organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(tetra­ethyl­ammonium) oxalate dihydrate

aDepartment of Chemistry, Loyola University Maryland, 4501 North Charles Street, Baltimore, MD 21210-2699, USA, and bDepartment of Chemistry, College of William and Mary, PO Box 8795, Williamsburg, VA 23187-8795, USA
*Correspondence e-mail: tmcneese@loyola.edu

(Received 1 June 2012; accepted 2 July 2012; online 7 July 2012)

The title compound, 2C8H20N+·C2O42−·2H2O, synthesized by neutralizing H2C2O4·2H2O with (C2H5)4NOH in a 1:2 molar ratio, is a deliquescent solid. The oxalate ion is nonplanar, with a dihedral angle between carboxyl­ate groups of 64.37 (2)°. O—H⋯O hydrogen bonds of moderate strength link the O atoms of the water mol­ecules and the oxalate ions into rings parallel to the c axis. The rings exhibit the graph-set motif R44(12). In addition, there are weak C—H⋯O inter­actions in the crystal structure.

Related literature

For related compounds containing planar and nonplanar oxalate ions, see: Beagley & Small (1964[Beagley, B. & Small, R. W. H. (1964). Acta Cryst. 17, 783-788.]); Robertson (1965[Robertson, J. H. (1965). Acta Cryst. 18, 410-417.]); Jeffrey & Parry (1954[Jeffrey, G. A. & Parry, G. S. (1954). J. Am. Chem. Soc. 76, 5283-5286.]). For general syntheses of tetra­alkyl­ammonium salts and their uses, see: Barthel & Kunz (1988[Barthel, J. & Kunz, W. (1988). J. Solution Chem. 17, 399-415.]); Heck (1982[Heck, R. F. (1982). Org. React. 27, 345-390.]); Markowitz (1957[Markowitz, M. M. (1957). J. Org. Chem. 22, 983-984.]); McNeese et al. (1984[McNeese, T. J., Cohen, M. B. & Foxman, B. M. (1984). Organometallics, 3, 552-556.]); Starks (1971[Starks, C. M. (1971). J. Am. Chem. Soc. 93, 195-199.]). For uses of [(C2H5)4N)2(C2O4)]·2H2O, see: Darensbourg et al. (1992[Darensbourg, D. J., Chojnacki, J. A. & Reibenspies, J. H. (1992). Inorg. Chem. 31, 3428-3433.]); Demadis & Coucouvanis (1995[Demadis, K. D. & Coucouvanis, D. (1995). Inorg. Chem. 34, 436-448.]); Diop et al. (1997[Diop, L., Mahon, M. F., Molloy, K. C. & Sidibe, M. (1997). Main Group Met. Chem. 20, 649-654.]); Engels et al. (1983[Engels, R., Smit, C. J. & van Tilborg, W. J. M. (1983). Angew. Chem. Int. Ed. Engl. 22, 492-493.]). For classification of the graph-set motifs, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). For classification of the hydrogen bonds, see: Gilli & Gilli (2009[Gilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond. Outline of a Comprehensive Hydrogen Bond Theory, p. 61. Oxford, New York: International Union of Crystallography, Oxford University Press.]). Oxalate was confirmed by the blue ring resorcinol test (Chernoff, 1920[Chernoff, L. H. (1920). J. Am. Chem. Soc. 42, 1784-1785.]).

[Scheme 1]

Experimental

Crystal data
  • 2C8H20N+·C2O42−·2H2O

  • Mr = 384.55

  • Orthorhombic, P c a 21

  • a = 19.9302 (4) Å

  • b = 7.6627 (1) Å

  • c = 14.3253 (3) Å

  • V = 2187.75 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 100 K

  • 0.32 × 0.25 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.808, Tmax = 0.966

  • 17374 measured reflections

  • 2026 independent reflections

  • 1953 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.081

  • S = 1.07

  • 2026 reflections

  • 256 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H1W⋯O1i 0.82 (4) 1.96 (4) 2.749 (2) 161 (3)
O6—H2W⋯O3ii 0.87 (4) 2.00 (4) 2.842 (2) 162 (3)
O5—H3W⋯O2iii 0.86 (4) 1.88 (4) 2.720 (2) 166 (4)
O5—H4W⋯O4iv 0.85 (4) 1.89 (4) 2.732 (2) 167 (3)
C3—H3B⋯O2i 0.99 2.40 3.300 (3) 151
C5—H5A⋯O1 0.99 2.43 3.324 (3) 149
C5—H5B⋯O4iii 0.99 2.34 3.270 (3) 157
C7—H7A⋯O3ii 0.99 2.44 3.332 (3) 150
C8—H8B⋯O4iii 0.98 2.57 3.497 (3) 158
C10—H10A⋯O2i 0.98 2.50 3.450 (3) 162
C11—H11B⋯O5v 0.99 2.41 3.384 (3) 167
C13—H13A⋯O1vi 0.99 2.37 3.334 (3) 165
C15—H15B⋯O4vi 0.99 2.51 3.166 (3) 124
C16—H16C⋯O6vii 0.98 2.59 3.559 (3) 170
C18—H18A⋯O3i 0.98 2.59 3.296 (2) 129
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, -y+1, z-{\script{1\over 2}}]; (iii) [-x+1, -y+2, z-{\script{1\over 2}}]; (iv) x, y, z-1; (v) [-x+1, -y+1, z+{\script{1\over 2}}]; (vi) [x+{\script{1\over 2}}, -y+1, z]; (vii) [-x+1, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Tetraalkylammonium salts are important compounds as phase-transfer catalysts (Starks, 1971), as electrolytes in electrochemical studies (Barthel & Kunz, 1988), in organic Heck-type synthetic reactions (Heck, 1982), and in preparing and isolating polynuclear organometallic complexes (McNeese et al., 1984). A procedure for synthesizing quaternary ammonium salts involves neutralization of a tetraalkylammonium hydroxide with the acid of the desired anion (Markowitz, 1957).

The title compound, (Et4N)2C2O4.2H2O, synthesized by reaction of Et4NOH and H2C2O4.2H2O in a 2:1 mole ratio, is deliquescent and rapidly absorbs moisture from air. Previously prepared and used in situ or as a noncrystalline solid, it has been employed as a reductant in aprotic electrochemical cells (Engels et al., 1983) and in the synthesis of oxalate-containing organometallic complexes (Diop et al., 1997; Demadis & Coucouvanis, 1995; Darensbourg et al., 1992).

Oxalate bond distances (C—C and C—O) and angles (O—C—O and O—C—C) are comparable to other reported oxalate salts containing NH4+ and alkali metal ions. The oxalate ion is planar in Li2C2O4 (Beagley & Small, 1964) and Na2C2O4 (Jeffrey & Parry, 1954), but the dihedral angle between planes of symmetrical carboxylate groups of the oxalate fragment is 26.6° in (NH4)2C2O4.H2O (Robertson, 1965). The directional character of the hydrogen bonding pattern in the monohydrate is believed responsible for the observed non-planar stereochemistry of the oxalate ion. A dihedral angle of 64.37 (2)° is present in the title compound (Fig. 1). The non-planarity of the oxalate ion is maintained by moderate hydrogen bonds (Table 1) that link the oxygen atoms of the oxalate ion and the water molecules into a ring motif R44(12) (Etter et al., 1990). (For the classification of the hydrogen bonds, see Gilli & Gilli, 2009). In addition, there are also present weak C-H···O interactions in the structure (Tab. 1). Fig. 2 illustrates the packing diagram for the structure of the title compound.

Related literature top

For related compounds containing planar and nonplanar oxalate ions, see: Beagley & Small (1964); Robertson (1965); Jeffrey & Parry (1954). For general syntheses of tetraalkylammonium salts and their uses, see: Barthel & Kunz (1988); Heck (1982); Markowitz (1957); McNeese et al. (1984); Starks (1971). For uses of [(C2H5)4N)2(C2O4)].2H2O, see: Darensbourg et al. (1992); Demadis & Coucouvanis (1995); Diop et al. (1997); Engels et al. (1983). For classification of the graph-set motifs, see: Etter et al. (1990). For classification of the hydrogen bonds, see: Gilli & Gilli (2009). Oxalate was confirmed by the blue ring resorcinol test (Chernoff, 1920).

Experimental top

An aqueous 35 weight percent solution of Et4NOH (6.69 g, 15.9 mmol OH-) was added by syringe to a 50-ml Schlenk tube containing a 20-ml CH3CN solution of H2C2O4.2H2O (1.00 g, 7.93 mmol). The colorless solution was stirred under argon for 15 min followed by solvent removal under reduced pressure. Hot tetrahydrofuran (25 ml) was added to the greasy solid, the mixture was stirred for 10 min, and the solution was decanted from the product. The deliquescent white solid was dried under vacuum and crystallized from CH3CN/ THF. Yield: 1.98 g (65%). IR (υ(CO), CH3CN) 1565(s) cm-1. Oxalate was confirmed by the blue ring resorcinol test (Chernoff, 1920). The analyzed crystal was rapidly transferred from vacuum to a 100 K stream of dry air for X-ray analysis.

Refinement top

Data were refined against F2. Because of the relatively high Rint the determination of the absolute structure turned out to be meaningless and therefore 1509 Friedel pairs have been merged. All the hydrogen atoms appeared in the difference electron density map, nevertheless, those pertinent to the methyl and the methylene carbons were situated into the idealized positions and refined in the riding atom formalism. The positional parameters of the water hydrogens were refined freely. The applied constraints: Cmethyl-Hmethyl=0.98, Cmethylene-Hmethylene=0.99 Å. Uiso(Hmethylene) = 1.2Ueq(Cmethylene), Uiso(Hmethyl) = 1.5Ueq(Cmethyl), Uiso(Hwater) = 1.5Ueq(Owater).

Structure description top

Tetraalkylammonium salts are important compounds as phase-transfer catalysts (Starks, 1971), as electrolytes in electrochemical studies (Barthel & Kunz, 1988), in organic Heck-type synthetic reactions (Heck, 1982), and in preparing and isolating polynuclear organometallic complexes (McNeese et al., 1984). A procedure for synthesizing quaternary ammonium salts involves neutralization of a tetraalkylammonium hydroxide with the acid of the desired anion (Markowitz, 1957).

The title compound, (Et4N)2C2O4.2H2O, synthesized by reaction of Et4NOH and H2C2O4.2H2O in a 2:1 mole ratio, is deliquescent and rapidly absorbs moisture from air. Previously prepared and used in situ or as a noncrystalline solid, it has been employed as a reductant in aprotic electrochemical cells (Engels et al., 1983) and in the synthesis of oxalate-containing organometallic complexes (Diop et al., 1997; Demadis & Coucouvanis, 1995; Darensbourg et al., 1992).

Oxalate bond distances (C—C and C—O) and angles (O—C—O and O—C—C) are comparable to other reported oxalate salts containing NH4+ and alkali metal ions. The oxalate ion is planar in Li2C2O4 (Beagley & Small, 1964) and Na2C2O4 (Jeffrey & Parry, 1954), but the dihedral angle between planes of symmetrical carboxylate groups of the oxalate fragment is 26.6° in (NH4)2C2O4.H2O (Robertson, 1965). The directional character of the hydrogen bonding pattern in the monohydrate is believed responsible for the observed non-planar stereochemistry of the oxalate ion. A dihedral angle of 64.37 (2)° is present in the title compound (Fig. 1). The non-planarity of the oxalate ion is maintained by moderate hydrogen bonds (Table 1) that link the oxygen atoms of the oxalate ion and the water molecules into a ring motif R44(12) (Etter et al., 1990). (For the classification of the hydrogen bonds, see Gilli & Gilli, 2009). In addition, there are also present weak C-H···O interactions in the structure (Tab. 1). Fig. 2 illustrates the packing diagram for the structure of the title compound.

For related compounds containing planar and nonplanar oxalate ions, see: Beagley & Small (1964); Robertson (1965); Jeffrey & Parry (1954). For general syntheses of tetraalkylammonium salts and their uses, see: Barthel & Kunz (1988); Heck (1982); Markowitz (1957); McNeese et al. (1984); Starks (1971). For uses of [(C2H5)4N)2(C2O4)].2H2O, see: Darensbourg et al. (1992); Demadis & Coucouvanis (1995); Diop et al. (1997); Engels et al. (1983). For classification of the graph-set motifs, see: Etter et al. (1990). For classification of the hydrogen bonds, see: Gilli & Gilli (2009). Oxalate was confirmed by the blue ring resorcinol test (Chernoff, 1920).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXLE (Hübschle et al., 2011); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Ellipsoid plot of the title molecules. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Mercury (Macrae et al., 2006) packing diagram of the title compound viewed down the b axis.
Bis(tetraethylammonium) oxalate dihydrate top
Crystal data top
2C8H20N+·C2O42·2H2OF(000) = 856
Mr = 384.55Dx = 1.168 Mg m3
Orthorhombic, Pca21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2acCell parameters from 6094 reflections
a = 19.9302 (4) Åθ = 3.8–68.4°
b = 7.6627 (1) ŵ = 0.70 mm1
c = 14.3253 (3) ÅT = 100 K
V = 2187.75 (7) Å3Plate, colorless
Z = 40.32 × 0.25 × 0.05 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2026 independent reflections
Radiation source: fine-focus sealed tube1953 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ω and ψ scansθmax = 67.0°, θmin = 4.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2323
Tmin = 0.808, Tmax = 0.966k = 89
17374 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.3359P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2026 reflectionsΔρmax = 0.20 e Å3
256 parametersΔρmin = 0.16 e Å3
1 restraintExtinction correction: SHELXLE (Hübschle et al., 2011), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
152 constraintsExtinction coefficient: 0.0018 (3)
Primary atom site location: structure-invariant direct methods
Crystal data top
2C8H20N+·C2O42·2H2OV = 2187.75 (7) Å3
Mr = 384.55Z = 4
Orthorhombic, Pca21Cu Kα radiation
a = 19.9302 (4) ŵ = 0.70 mm1
b = 7.6627 (1) ÅT = 100 K
c = 14.3253 (3) Å0.32 × 0.25 × 0.05 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2026 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1953 reflections with I > 2σ(I)
Tmin = 0.808, Tmax = 0.966Rint = 0.067
17374 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0311 restraint
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.20 e Å3
2026 reflectionsΔρmin = 0.16 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44416 (8)0.9370 (2)0.66940 (11)0.0260 (4)
O20.54192 (8)1.0741 (2)0.69474 (11)0.0245 (4)
O30.53292 (7)0.8233 (2)0.84977 (11)0.0263 (4)
O40.44453 (8)0.9997 (2)0.87126 (11)0.0254 (4)
C10.49202 (10)0.9852 (3)0.71976 (14)0.0162 (4)
C20.48956 (10)0.9310 (3)0.82269 (14)0.0167 (4)
N10.52560 (8)0.5362 (2)0.52871 (12)0.0155 (4)
C30.48056 (10)0.3892 (3)0.56294 (15)0.0191 (4)
H3A0.45270.34840.51000.023*
H3B0.50920.29030.58260.023*
C40.43481 (12)0.4368 (3)0.64282 (19)0.0321 (6)
H4A0.46180.46820.69750.048*
H4B0.40610.33690.65810.048*
H4C0.40670.53630.62480.048*
C50.48413 (10)0.6851 (3)0.48890 (15)0.0194 (4)
H5A0.45610.73420.53960.023*
H5B0.51510.77820.46780.023*
C60.43882 (13)0.6362 (3)0.40826 (19)0.0331 (6)
H6A0.42000.74230.38040.050*
H6B0.40230.56200.43100.050*
H6C0.46480.57260.36120.050*
C70.57042 (10)0.4560 (3)0.45509 (15)0.0191 (4)
H7A0.54180.40610.40530.023*
H7B0.59580.35870.48370.023*
C80.61999 (11)0.5824 (3)0.41095 (17)0.0267 (5)
H8A0.65190.62260.45840.040*
H8B0.59560.68280.38540.040*
H8C0.64440.52330.36060.040*
C90.56591 (10)0.6129 (3)0.60804 (14)0.0180 (4)
H9A0.53470.66440.65420.022*
H9B0.59430.70840.58330.022*
C100.61047 (11)0.4815 (3)0.65726 (16)0.0231 (5)
H10A0.58360.38010.67590.035*
H10B0.63030.53550.71280.035*
H10C0.64630.44400.61490.035*
N20.74829 (8)0.0031 (2)0.76685 (12)0.0164 (4)
C110.72670 (10)0.1585 (3)0.70941 (15)0.0189 (4)
H11A0.69540.23010.74700.023*
H11B0.70190.11600.65400.023*
C120.78410 (11)0.2737 (3)0.67665 (17)0.0257 (5)
H12A0.80760.32180.73100.039*
H12B0.76630.36940.63860.039*
H12C0.81540.20430.63920.039*
C130.79440 (10)0.1148 (3)0.71088 (15)0.0195 (4)
H13A0.83430.04670.69180.023*
H13B0.81000.21060.75180.023*
C140.76283 (11)0.1938 (3)0.62449 (16)0.0243 (5)
H14A0.72870.27920.64300.036*
H14B0.79750.25190.58730.036*
H14C0.74180.10140.58730.036*
C150.78792 (10)0.0602 (3)0.85239 (15)0.0204 (4)
H15A0.80010.04490.88880.024*
H15B0.83020.11540.83120.024*
C160.75169 (11)0.1864 (3)0.91622 (15)0.0247 (5)
H16A0.74300.29550.88270.037*
H16B0.77960.21030.97110.037*
H16C0.70900.13490.93620.037*
C170.68437 (10)0.0925 (3)0.79498 (14)0.0177 (4)
H17A0.65620.01220.83240.021*
H17B0.65900.12200.73770.021*
C180.69534 (10)0.2576 (3)0.85037 (15)0.0213 (4)
H18A0.65190.31120.86460.032*
H18B0.71870.22960.90870.032*
H18C0.72260.33910.81380.032*
O50.38115 (7)0.9648 (2)0.03930 (11)0.0216 (3)
H1W0.4148 (16)0.023 (4)0.547 (3)0.032*
H2W0.4216 (17)0.071 (4)0.461 (3)0.032*
O60.39111 (7)0.0424 (2)0.50150 (12)0.0235 (3)
H3W0.4112 (17)0.951 (4)0.082 (3)0.035*
H4W0.4061 (16)0.968 (4)0.009 (3)0.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0228 (8)0.0430 (9)0.0122 (8)0.0059 (6)0.0052 (6)0.0044 (7)
O20.0276 (8)0.0317 (8)0.0143 (8)0.0002 (6)0.0056 (6)0.0056 (6)
O30.0217 (7)0.0387 (9)0.0185 (8)0.0006 (6)0.0022 (6)0.0122 (7)
O40.0247 (8)0.0400 (9)0.0114 (7)0.0035 (7)0.0055 (6)0.0047 (6)
C10.0175 (10)0.0226 (10)0.0085 (9)0.0064 (7)0.0016 (8)0.0021 (8)
C20.0128 (9)0.0265 (10)0.0109 (10)0.0050 (7)0.0016 (8)0.0008 (8)
N10.0153 (8)0.0194 (8)0.0120 (8)0.0007 (7)0.0004 (7)0.0002 (6)
C30.0176 (9)0.0211 (10)0.0187 (10)0.0045 (8)0.0009 (8)0.0010 (8)
C40.0275 (12)0.0354 (13)0.0334 (14)0.0027 (10)0.0150 (11)0.0028 (10)
C50.0199 (9)0.0203 (9)0.0181 (10)0.0036 (7)0.0028 (8)0.0008 (8)
C60.0365 (13)0.0322 (12)0.0306 (13)0.0062 (10)0.0179 (11)0.0034 (10)
C70.0188 (10)0.0249 (10)0.0134 (10)0.0039 (8)0.0026 (8)0.0021 (8)
C80.0243 (11)0.0342 (11)0.0216 (11)0.0024 (9)0.0090 (9)0.0016 (9)
C90.0172 (9)0.0242 (10)0.0125 (10)0.0029 (8)0.0015 (8)0.0014 (8)
C100.0226 (11)0.0291 (11)0.0176 (11)0.0012 (8)0.0068 (9)0.0012 (9)
N20.0121 (7)0.0252 (9)0.0119 (8)0.0003 (7)0.0011 (7)0.0019 (7)
C110.0161 (9)0.0250 (10)0.0156 (9)0.0006 (8)0.0026 (8)0.0053 (9)
C120.0217 (10)0.0316 (11)0.0239 (11)0.0041 (9)0.0012 (9)0.0084 (9)
C130.0141 (9)0.0296 (10)0.0149 (10)0.0031 (8)0.0032 (8)0.0019 (9)
C140.0239 (11)0.0331 (11)0.0159 (10)0.0019 (8)0.0035 (8)0.0017 (9)
C150.0171 (9)0.0300 (11)0.0140 (10)0.0002 (8)0.0055 (8)0.0014 (8)
C160.0249 (10)0.0346 (11)0.0146 (10)0.0017 (9)0.0041 (8)0.0032 (9)
C170.0120 (9)0.0279 (11)0.0132 (10)0.0013 (8)0.0007 (7)0.0008 (8)
C180.0216 (10)0.0296 (11)0.0128 (10)0.0006 (8)0.0014 (8)0.0014 (8)
O50.0169 (7)0.0371 (8)0.0109 (7)0.0003 (6)0.0004 (7)0.0001 (6)
O60.0195 (8)0.0351 (8)0.0159 (8)0.0004 (6)0.0043 (7)0.0009 (7)
Geometric parameters (Å, º) top
O1—C11.252 (3)N2—C111.510 (3)
O2—C11.258 (3)N2—C131.518 (3)
O3—C21.256 (3)N2—C151.522 (3)
O4—C21.252 (3)N2—C171.524 (2)
C1—C21.533 (3)C11—C121.520 (3)
N1—C91.511 (2)C11—H11A0.9900
N1—C71.513 (2)C11—H11B0.9900
N1—C51.520 (3)C12—H12A0.9800
N1—C31.522 (3)C12—H12B0.9800
C3—C41.508 (3)C12—H12C0.9800
C3—H3A0.9900C13—C141.514 (3)
C3—H3B0.9900C13—H13A0.9900
C4—H4A0.9800C13—H13B0.9900
C4—H4B0.9800C14—H14A0.9800
C4—H4C0.9800C14—H14B0.9800
C5—C61.514 (3)C14—H14C0.9800
C5—H5A0.9900C15—C161.514 (3)
C5—H5B0.9900C15—H15A0.9900
C6—H6A0.9800C15—H15B0.9900
C6—H6B0.9800C16—H16A0.9800
C6—H6C0.9800C16—H16B0.9800
C7—C81.521 (3)C16—H16C0.9800
C7—H7A0.9900C17—C181.509 (3)
C7—H7B0.9900C17—H17A0.9900
C8—H8A0.9800C17—H17B0.9900
C8—H8B0.9800C18—H18A0.9800
C8—H8C0.9800C18—H18B0.9800
C9—C101.517 (3)C18—H18C0.9800
C9—H9A0.9900O5—H3W0.87 (4)
C9—H9B0.9900O5—H4W0.86 (4)
C10—H10A0.9800O6—H1W0.82 (4)
C10—H10B0.9800O6—H2W0.87 (4)
C10—H10C0.9800
O1—C1—O2126.7 (2)H10A—C10—H10C109.5
O1—C1—C2116.77 (19)H10B—C10—H10C109.5
O2—C1—C2116.50 (18)C11—N2—C13110.73 (16)
O4—C2—O3126.7 (2)C11—N2—C15111.11 (16)
O4—C2—C1116.34 (18)C13—N2—C15106.39 (15)
O3—C2—C1116.95 (18)C11—N2—C17106.56 (15)
C9—N1—C7111.62 (15)C13—N2—C17111.08 (16)
C9—N1—C5106.21 (16)C15—N2—C17111.05 (16)
C7—N1—C5111.38 (16)N2—C11—C12114.34 (16)
C9—N1—C3111.07 (16)N2—C11—H11A108.7
C7—N1—C3105.78 (16)C12—C11—H11A108.7
C5—N1—C3110.86 (15)N2—C11—H11B108.7
C4—C3—N1114.95 (18)C12—C11—H11B108.7
C4—C3—H3A108.5H11A—C11—H11B107.6
N1—C3—H3A108.5C11—C12—H12A109.5
C4—C3—H3B108.5C11—C12—H12B109.5
N1—C3—H3B108.5H12A—C12—H12B109.5
H3A—C3—H3B107.5C11—C12—H12C109.5
C3—C4—H4A109.5H12A—C12—H12C109.5
C3—C4—H4B109.5H12B—C12—H12C109.5
H4A—C4—H4B109.5C14—C13—N2114.72 (16)
C3—C4—H4C109.5C14—C13—H13A108.6
H4A—C4—H4C109.5N2—C13—H13A108.6
H4B—C4—H4C109.5C14—C13—H13B108.6
C6—C5—N1115.14 (17)N2—C13—H13B108.6
C6—C5—H5A108.5H13A—C13—H13B107.6
N1—C5—H5A108.5C13—C14—H14A109.5
C6—C5—H5B108.5C13—C14—H14B109.5
N1—C5—H5B108.5H14A—C14—H14B109.5
H5A—C5—H5B107.5C13—C14—H14C109.5
C5—C6—H6A109.5H14A—C14—H14C109.5
C5—C6—H6B109.5H14B—C14—H14C109.5
H6A—C6—H6B109.5C16—C15—N2114.97 (16)
C5—C6—H6C109.5C16—C15—H15A108.5
H6A—C6—H6C109.5N2—C15—H15A108.5
H6B—C6—H6C109.5C16—C15—H15B108.5
N1—C7—C8114.48 (17)N2—C15—H15B108.5
N1—C7—H7A108.6H15A—C15—H15B107.5
C8—C7—H7A108.6C15—C16—H16A109.5
N1—C7—H7B108.6C15—C16—H16B109.5
C8—C7—H7B108.6H16A—C16—H16B109.5
H7A—C7—H7B107.6C15—C16—H16C109.5
C7—C8—H8A109.5H16A—C16—H16C109.5
C7—C8—H8B109.5H16B—C16—H16C109.5
H8A—C8—H8B109.5C18—C17—N2114.90 (16)
C7—C8—H8C109.5C18—C17—H17A108.5
H8A—C8—H8C109.5N2—C17—H17A108.5
H8B—C8—H8C109.5C18—C17—H17B108.5
N1—C9—C10113.75 (17)N2—C17—H17B108.5
N1—C9—H9A108.8H17A—C17—H17B107.5
C10—C9—H9A108.8C17—C18—H18A109.5
N1—C9—H9B108.8C17—C18—H18B109.5
C10—C9—H9B108.8H18A—C18—H18B109.5
H9A—C9—H9B107.7C17—C18—H18C109.5
C9—C10—H10A109.5H18A—C18—H18C109.5
C9—C10—H10B109.5H18B—C18—H18C109.5
H10A—C10—H10B109.5H3W—O5—H4W100 (3)
C9—C10—H10C109.5H1W—O6—H2W100 (3)
O1—C1—C2—O467.8 (3)C5—N1—C9—C10179.55 (17)
O2—C1—C2—O4111.9 (2)C3—N1—C9—C1058.9 (2)
O1—C1—C2—O3112.5 (2)C13—N2—C11—C1260.6 (2)
O2—C1—C2—O367.8 (3)C15—N2—C11—C1257.4 (2)
C9—N1—C3—C454.2 (2)C17—N2—C11—C12178.52 (18)
C7—N1—C3—C4175.46 (18)C11—N2—C13—C1462.2 (2)
C5—N1—C3—C463.7 (2)C15—N2—C13—C14176.99 (17)
C9—N1—C5—C6179.36 (19)C17—N2—C13—C1456.0 (2)
C7—N1—C5—C658.9 (2)C11—N2—C15—C1656.9 (2)
C3—N1—C5—C658.6 (2)C13—N2—C15—C16177.47 (17)
C9—N1—C7—C859.2 (2)C17—N2—C15—C1661.6 (2)
C5—N1—C7—C859.3 (2)C11—N2—C17—C18177.74 (17)
C3—N1—C7—C8179.88 (18)C13—N2—C17—C1857.1 (2)
C7—N1—C9—C1058.9 (2)C15—N2—C17—C1861.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H1W···O1i0.82 (4)1.96 (4)2.749 (2)161 (3)
O6—H2W···O3ii0.87 (4)2.00 (4)2.842 (2)162 (3)
O5—H3W···O2iii0.86 (4)1.88 (4)2.720 (2)166 (4)
O5—H4W···O4iv0.85 (4)1.89 (4)2.732 (2)167 (3)
C3—H3B···O2i0.992.403.300 (3)151
C5—H5A···O10.992.433.324 (3)149
C5—H5B···O4iii0.992.343.270 (3)157
C7—H7A···O3ii0.992.443.332 (3)150
C8—H8B···O4iii0.982.573.497 (3)158
C10—H10A···O2i0.982.503.450 (3)162
C11—H11B···O5v0.992.413.384 (3)167
C13—H13A···O1vi0.992.373.334 (3)165
C15—H15B···O4vi0.992.513.166 (3)124
C16—H16C···O6vii0.982.593.559 (3)170
C18—H18A···O3i0.982.593.296 (2)129
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z1/2; (iii) x+1, y+2, z1/2; (iv) x, y, z1; (v) x+1, y+1, z+1/2; (vi) x+1/2, y+1, z; (vii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula2C8H20N+·C2O42·2H2O
Mr384.55
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)100
a, b, c (Å)19.9302 (4), 7.6627 (1), 14.3253 (3)
V3)2187.75 (7)
Z4
Radiation typeCu Kα
µ (mm1)0.70
Crystal size (mm)0.32 × 0.25 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.808, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
17374, 2026, 1953
Rint0.067
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.081, 1.07
No. of reflections2026
No. of parameters256
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.16

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXLE (Hübschle et al., 2011), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H1W···O1i0.82 (4)1.96 (4)2.749 (2)161 (3)
O6—H2W···O3ii0.87 (4)2.00 (4)2.842 (2)162 (3)
O5—H3W···O2iii0.86 (4)1.88 (4)2.720 (2)166 (4)
O5—H4W···O4iv0.85 (4)1.89 (4)2.732 (2)167 (3)
C3—H3B···O2i0.992.403.300 (3)151
C5—H5A···O10.992.433.324 (3)149
C5—H5B···O4iii0.992.343.270 (3)157
C7—H7A···O3ii0.992.443.332 (3)150
C8—H8B···O4iii0.982.573.497 (3)158
C10—H10A···O2i0.982.503.450 (3)162
C11—H11B···O5v0.992.413.384 (3)167
C13—H13A···O1vi0.992.373.334 (3)165
C15—H15B···O4vi0.992.513.166 (3)124
C16—H16C···O6vii0.982.593.559 (3)170
C18—H18A···O3i0.982.593.296 (2)129
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z1/2; (iii) x+1, y+2, z1/2; (iv) x, y, z1; (v) x+1, y+1, z+1/2; (vi) x+1/2, y+1, z; (vii) x+1, y, z+1/2.
 

Acknowledgements

TJM acknowledges Daniel M. Perrine and Daniel R. Gorbaty for technical assistance and Loyola University Maryl­and for financial support. RDP thanks the NSF (grant No. CHE-0443345) and the College of William and Mary for the purchase of the X-ray equipment.

References

First citationBarthel, J. & Kunz, W. (1988). J. Solution Chem. 17, 399–415.  CrossRef CAS Web of Science Google Scholar
First citationBeagley, B. & Small, R. W. H. (1964). Acta Cryst. 17, 783–788.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChernoff, L. H. (1920). J. Am. Chem. Soc. 42, 1784–1785.  CrossRef CAS Google Scholar
First citationDarensbourg, D. J., Chojnacki, J. A. & Reibenspies, J. H. (1992). Inorg. Chem. 31, 3428–3433.  CSD CrossRef CAS Web of Science Google Scholar
First citationDemadis, K. D. & Coucouvanis, D. (1995). Inorg. Chem. 34, 436–448.  CSD CrossRef CAS Web of Science Google Scholar
First citationDiop, L., Mahon, M. F., Molloy, K. C. & Sidibe, M. (1997). Main Group Met. Chem. 20, 649–654.  CrossRef CAS Google Scholar
First citationEngels, R., Smit, C. J. & van Tilborg, W. J. M. (1983). Angew. Chem. Int. Ed. Engl. 22, 492–493.  CrossRef Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond. Outline of a Comprehensive Hydrogen Bond Theory, p. 61. Oxford, New York: International Union of Crystallography, Oxford University Press.  Google Scholar
First citationHeck, R. F. (1982). Org. React. 27, 345–390.  CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJeffrey, G. A. & Parry, G. S. (1954). J. Am. Chem. Soc. 76, 5283–5286.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMarkowitz, M. M. (1957). J. Org. Chem. 22, 983–984.  CrossRef CAS Web of Science Google Scholar
First citationMcNeese, T. J., Cohen, M. B. & Foxman, B. M. (1984). Organometallics, 3, 552–556.  CSD CrossRef CAS Web of Science Google Scholar
First citationRobertson, J. H. (1965). Acta Cryst. 18, 410–417.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarks, C. M. (1971). J. Am. Chem. Soc. 93, 195–199.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds