. New York: Wiley VCH.  Google Scholar
First citationLi, H. F., Wang, X. Y., Yang, Q. C. & Liu, Y. F. (1995). Chem. J. Chin. Univ. 16, 1841–1843.  CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSeethaLekshmi, N. & Pedireddi, V. R. (2006). Inorg. Chem. 45, 2400–2402.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSokolov, A. N. & MacGillivray, L. R. (2006). Cryst. Growth Des. 6, 2615–2624.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVega, A., Luna, R., Tlahuext, H. & Höpfl, H. (2010). Acta Cryst. E66, o1035–o1036.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds